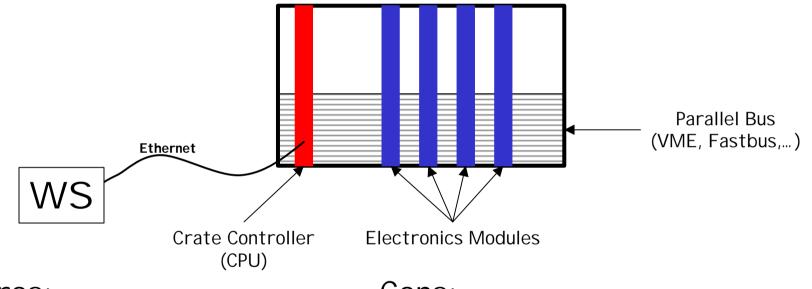


Controls Interface to Electronics Boards Credit-Card PC and Local Control bus

Beat Jost Cern EP

□ Introduction


🛛 Goal

□ Current I deas for Solution

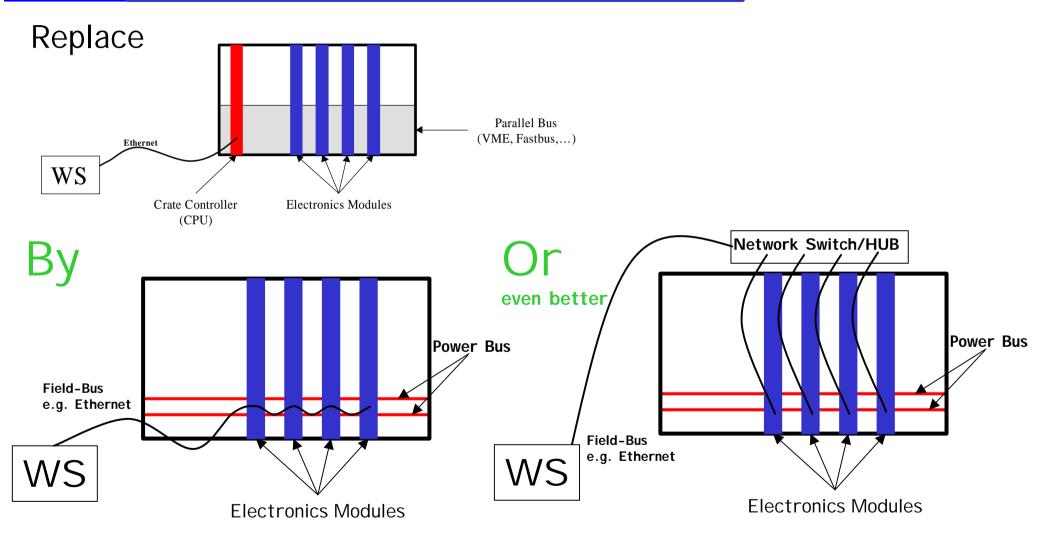
 $\hfill\square$ Discussion and Conclusion

Classical Way of controlling electronics in HEP

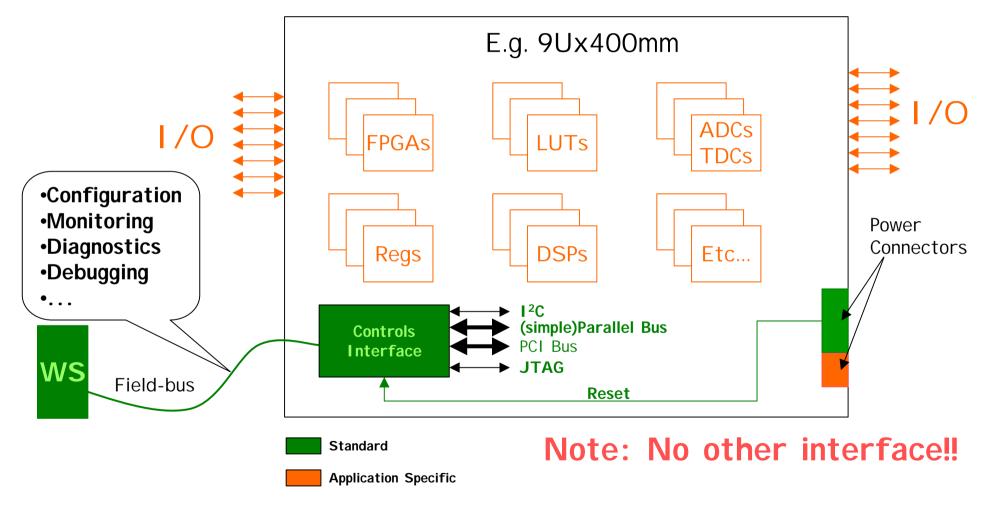
Pros:

