

BRUNEL
LHCb Reconstruction Program

User Guide
 Corresponding to Brunel version v9r1

Version: 9.1
Issue: 0
Date: 20 March 2002

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

BRUNEL User Guide
 20 March 2002 Version/Issue: 9.1/0
Document Control Sheet

Document Status Sheet

Document Title: BRUNEL User Guide

Version: 9.1

Issue: 0

Edition: 0

ID: [Document ID]

Status:

Created: 25 May 2000

Date: 20 March 2002

Access: :

Keywords:

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Content
Template:

-- Version: --

Authorship Coordinator: M.Cattaneo

Written by: M.Cattaneo

Title: BRUNEL User Guide

ID: [Document ID]

Version Issue Date Reason for change

5 3 13 September 2001 Modifications for v5r2, v6r1, v7r1

8 0 19 October 2001 Updated for Brunel v8

9 0 20 January 2002 Updated for Brunel v9r0

9 1 20 March 2002 Updated for Brunel v9r1
page 2

BRUNEL User Guide
 Table of Contents Version/Issue: 9.1/0
Table of Contents

Document Control Sheet . 2
Document Status Sheet . . 2

Table of Contents . 3

Chapter 1
Introduction . 7

1.1 Purpose and structure of this document 7
1.2 Package structure . . 7
1.3 What does "Brunel" mean? . 8
1.4 Editor’s note . 8

Chapter 2
Brunel program structure . 9

2.1 Introduction . 9
2.2 Brunel phases . 9

2.2.1 Initialisation . 9
2.2.2 Reconstruction phases and sequences 10
2.2.3 Finalisation . 11

2.3 Program configuration . 11
2.3.1 Instantiation of Brunel phases 11
2.3.2 Instantiation of Brunel sequences 11
2.3.3 Instantiation of sub-system algorithms 12

Chapter 3
Current Implementation . 13

3.1 Introduction . 13
3.2 Supported versions and compatibility with input data 13
3.3 Detector Description . 14
3.4 Event Data Model . 15

3.4.1 PileUp . 15
3.4.2 SpillOver . 15

3.5 Random numbers . 16
3.6 Digi Phase . 16

3.6.1 VELO . 17
3.6.2 Inner Tracker . 17
3.6.3 Outer Tracker . 17
3.6.4 RICH . 17
3.6.5 CALOrimeters . 17
3.6.6 MUON . 17

3.7 Trigger phase . 18
 page 3

BRUNEL User Guide
 Table of Contents Version/Issue: 9.1/0
3.7.1 Technical Proposal (TP) trigger algorithms 18
3.7.2 L0 trigger . 18

3.8 Reco Phase . 18
3.8.1 Inner Tracker . 18
3.8.2 Outer Tracker . 18
3.8.3 Velo Tracking . 18
3.8.4 Forward tracking . 19
3.8.5 Upstream tracking and track fit 19
3.8.6 RICH . 19
3.8.7 CALOrimeters . 19

3.9 Final Fit phase . 19
3.10 Moni Phase . 19

3.10.1 ITMCHitsMonitor, ITDigitsMonitor 19
3.10.2 OTDigitChecker . 20
3.10.3 TrMonitor, TrCreat, TrFitIn 20
3.10.4 L0CaloMonit . 20
3.10.5 ITDigitChecker . 20
3.10.6 FwtAnalyse . 20
3.10.7 SpdMonit, PrsMonit, EcalMonit, HcalMonit 20

3.11 Output data . 21

Chapter 4
Customising and Running Brunel . 23

4.1 Introduction . 23
4.2 Modifying the run time behaviour 23

4.2.1 Database selection . 24
4.2.2 Defining input data . 24
4.2.3 Defining output data . 25
4.2.4 Modifying the printing behaviour 26
4.2.5 Monitoring options . 27
4.2.6 Enabling static execution 29
4.2.7 Additional job options . 29

4.3 Adding user code . 30
4.4 Building and running the job 30

4.4.1 Running the default version 31
4.4.2 Running the default version with modified job options 31
4.4.3 Running the default version with modified requirements 32
4.4.4 Building a modified version 32

