
Particles, vertices and trees

• Particle base class (Part)

o Should contain only intuitive information for a particle:
Momentum, particle type, point on the track (or x,y at fixed z)
Charge? (could be different type for Sim and Rec)

• Derived classes
o GenPart, SimPart, RecPart
o Contain additional information, specific to this class

error matrix on position and momentum @ the point , key to ProtoPart…
o Disadvantages:

��users have to deal with 4 classes
��need for methods to create Part containers from XxxPart if needed

o Advantages:
��one always knows which type an object is
��no dynamic casting (ugly!)

• Vertex base class (Vertex)
o Also only minimum information for a vertex

Position, Type of vertex (decay, interaction, kink…)
• Derived classes

o GenVrtx, SimVrtx, RecVrtx (if the 3 are needed!)
o Additional information:|

 Error covariance matrix, Chi2, ndf, Proper time of decay?
• Containers

o XxxPart should always be in a container (or in two?) such that it can be
easily deleted

o 2 types of containers:
��Simple list of XxxPart (e.g. ListOfPions)
��Tree (from simple as Ks-> pi pi to more complex as

Bs-> KDs->Kpi or B-> J/ΨΦ ->µµ KK
o Advantages of a tree over contained relationship:

��When passing a particle, one is sure the method uses only the
particle class, not any further information which could be derived
from it

��A particle exists without a vertex, and most tools do not need to
know there is one

��Specific methods for the tree: navigator, consistency checker (e.g.
check there is no double ref to the same ProtoPart)

o Always deal with copies of particles (at least conceptually, possibly use
SmartPtr in cases where no real copy is needed)

• Use case for building a decay tree (J/ΨΦ), starting from ProtoPart
1. Build a list of µ’s
2. Build a list of K’s
3. Build a list of J/Ψ’s and a tree for each of these (the µ’s are copied). The tree

includes the µµ vertex as fitted from these two particles
This is a use case for an object to belong to 2 containers…

4. id for Φ
5. Possibly refit the µ’s and K’s with mass constraint (no pb since they are

copies)

6. Look for B’s from the lists of J/Ψ’s and of
F�����������������������

7. Build the B particle(s) and its tree, fit vertex with µ’s and K’s. Question:
should one put in the tree a reference to that vertex for the J/Ψ and the Φ?

8. Check for consistency of the solution(s)

