

Migration of reconstruction and analysis software to C++

A proposal based on feedback from the software week

Marco Cattaneo, 1st December 1999

Physics Goal:

To be able to run new tracking pattern recognition algorithms written in C++ in production with standard FORTRAN algorithms in time to produce useful results for the RICH TDR.

Software Goal

To allow software developers to become familiar with GAUDI and to encourage the development of new software algorithms in C++.

• Finish splitting of SICB into:

- simulation (SICBMC)
 - Event generation, GEANT tracking
 - outputs kinematics AND raw GEANT hits
 - > i.e. Current RAW format, but with xxRW banks from all detectors

reconstruction (SICBREC)

- doesn't need GEANT3 nor its common blocks
- digitisation, trigger, reconstruction in distinct steps
- outputs same DST format as now.

Benefits:

- Clear separation between simulation and reconstruction
- Modularity of reconstruction
- Organiser : Florence

Step 1 overview

Marco Cattaneo, 1st December 1999

4

Tasks for step 1

• SI CBMC

- Remove anything that belongs to digitisation and reconstruction
 - Done
- Create raw hits for calorimeter
 - To be done by calorimeter experts (~1 week?)

• SICBREC

- Add initialization routines for each step of the processing (digitize, apply trigger, reconstruction)
- Verify validity of results
 - Both the above are essentially work for the sub-detector experts
 - Time estimate is about two weeks

• If started now, step 1 could be finished by Xmas

Proposed Strategy - Step 2

• For every SICBREC FORTRAN module:

- wrap it such that it can be called from C++
- Integrate with the GAUDI framework
 - Time estimate about 1 month sub-detectors and Gaudi team
- Result is a new reconstruction program BRUNEL

• Produce a DST (Zebra banks) with this program

- check the output is as expected
 - i.e. identical to SICBREC output
 - Must be done by sub-detector experts

Drop SICBREC

- Could be ready for decision by next LHCb week
- Benefit:
 - Single environment for C++ and FORTRAN work
 - Integrated environment for verification of C++ developments
- Organiser: Marco

Proposed Strategy - Step 3

- Start replacing FORTRAN modules with C++ equivalent. Each new piece consists of:
 - event model
 - detector description
 - algorithm.

Provide converters to:

- regenerate same SICB output bank that was there before
 - Preserves format of SICB DST
 - DST banks may contain improved data (e.g. Result of tracking pattern recognition
 - Some "added value" of C++ algorithms would NOT be on SICB DST
- write data out to the supported persistent object manager
 - Contains as complete a reconstructed event as is available in GAUDI event store
 - Including "added value" of C++ algorithms, available only to GAUDI based analyses

Step 3 - organisation

• This step implies (for each sub-detector):

- Development of event model : help coordinated by Marco
- Development of detector description : help coordinated by Florence
- Reviews of evt mod, det desc, algorithms : organised by John.
 - Review panel will include Pere, Marco, Florence, plus SDs

Known candidates:

- Tracking,
- Analysis tools,
- Muon digitisation,
- Calorimeters,
- RICH,
- ...

• Timescale:

Depends (almost) entirely on sub-detectors

• A unified development and production environment

- As soon as C++ algorithms are proven to do the right thing, they can be brought into production in the official reconstruction program
- Early exposure of all developers to Gaudi infrastructure
 - **FORTRAN** gurus and C++ beginners

Increasing functionality of OO 'DST'

- As more and more of the event data becomes available in Gaudi, it will become more and more attractive to perform analysis with Gaudi
- N.B. Contains ALL (and only!) parts of reconstructed event for which data model is defined

A smooth transition to a C++ only reconstruction

- Step 1: separate SICBMC and SICBREC
 - Could be ready by Xmas
- Step 2: wrap SICBREC algorithms into Gaudi framework
 - Could be ready by end February
- Step 3: gradually replace FORTRAN with C++ algorithms
 - Timescale dictated by sub-detector priorities
 - Development/integration in Gaudi can start now
- Analysis in Gaudi is possible now
 - Functionality will increase as subdetectors define their data model
 - Analysis toolkit under development, send requirements to Gloria