4.5 Problem reporting and resolution 32
4.5.1 Known Problems . 32
4.5.2 Getting help . 33
4.5.3 Reporting problems . 33

Appendix A
page 4

BRUNEL User Guide
 Table of Contents Version/Issue: 9.1/0
References . 35
 page 5

BRUNEL User Guide
 Table of Contents Version/Issue: 9.1/0
page 6

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 9.1/0
Chapter 1

Introduction

1.1 Purpose and structure of this document

This document is a user guide and reference manual for the LHCb reconstruction program,
Brunel. It should be used in conjuction with documentation available on the web, at
http://cern.ch/lhcb-comp/Reconstruction/ and should be useful both to users wishing to run the
program, and to programmers wishing to add functionality. Chapter 2 describes the structure
of the program. The current functionality is described in Chapter 3. Chapter 4 describes how
users can modify the program’s functionality and its run time behaviour.

Brunel is based on the Gaudi software framework [1], and uses CMT [2] for code
management. This guide assumes some familiarity with both of these tools. Please refer to the
corresponding documentation for details on these topics.

This document does not describe the physics algorithms or the data model. A compilation of
notes discussing LHCb reconstruction algorithms and the LHCb data model is available on
the Web [3],[4].

1.2 Package structure

Brunel is implemented as a CMT package, in the "Rec" package group, with the following
subdirectory structure:

— doc release notes

— job example job for Linux

— options default job options and SICB data cards

— cmt CMT requirements file. The Brunel version is defined at compile time
via a compiler switch defined in this requirements file.
 page 7

http://cern.ch/lhcb-comp/Reconstruction/

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 9.1/0
— Visual Visual Studio Workspace

This package is used exclusively to build and execute the application. The code for the Brunel
framework is found in two other packages in the Rec package group:

— BrunelKernel Component library for the Brunel framework

— BrunelSICB Interfaces classes and subroutines to SICB Fortran code. This
package consists of a library (BrunelSICBLib, built from sources in the src/Lib
sub-directory) and of a number of Fortran routines (in src/Objs) which must be
linked explicitly into the Brunel executable to replace routines with the same name in
other SICB packages.

1.3 What does "Brunel" mean?

All LHCb data processing applications are based on a framework which enforces the GAUDI
architecture. Antoni Gaudi [5] was a Catalan architect who greatly influenced the
development of Barcelona around the beginning of the nineteenth century. For the
reconstruction program we decided to use the name of an engineer. Isambard Kingdom
Brunel [6] was a British engineer who greatly contributed to the industrial revolution in the
first half of the eighteenth century.

1.4 Editor’s note

This document is a snapshot of the Brunel software at the time of the release of version v9r1.
We have made every effort to ensure that the information it contains is correct, but in the
event of any discrepancies between this document and information published on the Web, the
latter should be regarded as correct, since it is maintained between releases and, in the case of
code documentation, it is automatically generated from the code.

We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch
page 8

mailto:Marco.Cattaneo@cern.ch

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 9.1/0
Chapter 2

Brunel program structure

2.1 Introduction

The Brunel reconstruction program is built on the Gaudi framework, and provides
mechanisms for sequencing reconstruction algorithms within this framework. Algorithms
executed in Brunel have access to all the services currently implemented in Gaudi, and to all
data in the Gaudi data stores, as documented in the Gaudi user guide [1].

Reconstruction in Brunel is executed in a number phases, each of which can contain sequences
of sub-detector algorithms. The instantiation of phases and the sequencing of algorithms
within the phases are driven by job options.

2.2 Brunel phases

2.2.1 Initialisation

Brunel is initialised in the BrunelInitialisation algorithm. The SICB specific
initialisation is performed in the BrunelInitSicb algorithm. These Gaudi algorithms are
where all initialisations which are independent of BrunelPhase are performed. These can be
global program initialisations (in the initialize() method), or event by event
initialisations (in the execute() method). Note that initialisations specific to a given
BrunelPhase should not be performed here.

In the current version, BrunelInitialisation explicitly creates the Event Data Store
directory tree required by the reconstruction algorithms. In a future version (when the new
event model is adopted) this will be created automatically by Gaudi.
 page 9

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 9.1/0
2.2.2 Reconstruction phases and sequences

This where the meat of the reconstruction program lies. Actual phases are derived from the
BrunelPhase base class. Each BrunelPhase should be independent of other
BrunelPhases: it should be possible to run only one phase, providing of course that event
input data in the appropriate format exists1. All initializations and finalizations specific to the
phase should be performed inside the phase.

