
Software week, 10-12 November 2004
Olivier Callot

Event Model and RelationsEvent Model and Relations

What is the event model
Constraints and requirements, persistency

Data access, containers

XML, GOD and dictionaries
Building new classes

Relations
With Linker

Software week, 10-12 November 2004Event Model and relations 2

Event ModelEvent Model

Software week, 10-12 November 2004Event Model and relations 3

What is an Event Model ?What is an Event Model ?
Standard description of data classes

C++ objects containing data
Basically only setters and getters

Allows persistency
Objects can be written on storage, and read back by another
program

The way to convert them must be specified.
Streamers = piece of code to put the bytes of the objects one after the
other (writing) or to reconstruct the object from a byte stream.

Old implementation with ROOT, abandoned in 2003

Automatic conversion with dictionaries
Standard POOL technology, implies that we have a dictionary for each
object and collections of it.

Imposes some constraints of what can be in an object

Software week, 10-12 November 2004Event Model and relations 4

Reference between objects are special
A simple C++ pointer can be written with POOL

This is new compared to old Gaudi persistency

Works only if the pointed object is owned, and known only by the
parent object.

Gaudi has SmartRef objects to handle references between
autonomous objects

It behaves like a pointer for normal usage.

But it makes a logical reference to the pointed object when written

This reference can be transformed back to a pointer when reading
data.

In fact identifies an object by the container it belongs to, plus its
position / key in the container

Example: MCVertex has a list of MCParticles, and MCParticle
has a parent MCVertex…

Software week, 10-12 November 2004Event Model and relations 5

Hand written creation of objects is discouraged
We have a tool to generate the C++ header and the dictionary,
starting from a formal description in XML: GOD. This is an
acronym for Gaudi Object Description, and will be discussed later
in this presentation

This tool gives a standard layout of setters and getters, handles
relations and builds all the ingredients needed for persistency.

Software week, 10-12 November 2004Event Model and relations 6

How do we use it ?How do we use it ?
Event classes are in dedicated packages

Usually under the Event hat, e.g. Event/CaloEvent.

These are shared by most applications
They are in the high level “project” LHCb, used by the various
applications Boole, Brunel, DaVinci, Panoramix.

These packages must be stable
Change in the object implies difficulties to read back data
produced with previous versions

In principle, POOL provides a way to handle this “schema evolution”,
but with strong restrictions, in practice only addition of new information
will most probably work, but modification may work only in very limited
cases

Objects must then be WELL DESIGNED.
Reviews and discussions with experts are mandatory.

Software week, 10-12 November 2004Event Model and relations 7

Event classes must be identified by a classID
This is how the system knows the type of the object

These ID are allocated by Marco, see the Event Model web pages
for a list of the known ones.

Using a wrong ID can be annoying…

But “private” event classes are possible also
If they are never written, the constraints are smaller

Schema evolution is limited to a complete recompilation of the
relevant application

No need for a real ID

But frequently this is to build a prototype for a future persistent
object.

Follow the rules, and your object can be upgraded to an ‘official’
object whenever needed.

Software week, 10-12 November 2004Event Model and relations 8

ContainersContainers

Objects can exist as a single instance
Single copy per event, e.g. EventHeader
It is then accessed on its own

The location to access it is specified in the event model
Usually this is something like EventHeaderLocation::Default
Other locations can be pre-defined, changing the name after ::

A more frequent use case is a collection of objects
Digits, clusters, tracks, particles,…
Objects are placed in a container, and can be accessed only via
the container

In fact the object is created by new and the pointer to the object is in
the container
This is just technical: The object belongs to the container. The
container is the only access path to the object.

Software week, 10-12 November 2004Event Model and relations 9

KeysKeys
It is very useful to have an ID for each object

We call it a key, as this is one way to access a specific object.

Objects of this type are in a special container of type
KeyedContainer.

