iy I

Gaudi software release procedures

Production releases
Bug-fix releases
Development releases

Marco Cattaneo, 7-Apr-2000 1

%m Production Releases

Periodic public, tested, release of all Gaudi and
related packages, including

m Source code

m Libraries for Linux and WNT

m Complete documentation (GUG, code, examples)

¢ Latest released version

m becomes recommended default for all users
m used in Gaudi dependency tree

$LHCBSOFT/ Gaudi / v6 Gaudi Exanpl es v6 uses Gaudi Svc vl
/v5 Gaudi Svc v1 uses Gaudi v6
/ Gaudi Svc/ vl
| Gaudi Exanpl es/ v6

/v5

Marco Cattaneo, 7-Apr-2000

%m Bug fix releases

¢ Done whenever bugs need to be fixed

Only for the specific package that needs to be fixed
No added functionality relative to major release
Tagged with a minor version number

e e.g. GaudiSvc virl

Release includes source code and libraries in $LHCBSOFT
$LHCBSOFT/ Gaudi Sve/ vir1l
/vl

Other released packages not modified

Must be used explicitly in your requirements file:
use Gaudi Svc virl
e CMT knows minor version is compatible with major version, so

does not complain if other used packages are in turn using v1
version

Marco Cattaneo, 7-Apr-2000

%% m CVS repository:

¢ On CVS, bug fixes are applied to a branch

m When a bug is fixed, it should be committed to the bug fix
branch AND to the head revision, together with updated
[doc/ r el ease. not es
e e.g. all GaudiSvc v1 fixes should go to v1rO branch
get pack Gaudi Svc v1r0, make xyz fix, cvs commt -m ‘xyz bug fix’

e It is responsibility of developer to also put the bug fixes on the
head revision
get pack Gaudi Svc vl head, make xyz fix, cvs commt -m ‘xyz bug fix’

m When it is decided to make a bug fix release, librarian tags the
branch with the release tag
e e.g virl, vlr2 etc.
hl - h2 - vl - h3 - h4 - h5 - v2 main branch
| / /
virO - vilrl - vir2 bug-fix branch

Marco Cattaneo, 7-Apr-2000 4

%m Development releases

¢ $LHCBDEV area in AFS, parallel to $LHCBSOFT

m On regular basis (whenever there is something new), head
revision of packages is tagged and built in this area
e For both NT and Linux

e Tag reflects the date of the build
» e.g. today’s tag is h0O00407

= Directory structure:

$LHCBDEV/ Gaudi / h000407
h000405
h000329

m 1T build is successful and works, logical link is made with name
of current release:
$LHCBDEV/ Gaudi / v6- >h000407

m N.B. Developers may (should!) commit to head revision
whenever they have something new that (at least!) compiles
» Including updated release.notes
m Dev release (tag+build) done on demand by librarian

e May be automated in future (‘daily build’) 5

%m Linking to the DEV area

¢ |If you want latest version of everything
m On Unix: set env CMITPATH $HOVE/ nycnt : SLHCBDEV

m On NT: add a second path to registry key
HKEY LOCAL MACHI NE/ SOFTWARE/ CMI/ pat h

m Logical links in $LHCBDEV area ensure you get latest working
(undocumented!) versions without changing requirements
» (Just keep using latest released version)

¢ If you want specific version of just one package

m On Unix: (e.g. for h000407 version of Gaudi Svc)
cd $HOVE/ nycnt
nkdi r Gaudi Svc
cd Gaudi Svc
| n -s $LHCBDEV/ Gaudi Svc/ h000407 vi1

m On NT, since logical links are not possible:

e get pack Gaudi Svc h000407 into your CMT directory, build it,
and rename directory

Marco Cattaneo, 7-Apr-2000 6

%m When to use the DEV area

¢ NOT Iif you are just using GAUDI

m Use latest released version

m Use DEV version of any single package for any unreleased
features you need to use

¢ NOT Iif you need to modify a package
m Use getpack and modify in your CMT area

¢ In all other cases, preferable to link to the DEV
area than to make a private build of head revision
= You will be working in same environment as other developers
= You will get the most recent working modifications
m You will be actively testing the most recent modifications...

Marco Cattaneo, 7-Apr-2000 7

Summary of rules for
%m GAUDI CVS packages

¢ Anyone can commit
m To the head revision for new features
m To the bug fix branch AND the head revision for bug fixes

¢ Commit often, BUT
m Discuss your changes beforehand with the GAUDI team
m Make sure what you commit is coherent and least compiles
m Give a meaningful comment in -m “message” field
m Make sure the changes are documented in release.notes
m Tell the librarian what changes you have committed

¢ You should never need to tag what you commit
m Ask the librarian to apply a bug fix tag or a daily tag

Marco Cattaneo, 7-Apr-2000