Each phase consists of a number of Gaudi Sequences, typically one per sub-detector, which
execute a set of reconstruction algorithms in a predefined order.

The following BrunelPhases are currently instantiated:

• BrunelDigi is where simulated RAW Hits are converted into DIGItisings. The
output of this phase has the same format as real RAW data coming from the
detector2. Obviously this phase would not be present when reconstructing real data,
and could be moved to the simulation program when reconstructing simulated data.
Note that this implies some discipline when designing the DIGItised data model, in
particular for what concerns links to Monte Carlo truth information.

• BrunelTrigger is where the LHCb trigger decision is applied. The input event data
are DIGItisings. The output are also DIGItisings, with the addition of the trigger
decision information.

• BrunelReco is where the first pass reconstruction is carried out. By first pass we
mean that the reconstruction algorithms in this phase rely only on DIGItisings and do
not require input from the reconstruction of other subdetectors. This restriction can
be somewhat relaxed by ensuring that subdetectors are reconstructed in a specific
order: those that only require input from the DIGItisings are processed first, those
that require input from the reconstruction of other sub-detectors are processed after
those sub-detectors.

• BrunelFinalFit is the second pass reconstruction, to allow for processing which
requires input from the reconstruction of several subdetectors.

• BrunelMoni is a phase intended purely for monitoring, which could be switched off
during a large production. Monitoring histograms should, wherever possible, be
filled by algorithms that execute in this phase. This phase is discussed in more detail
in section 4.2.5.1

Note that additional phases could easily be implemented if further reconstruction passes are
required.

1. This is not entirely true in the current version of the reconstruction program, due to the underlying calls to
SICBDST routines, which do not have this structure.

2. This is not entirely true in the current version of the reconstruction program, due to the underlying use of
the SICB data model, which does not have this structure
page 10

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 9.1/0
2.2.3 Finalisation

Brunel is finalised in the BrunelFinalisation algorithm. This Gaudi algorithm is where
all the finalisations which are independent of BrunelPhase are performed. These can be
global program finalizations (in the finalize() method), or event by event finalisations (in
the execute() method). Note that finalisations specific to a given BrunelPhase should not
be performed here.

2.3 Program configuration

As with other programs based on Gaudi, Brunel is configured through job options. Several job
options files are distributed with Brunel, in the /options sub-directory. Here we describe
some features of the main job options file, Brunel.opts, which sets up the standard
configuration of Brunel and should not normally be changed by the user. Other job options
files that can be modified to customise the run time behaviour of Brunel are described in
Chapter 4.

In addition, Brunel needs to know which database version to use. This is described in
Section 4.2.1.

2.3.1 Instantiation of Brunel phases

Brunel Phases are Gaudi top Algorithms. They are therefore instantiated using the standard
Gaudi job option ApplicationMgr.TopAlg. Listing 2.1 shows the default value of this
option for the current implementation. Note the different phases in lines 3 to 6, which are
different instances of the class BrunelPhase and will be executed in the order shown

2.3.2 Instantiation of Brunel sequences

Reconstruction code should be executed inside Brunel Phases. Each Brunel Phase instantiates
a Gaudi Sequence for each sub-detector or sub-system participating in that phase. The instance
name of the Sequence follows a specific convention: it is composed of the Phase name (e.g.
BrunelDigi) followed by an abbreviated sub-system name (e.g. MUON), followed by the string
"Seq" (e.g. BrunelDigiMUONSeq). These Sequences are intended to be the phase specific
steering algorithms of the sub-systems: the subsystem reconstruction algorithms have to be
declared as members of the Sequence.

Listing 2.1 Brunel Top Algorithms as defined in $BRUNELOPTS/Brunel.opts job options file

1: ApplicationMgr.TopAlg = { "BrunelSicbInit",
2: "BrunelInitialisation/BrunelInit",
3: "BrunelPhase/BrunelDigi",
4: "BrunelPhase/BrunelTrigger",
5: "BrunelPhase/BrunelReco",
6: "BrunelPhase/BrunelFinalFit",
7: "BrunelFinalisation/BrunelFinish" };
 page 11

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 9.1/0
Listing 2.2 shows how the different sub-system sequences are instantiated within the existing
Brunel phases, in version v9r1 of Brunel.