This gives some extra functionality, like ‘give me the object with that
key’, with the method container -> object(key);

Of course the key must be unique…
This is guaranteed: When inserting an object into the container, the
uniqueness is checked, and an exception thrown if needed.

It can be automatically assigned
When creating a track or a particle, the key is assigned as a serial
number in the container, starting at zero. The key has no special
meaning.

It can be specified
A VeloCluster has its first VeloChannelID as key.

Software week, 10-12 November 2004Event Model and relations 10

Access is by the location on TES
TES means “Transient Event Store”
This is a piece of memory managed by the EventDataService,
where objects are identified by their ‘location’

Resemble a file system, with a tree structure.

To get an object, one has to specify its type and its location
To retrieve either a simple data object, or a container

TrgTracks* myTr = get<TrgTracks>(TrgTrackLocation::Velo);

The argument is a string,

A good practice is to have a member variable there, initialized in the
creator to a proper default, and with a property to change it by job option.

exist check if the object exists, sometimes useful as get throw an
exception in case it doesn’t exist…

Access to data objectsAccess to data objects

Software week, 10-12 November 2004Event Model and relations 11

Missing or Empty containers ?
We make a strong difference between an empty container and a
missing container

Empty = the algorithm in charge of creating the objects has run, but
hasn’t produced any object

Missing = the algorithm in charge has not run / has failed
This is an abnormal condition, and the job should abort.

More complex access
Gaudi has more basic ways, described in old documentation.

They are discouraged, you should use the ‘get’ and ‘exist’ methods
of GaudiAlgorithm / GaudiTool from now on.

If you see them in existing code, please report to the author of the
code: Conversion to GaudiAlgorithm or GaudiTool was
probably not yet done on this code !

Software week, 10-12 November 2004Event Model and relations 12

Storing an object is even simpler
put(object, location);

object is a pointer to the object, created by new, which can be a
container
location is a string, usually ObjectLocation::Default.

An exception is thrown if an object with this name already exists.

Accessing keyed objects
First retrieve the container

Note: When a keyed object ‘Example’ is defined, the event model
specifies also the type of the container by putting the name plural

Example → Examples is a typedef for KeyedContainer<Example>

Vertex → Vertices

Then access the object in the container
Frequent use: iterate on the all objects in the container

But access by key is possible

Software week, 10-12 November 2004Event Model and relations 13

To access all objects in a container

MyObjects* container = get<MyObjects>(m_location);

for (MyObjects::const_iterator it = container->begin();

container->end() != it; ++it){

MyObject* obj = *it;

... Work with obj ...

}

To access an object knowing its key

MyObjects* container = get<MyObjects>(m_location);

MyObject* obj = container->object(aKey);

Software week, 10-12 November 2004Event Model and relations 14

Creating and populating a container is simple

MyObjects* container = new MyObjects(); // create

put(container, m_location); // register in TES

for (...) {

...

MyObject* obj = new MyObject(); // create object

...

container->insert(obj);

container->insert(obj, key); // to specify the key

}

Software week, 10-12 November 2004Event Model and relations 15

OwnershipOwnership
This is a delicate question

In principle, the creator of an object should take care of its
deletion, to avoid memory leak

Non deleted objects use memory, that can not be re-used !

EXCEPT that objects on the TES are cleaned up at the end of the
event by the store itself

Registering an object in the TES implies a transfer of ownership !

NEVER ever even think of …
Deleting a container in the TES

Deleting an object in a container

And even modifying an object in the TES.
You are not the owner ! Other algorithms may expect it…

Software week, 10-12 November 2004Event Model and relations 16

Data On DemandData On Demand
New feature of Gaudi

Some data is NOT on the TES, is not on the input file, but we
know a method to produce the data if needed

Example: re-create clusters from the RawBuffer in DaVinci

Triggered by accessing a non-existent TES object
If not in the TES, if not in the input file
Ask the DataOnDemandSvc if he knows how to produce this
named object

If yes, the relevant algorithm is executed, and the created data is
returned to the user

One cannot see if the data was read, or produced on the spot

Of course the pair ‘object name’ + ‘algorithm’ must be specified to
the service by job options.