Cons:

- > Universally available
- ➤ simple? slave interface
- ➤ in the past bus could also be used for DAQ
- > expensive CPUs (very small market)
- ➤ expensive crates
- ➤ expensive slave I /Fs

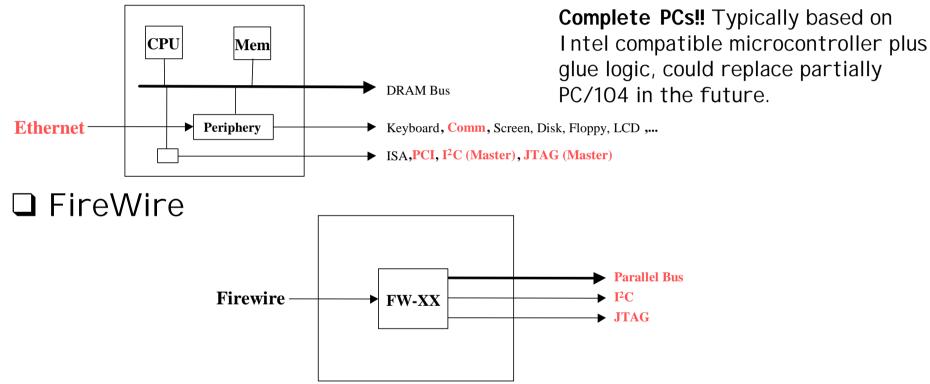

KHCK Assumption for the Following

- □ The vast majority of the electronics boards are home-made
- Crate bus is not used for moving the physics data in LHC experiments, because
 - (at least) at higher levels of the readout systems, performance is insufficient
 - > trigger rate too high for processor intervention on per event basis
- □ Crate bus is only used for control and monitoring
 - > for this purpose a "high performance" bus is **not needed**
 - > for this purpose a parallel bus is **not desired** for reliability reasons
 - → One participant on the bus can prevent bus accesses even if it's not involved
 → makes diagnostics more difficult
- Hence
 - A more reliable and perhaps even more cost effective alternative is desired.
- □ By the way: Crates are useless for dispersed individual boards


- Get rid of parallel busses for controls
- □ Find a cheaper solution for
 - > per-board controls interface (slave)
 - ➤ per crate intelligence, by taking it out of the crate formfactor
 - →Use commodity items
 - ➤ Crates (no parallel bus needed anymore)
 - →Reduce crates to
 - Mechanical support ("Anti-Gravity device")
 - Power Bus (could be arguable)
 - Cooling (Fantray)
- □ Take advantage of large market (low price)
- Provide a common controls interface for ALL electronics boards in LHCb

LHCS Electronics Board Architecture

The architecture of an electronics board could look like this:



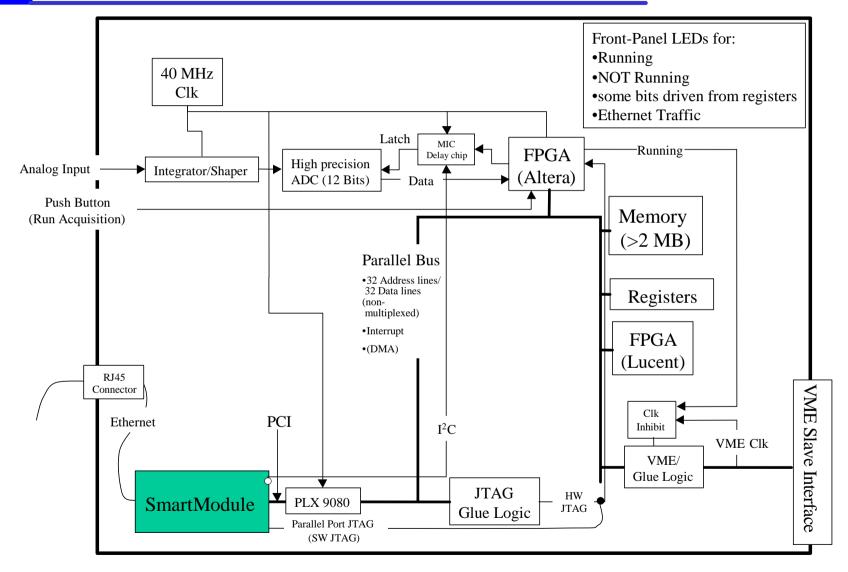
KRCS Requirements for On-Board ECS Interface