2.3.3 Instantiation of sub-system algorithms

Within each Sequence, the sub-systems are able to instantiate any number of algorithms by
simply adding the appropriate job option. For example, to instantiate the ECALSignal and
HCALSignal instances of the CaloSignalAlgorithm in the BrunelDigiCALOSeq sequence
(and to execute ECAL before HCAL), one would add the following job option:

The advantage of this system is that it is easily extendable and modifiable. To add a new
phase, or a new sub-detector, or a new algorithm (or to change any of their names), it is
sufficient to make the necessary changes to the job options. No changes are necessary to the
Brunel steering code.

In order to further simplify the maintenance of Brunel and of the sub-system code, a
convention has been adopted [7] whereby the sub-systems provide a file called
Brunel.opts in the /options sub-directory of the sub-system algorithms package. This
file contains the sequence member declarations for the sub-system algorithms, and any other
options required to run the algorithms in Brunel. Typically these would be the additional
libraries to be loaded at run-time (ApplicationMgr.DLLs job option) and further include
files for the algorithm specific options. An example is shown in Listing 2.3

This and other similar files are then included in the standard Brunel job options file as shown
in Listing 2.4.

Listing 2.2 Brunel Sequences as defined in $BRUNELOPTS/Brunel.opts job options file

BrunelDigi.DetectorList = { "VELO" , "IT", "OT" , "RICH" , "CALO", "MUON" };
BrunelTrigger.DetectorList = { "TRIGGER" };
BrunelReco.DetectorList = { "OT", "IT", "Tr" , "TRACK", "RICH" , "CALO" };
BrunelFinalFit.DetectorList = { "TRAC" };

BrunelDigiCALOSeq.Members += { "CaloSignalAlgorithm/EcalSignal" ,
 "CaloSignalAlgorithm/HcalSignal" };

Listing 2.3 The $TRALGORITHMSROOT/options/Brunel.opts file

ApplicationMgr.DLLs += {"VSicbCnv", "VeloEvent"};
BrunelRecoTrSeq.Members +={"TrTrueTracksCreator",
 "TrTracksCreator/TrCreat",
 "TrFitInitializer/TrFitIn",
 "TrEventTracksFitter/trFit"};

#include "$TRALGORITHMSROOT/options/trailFit.opts"

Listing 2.4 Inclusion of the Tracking algorithms in the $BRUNELOPTS/Brunel.opts job options file

#include "$TRALGORITHMSROOT/options/Brunel.opts"
page 12

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
Chapter 3

Current Implementation

3.1 Introduction

The currently supported versions of Brunel are "hybrid" versions, containing Fortran code
from the old SICBDST packages and new C++ code. Communication between the various
FORTRAN algorithms is done, as in SICBDST, via COMMON blocks, in particular the ZEBRA
common block. The C++ algorithms have access to all the Gaudi services, and in particular the
Gaudi data stores. Data is exchanged between the Fortran and C++ worlds by means of
converters which convert data from SICB banks to Transient Event Data objects and vice versa.

The FORTRAN algorithms are controlled via the SICB data cards file, the C++ algorithms via
job options. This is discussed in Section 4.2.

3.2 Supported versions and compatibility with input data

Table 3.1 shows, for the currently supported versions of Brunel, the compatibility between
Brunel versions and SICBMC/dbase versions used to produce the input data.

Please note that Brunel version v5r2 is supported only to allow backwards compatibility with
the last major physics production ("Trigger TDR" production of summer 2001). All new
studies should be performed using the latest Brunel version, v9r1. The features described in in
this manual are those of version v9r1. Please refer to an older version of this manual to find
the features of Brunel v5r2

Compatibility information for no longer supported versions of Brunel is shown in Table 3.2
 page 13

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.3 Detector Description

Brunel takes detector description information both from the XML and SICB databases.

The XML database packages used by the currently supported versions of Brunel are:
DetDesc v9r2, XmlDDDB v8r1, CaloDet v3r0, VeloDet v3r1.