Software week, 10-12 November 2004Event Model and relations 17

Usage has started
In DaVinci

For decoding Calo data only when needed.

In Brunel
For decoding the RawBuffer

Will probably (soon) replace the algorithm
specification in the Associator package

This was a ‘manual’ implementation of the same functionality

May become a default for accessing raw data
Decoding from RawBuffer on demand.

Avoids repeating the same raw data in two formats, a compact
one (RawBuffer) and a verbose one (container of cluster objects).

Software week, 10-12 November 2004Event Model and relations 18

XML and GODXML and GOD

“In GOD we trust”
Stefan Roiser, the father of GOD

If I can say !
Or godfather ?

Software week, 10-12 November 2004Event Model and relations 19

XMLXML
What is XML ?

This is a language to describe ‘objects’

Based on elements to identify the entities

Attributes can be attached to elements

Elements have a name

Syntax (short version !)
“<“ and “>” are used to mark the structured part of the text

Entities have a name. Two forms exist
<name attribute = “value” />

<name attribute = “value” > …something… </name>

The first form allows to specify a few properties inside the entity

The second form allows defining complex entities, with a lot of
structures inside, like other entities and so on.

Software week, 10-12 November 2004Event Model and relations 20

Inside an entity, one specifies attributes
Syntax is simple

Key = “value”

This means only text values.

No separation between successive keys
name = “test” type = “int”

desc = “This is the test number”

Line breaks are not relevant
Some people like to have one attribute per line, vertically aligned
The tools to edit xml files (XmlEditor or emacs menu) tend to put
everything on the same line, even what was previously vertically
aligned…

Indentation helps to see when an entity ends…
Automatic inside emacs.

Software week, 10-12 November 2004Event Model and relations 21

Some characters are reserved
< > & are used for the syntax of xml

If you want to use then as character, you have to specify them by
name:

> gives the character “>”

< gives the character “<“

& gives the character “&”

" gives the character “

' gives the character “’”

This is mainly used when putting C++ code fragments in XML
You can imagine that this becomes unreadable quite fast !

Try to code
if (a && b) info() << “ a = “ << a << endreq;

XML compiler diagnostics were poor on that, but this is now fixed
in the recent versions.

Software week, 10-12 November 2004Event Model and relations 22

Comments have beginning and end tags
<!-- is the begin tag

--> is the end tag

A few magic incantations are needed
At the beginning of the file, to specify the version of XML used and
the name of the file defining the syntax of your XML

XML can be used (in LHCb) for detector description or for event object
description, and clearly the entities and their possible attributes are
different !

The appropriate dictionary is copied in your package when configuring
it, provided you have the proper requirements file, see later

This is used by emacs/xmleditor to propose entities and attributes

The rest is quite simple
When you get used to it, of course !

Looking at existing files is a good idea…

Software week, 10-12 November 2004Event Model and relations 23

GOD and XMLGOD and XML
GOD means Gaudi Object Description

Gaudi product developed and maintained by Stefan Roiser

This is a “compiler”
It converts the xml files to

C++ header files in the Event directory

C++ header and dictionary files in the dict dictionary

The dictionary files are compiled, and can be used by POOL when
writing and reading those objects

Also used when interacting with them with Python, or in Panoramix

In fact the parsing is done by an open source product ‘Xerces’
Uniform look and feel of all objects

Automatic generation of setters and getters

Standard format for Doxygen comments

Software week, 10-12 November 2004Event Model and relations 24

An event model package has several features
A requirements file with special content

Defines directories xml, Event, dict for special purposes

Declares GOD and what to do to generate header and dictionaries
emacs generates a good requirement file when creating the file in a
package whose name contains the string Event.

The source files are created in the xml directory
Plus possible implementation files in src, as usual.