- □ Sufficient bandwidth into each board (10-100 Mb/s)
- □ Cost per board must be low
 - → Uniform approach for "all" electronics (volume)
 - \gg for Ethernet the cost of a switch or hub port has to be taken into account
 - → 10 Mb/s hub port ~30 SFr. (today)
 - → 100 Mb/s switch port ~80 SFr. (today)
 - ∽ Can be mixed‼
- Mechanical
 - ➤ minimal height (thickness)
 - ➤ minimal surface
- □ Software support
 - > Low-level access libraries from WS to board components
 - \succ Tools supporting the programming of a CPU (if present) on the interface
- Reset of ECS interface without disturbing the operation of the rest of the electronics on board

LHCS Possible Solutions under Study

□ Credit-card PCs (e.g. smartModules)

□ We also looked at PC/104, but it doesn't seem suitable mechanically


□ For SmartModules

- \gg acquire one evaluation kit and one "bare" module
 - Several Evaluation Kit with 486 acquired, porting currently Linux to it
 - → Final (586-based) module not yet available
- \gg learn how to program the processor using the evaluation kit
- build an evaluation board with FPGA(s), memory, registers, LEDs, to study how to use the modules and whether they are suited for our application being designed now. Ready in ~3 months?
- > Should be able to give guidelines for designers by November

□ FireWire

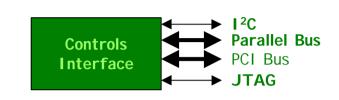
- >> try to understand the availability of interfaces/bridges
 - → for example: we know that there exists a Firewire to I DE chip. Can this be used?
 - → Similar (or same) evaluation board as above to prove usability

LHCS SmartModule Evaluation Board

LHCC Local Bus Characteristics

Based on PLX PCI 9080 chip

(See also http://lhcb.cern.ch/computing/controls/pdf/9080db-106.pdf)


- Goal: It should be easy to interface to components to local bus
- 32 bit address
 32 bit data + Byte Parity
 Non-multiplexed
- Control lines (address strobe, R/W, Byte enable, etc.)
- Local bus clock frequency 0-40 MHz -> allows to run bus synchronous with LHC Clock
- □ local bus can be <u>Little</u> or Big Endian
- One interrupt line from local bus to PCI -> might need external interrupt register/generator
- not terribly fast:
 - ➤ 8.3 MB/sec PCI reading from local bus
 - ≫ 8.8 MB/sec PCI writing to local bus

Single Cycle from timing diagrams

PCI DMAs translated into local bus bursts

Are the proposed interfaces (I²C, JTAG, parallel bus, (PCI)) acceptable and sufficient?

- □ Hardware configuration, e.g. amount of memory required
- 🗅 Cost
- □ Interference with on-board analog electronics
- Reset of controls interface while taking data (SUE recovery)
- □ Final I mplementation: Glue logic on separate board or integrated on motherboard?

LHCP Pros and Cons

D Pros

- > only point-to-point connections
- Flexible concerning association between controls WS and electronics board (scalability)
- > programmable element on board allows extensive self-test and diagnostics
- \gg allows to use (design) cheap crates
- > test-benches and repair stands are very simple and cheap: just need a PC or terminal and an Ethernet cable and a power supply

Cons

- >> potentially cost (even though it seems that e.g. smartModules are competitive with VME)
- ➤ difficult to mix in one crate commercial (VME-based?) modules
- currently only few vendors (issue is more the pin-out), however market is growing, Effort going on to standardize pin-out.

- We are studying alternatives to crate-based solutions (VME) to be used for the control, configuration and monitoring of board-level electronics
- $\hfill\square$ Our Goal is to find a solution that is, compared to VME,
 - ≫ more flexible
 - ≫ more reliable
 - ➤ not more expensive (actually much cheaper if cheap crates are used)
- □ Credit-Card PCs could be a viable solution
- The results of the evaluation board will make us know more

SmartModule Cost (Elan based)			VME Based System Cost			
	Component cost [CHF]			Unit Cost	Average Per Slot Cost [CHF]	
			VME Slave Interface Chip (TUNDRA Trooper II)) 60\$	100	Quantity of 500
			VME Processor	5000	333	assuming 15 slots occupied (in average)
smartModule	250		Subtotal		433	
Glue Logic	80	e.g. PLX 9080	Glue Logic		17	
Ethernet HUB	30	per port				
Total per Board	360				450	