The SICB database consists of the SICB/detdes package (v14 for Brunel v9r1) and of the
SICB/dbase package which also contains configuration information for the algorithms. The
current version of Brunel can read data produced with several dbase versions, as shown in
Table 3.1; the appropriate dbase version must be selected at run time, as described in
Section 4.2.1.

Table 3.1 Version compatibility table for supported versions of Brunel

Brunel version SICBMC version dbase version Remarks

v9r1 v249 v243r2, v243r3 "Realistic LHCb-light" with split, hybrid IT/OT
TT1

v243r1,
v243r1p1

"Realistic LHCb-light" with split all Silicon TT1

v242r1 "Realistic LHCb-light" with all Silicon TT1

v242 "Realistic LHCb-light"

v248* v241 "LHCb-light"

v247* v240r1 "LHCb-minus" with tracking cross geometry,
magnet stations removed

v240 "LHCb-classic" with tracking cross geometry

v5r2 v246 v239 "LHCb-classic" geometry

v245 v238

Table 3.2 Version compatibility table for obsolete versions of Brunel

Brunel version SICBMC version dbase version

v9r0 v247* to v249* v240 to v243r1

v8 v247*, v248* v240, v240r1, v241

v7r1 v248 v241

v6r1 v247 v240

v3r1 to v5r1 v246 v239

v245 v238

v3 v243 and v244 v237
page 14

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.4 Event Data Model

Event data can originate either from SICB banks in the ZEBRA common block (in particular,
the RAWH data output by SICBMC), or as output from C++ reconstruction algorithms.

The conversion from SICB banks to Transient Event Data, for use by C++ Gaudi Algorithms,
is performed by converters from the following packages: SicbCnv v15r1, CaloSicbCnv
v5r1, MuonSicbCnv v4r0, TrSicbCnv v4r0, VSicbCnv v6r1.

The Transient Event Data Model is described in the following packages: EventKernel
v1r0, LHCbEvent v12r2, L0Event v10r0, L1Event v6r0, ITEvent v7r2,
OTEvent v7r0, TrKernel v6r0, TrEvent v7r1, CaloKernel v1r0, CaloEvent
v7r1, VeloEvent v6r0.

3.4.1 PileUp

Since SICBMC v244, it is possible to add PileUp to events at the generator level. For this
reason, the addition of PileUp in Brunel is not supported. We use the terminology that PileUp
is due to multiple interactions in the current beam crossing . The effects on detector response
of interactions occurring in preceding or subsequent beam crossings are called SpillOver.

3.4.2 SpillOver

Brunel can read more than one event into the Event Data Store. In addition to the main event
(that may contain PileUp, as discussed in the previous section), additional SpillOver events
may be read into parallel event data structures. By default, only the SpillOver data actually
required by reconstruction algorithms is read in. These defaults are controlled by job options,
as described in Section 4.2.2.1.

The spillover events are read into additional branches of the LHCb data model, as shown in
Table 3.3. Note that the events are merely made available in the transient event data store, and

it is up to the digitisation algorithms to make use of this information if required. None of the
event information is modified, in particular the time of flight information of the hits is not
modified: the labels Prev, Next etc. are for convenience only, it is up to the algorithms using
this infomation to add appropriate timing offsets when required.

Table 3.3 SpillOver in the Transient Event Data Model

Beam crossing Event path

Previous /Event/Prev

One before previous /Event/PrevPrev

Next /Event/Next

One after next /Event/NextNext
 page 15

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.4.2.1 Limitations

The current implementation of spillover has the following limitations:

• In order to determine the probability of interactions in previous and subsequent
bunch crossings, the spillover algorithm takes the instantaneous luminosity from the
current event (as used to generate PileUp). Based on this probability, it uses a random
number generator to simulate the actual number of interactions in each of the bunch
crossings (let's call this number num_inter). If, in a given bunch crossing,
num_inter is greater than zero, then an event is read into the SpillOver transient
event structure from the SpillOver input file. This approach is an approximation: if
num_inter > 0, the SpillOver algorithm always reads one (and only one) event from
the input file, regardless of the value of num_inter. In theory the event read from
the input file should contain num_inter piled up events; in practice one just reads the
next event. It would be possible to do the correct thing by skipping events until one
with the right PileUp multiplicity is found, or to open several input files, each
containing events with a fixed PileUp multiplicity. Neither of these possibilities is
currently implemented.