Event classes should usually have only simple methods, automatically
generated by GOD

Implementation files are rare, and discouraged.

One can have some short inlined code in the xml description.
Careful with the reserved characters < > and &.

The Event directory is declared to be known to the compiler
So that the header file can be included in other packages.

new

Software week, 10-12 November 2004Event Model and relations 25

The dictionary must be declared for containers
For POOL, a KeyedContainer<plunk> has no relation to
plunk, this is a completely independent object.

A dictionary must be created not only for the object, but for
containers thereof.

This is the reason for the magic incantation
&KeyedObject;

in the files describing objects inheriting from KeyedObject, that
should be religiously copied when creating keyed objects.

Software week, 10-12 November 2004Event Model and relations 26

Examples (Examples (TrStoredTrackTrStoredTrack))
<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE gdd SYSTEM 'gdd.dtd'>

<gdd>

<package name='TrEvent'>

<class name = 'TrStoredTrack'

location = 'Rec/Tr/Best'

id = '10003'

author = 'Jeroen van Tilburg'

desc = 'An TrStoredTrack is a track which can be made persistent'>

<location name="Velo" place="Rec/Tr/Velo"/>

<location name="Seed" place="Rec/Tr/Seed"/>

<location name="Match" place="Rec/Tr/Match"/>

<location name="Forward" place="Rec/Tr/Forward"/>

<location name="Follow" place="Rec/Tr/Follow"/>

<location name="VeloTT" place="Rec/Tr/VeloTT"/>

<location name="KsTrack" place="Rec/Tr/KsTrack"/>

<base name='KeyedObject<int>'/>

&KeyedObject;

<attribute type='double'

name='charge'

desc='particle charge'/>

<attribute type='int'

name='errorFlag'

desc='error flag'/>

Magic incantations

Default location

Other locations

Defines the base class, and the vectors/containers/…

Standard data member. Generate set and get methods

Software week, 10-12 November 2004Event Model and relations 27

<attribute type='bitfield'

name='history'

desc='origin of the track'>

<bitfield name='unique'

length='1'

desc='Unique track (0=clone track, 1=unique track)'/>

<bitfield name='velo‘ length='1' desc='Velo track'/>

<bitfield name='seed' length='1' desc='Seed track'/>

<bitfield name='match' length='1' desc='Matched track'/>

(...)

<bitfield name='ksTrack' length='1' desc='Ks decay track'/>

</attribute>

<relation type='TrStoredMeasurement'

name='measurements'

multiplicity='N'

desc='SmartRefVector to TrStoredMeasurement'/>

<relation type='TrState'

name='states'

multiplicity='N'

desc='SmartRefVector to TrStates'/>

<method type='const TrState* '

name='closestState'

argList='double zpos'

const='TRUE'

desc='get closest state to z position'/>

Defines bit fields in a word

Vector of relations
to other objects

Software week, 10-12 November 2004Event Model and relations 28

<method type="double"

name="lastChiSq"

const="TRUE"

desc="Get the last chi^2 of the track fit."/>

<method virtual='TRUE'

type='bool'

name='isLong'

const='TRUE'

desc='Is the track a long track'>

</method>

</class>

</package>

</gdd>
Close the elements

Software week, 10-12 November 2004Event Model and relations 29

Recent news from GODRecent news from GOD
New version v7r0 of GaudiObjDesc

In the Gaudi release pipe-line, for v16r0.

Written in Python for easier management
Writing C++ from C++ is a pain !

Fixes several requests from RICH and Tracking

No change in the xml files nor in the resulting header files
Their functionality and generated names are identical

But better layout → better user readability.
Better alignment

The number of lines of code in GaudiObjDesc has been reduced
by a factor 5, allowing better management.

Thanks Stefan !

Software week, 10-12 November 2004Event Model and relations 30

Relations with LinkerRelations with Linker

Software week, 10-12 November 2004Event Model and relations 31

What are Relations ?What are Relations ?
This is a ‘link’ between two objects

Tracks to MCParticles having produced them

Tracks to Measurements used to build the track.