• Since SpillOver events will be combined by digitisers into a single Raw event, it is
only foreseen to provide the /MC part of the event. Furthermore, only those parts of
the /MC subevent whose converter foresees SpillOver are available.

3.5 Random numbers

Random numbers are currently used in Brunel to smear MonteCarlo truth information
("cheated pattern recognition") and in the digitisation phase. In order to ensure
reproducibility when reconstructing the same events in a different order, the random number
seeds are re-initialised at every event.

Brunel uses two different random number engines. Fortran code (from SICB) uses the
RANECU engine (see GRNDM routine in Futio package); C++ code uses the RanLux engine
from CLHEP. The RANECU engine, which expects two seeds, is initialised with the run
number and event number as seeds. The RanLux engine, which uses only one seed, is
initialised with the run and event numbers combined according to the following formula:

3.6 Digi Phase

The digitisation phase converts input MonteCarlo Hits data (RAWH, RAWH2) into digitised
Raw data. The following sub-systems participate in this phase:

long theSeed = 100000 * (evt->event() % 20000) + (evt->run() % 100000);
page 16

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.6.1 VELO

The Fortran digitisation from package digvdet v2r3 (which uses an old Velo geometry) is
executed in parallel with the C++ digitisation from package VeloDigit v1r0 (which uses
the Velo TDR geometry from the XML database). The output of the C++ algorithm can be
accessed via the Transient Event Store path "/Event/Raw/VeloClus". The output of the
Fortran algorithm (SICB banks VSCR, VSCP) can be accessed via the paths
"/Event/Rec/Velo/RClusters", "/Event/Rec/Velo/PhiClusters".

Only the output of the Fortran algorithm is made persistent on the Brunel DST.

3.6.2 Inner Tracker

C++ digitisation from package ITAlgorithms v8r1. The output is only available in the
Transient Data Store to C++ algorithms. The corresponding SICB banks WIDG are no longer
available.

3.6.3 Outer Tracker

C++ digitisation from package OTAlgorithms v7r0. The output is only available in the
Transient Data Store to C++ algorithms. The corresponding SICB banks WODG are no longer
available.

3.6.4 RICH

Fortran digitisation from package recrich v5r4 (RIDIGI).

3.6.5 CALOrimeters

C++ digitisation from package CaloAlgs v4r3. TDR geometry. Output is converted back to
SICB banks ECEL, HCEL, ECPC.

3.6.6 MUON

Fortran digitisation from package digmuon v4. TDR geometry. The muon background can
be simulated before running the digitisation (package simmubg v5r3). This can be switched
on with the job option BrunelDigMUON.addBkg = true; (default is false;). Please note
that, due to a bug in the code removing previously added background, it is not possible to
add a different background to data which already had muon packground added in the
SICBMC step.
 page 17

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.7 Trigger phase

The Trigger phase simulates the execution of the L0 and L1 trigger algorithms in the DAQ.
Therefore it is logically equivalent to the digitisation phase and is part of the simulation.

3.7.1 Technical Proposal (TP) trigger algorithms

Fortran L0, L1 and L2 trigger algorithms from the packages trihadr v4, trilvl2 v5r1,
trimuon v5, trit0v v5, triskel v4, trit1tr v3r3, trivert v5r3,
trielec v5r1

These packages implement the TP trigger algorithms, with the exception of the L1 track
trigger, which is no longer available due to the absence of WIDG and WODG banks in the
output of the tracking digitisation, and the L0 2x2 calorimeter trigger which is superseded by
the C++ implementation.

3.7.2 L0 trigger

C++ L0 trigger simulation from the packages L0Calo v4r0, L0Muon v4r0, PuVeto v1r0,
L0DU v4r0. The only output is the trigger decision, which is written into the PASS bank.