Some relations are structural
Measurements are constituents of the track in some sense

The relation exists inside the object.
They are indicated in xml by the <relation /> entity.

Methods are generated by GOD to populate, copy, retrieve the set of
relations
The implementation is by SmartRef or SmartRefVector according
to the multiplicity of the relation

One to one, or one to many

This is handled by the Event Model.

Software week, 10-12 November 2004Event Model and relations 32

Many relations are weaker
Relation to MC truth is not available in real data.

Access to MC truth is not part of the structure of the event classes.

One can specify something like “this object is related to that
object”

And even qualify this relation with a weight.

Relations are independent objects
This is implemented as a ‘table’

Imagine an array with source, target and weight as rows…

A tool is usually provided to use these relations
Named ‘Associator’

An algorithm is needed to create the relations
It runs usually when the source and target objects are all created

It can be complex, like the track associator to MCParticle

Software week, 10-12 November 2004Event Model and relations 33

Original implementation by Vanya
Set of highly templated classes, where source and target can be
any object, and weight anything including an object.

Basically a vector of pairs of a source and a vector of pairs of a target
and a weight.

But the generation of dictionary (POOL requirement) for these
classes requires some trick

Each possible relation has to be described.
Special package EventAssoc with one line of xml for each relation to
store.

Speed is an issue
When reading, as the relation table is sorted by the pointer to the
objects, which are different upon reading.

Sorting is needed for fast access
Sorting each time an element is added is expensive
Sorting is not preserved when reading

As the pointed objects are in different memory locations.

Software week, 10-12 November 2004Event Model and relations 34

““LinkerLinker”” implementationimplementation
Basic idea: Solve the previous problems !

Of course there are limitations

Same table for all relations
Represent objects by their container name and key

Works only with KeyedObject inserted in a container.

But can also use a key independent of an object
Can link a channel ID to a MCParticle

The relation is valid for digits, clusters, or internal representation in the L1
and Hlt packages

Use the standard link table of any container to store the name of
the containers to which there are relations

Source (and target) objects can be in several containers

Software week, 10-12 November 2004Event Model and relations 35

Reading is fast
There is no sorting at all.
The table is just a collection of int and double.

Plus strings for the container names in the hidden features of a
container.

Access is simplified
There is no need for a tool with options

But Vanya’s implementation can also be used this way, if we don’t use
the automatic invocation of the algorithm if the relation doesn’t exist.

A simple wrapper class do the job
This is created once per event, and answers with a simple syntax

This relation can not be looked at as a STL container with iterators

Software week, 10-12 November 2004Event Model and relations 36

How to use Linker relations ?How to use Linker relations ?
This is described in LHCb 2004-007

Creating a relation

#include “Linker/LinkerWithKey.h”

LinkerWithKey<TARGET,SOURCE> myLink(evtSvc(),

msgSvc(), name);

SOURCE can be omitted if it the source inherits from KeyedObject<int>

‘name’ is a string, gives the location in the TES of the relation. One can use the
same name as a container, as the name is prefixed with /link

myLink.link(source, target, weight = 1.);

That’s it…

Software week, 10-12 November 2004Event Model and relations 37

Using a relation is as simple

#include “Linker/LinkedTo.h”

. . .

LinkedTo< MCParticle > myLink(evtSvc(), msgSvc(),

VeloClusterLocation::Default);

...

MCParticle* part = myLink.first(aCluster);

while (NULL != part) {

bla = part->someMethod();

...

weight = myLink.weight();

...

part = myLink.next();

}

Software week, 10-12 November 2004Event Model and relations 38

The reverse relation can be retrieved also
LinkedFrom instead of LinkedTo

This is in use since DC’04
Needed to store the truth relations for L1 and HLT

Velo, IT and OT clusters by key.

Also available for TrStoredTracks
Copy of the standard relations.