3.8 Reco Phase

3.8.1 Inner Tracker

C++ hit reconstruction from package ITAlgorithms v8r0. The output is NOT converted
back to SICB banks

3.8.2 Outer Tracker

C++ hit reconstruction from package OTAlgorithms v7r0. The output is NOT converted
back to SICB banks

3.8.3 Velo Tracking

C++ reconstruction of tracks in the Velo, starting from the output of the C++ digitisation.
Package VeloTrack v1r1. The output is not converted back to SICB banks and therefore is
not saved.
page 18

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.8.4 Forward tracking

C++ reconstruction of tracks in the spectrometer, starting from the Velo tracks and
extrapolating them downstream, using the algorithm described in reference [10] (package
FwTrack v1r1). The output is not converted back to SICB banks and therefore is not saved.

3.8.5 Upstream tracking and track fit

C++ track reconstruction from package TrAlgorithms v7r1. This consists of track seeding,
track following, and track fit, with cheated pattern recognition (using MC truth information).
The output is converted back to SICB banks AXAT, AXTP.

3.8.6 RICH

FORTRAN reconstruction, including "extended tracking", from package recrich v5r4
(RIRECO).

3.8.7 CALOrimeters

FORTRAN reconstruction from packages rececal v7 and rechcal v6r1. Not tuned to
latest geometry as used by the digitisation. The OO reconstruction algorithms from packages
CaloAlgs v4r3 and CaloCA v3r1 are also executed, but the output is not converted back
to SICB banks and therefore is not saved.

3.9 Final Fit phase

This is where the last reconstruction pass is made, currently purely in FORTRAN from the
axreclib v4r3 package.

3.10 Moni Phase

The following monitoring algorithms are available. See Section 4.2.5 for details on how to
control monitoring in Brunel.

3.10.1 ITMCHitsMonitor, ITDigitsMonitor

These C++ algorithms (from package ITAlgorithms) produce histograms to check the
results of the Inner Tracker digitisation. The histograms are saved in the ITMCHITSMONITOR
 page 19

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
and ITGDIGITSMONITOR sub-directories of the TRACKING directory of the histogram output
file. Enabled by default

3.10.2 OTDigitChecker

This C++ algorithm (from package OTAlgorithms) produces histograms to check the results
of the Outer Tracker digitisation. The histograms are saved in the
TRACKING/OTDIGITCHECKER sub-directory of the histogram output file. Enabled by default

3.10.3 TrMonitor, TrCreat, TrFitIn

These C++ algorithms (from package TrAlgorithms) produce histograms to check the
results of the track following and track fit. The histograms are saved in the TRMONITOR,
TRCREAT and TRFITIN sub-directories of TRACKING directory of the histogram output file.
Enabled by default.

3.10.4 L0CaloMonit

This C++ algorithm (from package L0Calo) produces histograms to check the results of the
L0 calorimeter trigger simulation. The histograms are saved in the L0 directory of the
histogram output file. Enabled by default

3.10.5 ITDigitChecker

This C++ algorithm (from package ITAlgorithms) produces an ntuple to check the results
of the Inner Tracker digitisation. Since it is undesirable to produce ntuples in a production
environment, this algorithm is not enabled by default.

3.10.6 FwtAnalyse

This C++ algorithm (from package FwTrack) produces an ntuple to check the results of the
forward tracking algorithm. Since it is undesirable to produce ntuples in a production
environment, this algorithm is not enabled by default

3.10.7 SpdMonit, PrsMonit, EcalMonit, HcalMonit

These C++ algorithm (instances of CaloDigitMonitor from package CaloAlgs) produce
histograms to check the results of the calorimeter digitisation. The histograms are saved in the
SPD, PRS, ECAL, HCAL directories of the histogram output file. Enabled by default
page 20

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
3.11 Output data

The current output data format of Brunel is in the form of DST (or DST2 depending on the
input data) ZEBRA files, containing the standard SICB DST information. None of the transient
event data is saved as objects: only data converted back to SICB banks is saved.

To save space, certain SICB banks are either dropped or compressed prior to saving the DST.
This is done by the Fortran routine dropbanks.F, reproduced below.

The dropping of banks can be disabled, as explained in Section 4.2.3.

Listing 3.1 Banks dropped or compressed before saving the DST

 call ubdrop(’E2RW’)
 call ubdrop(’E3RW’)
 call ubdrop(’E4RW’)
 call ubdrop(’H1RW’)
 call ubdrop(’RIDT’)
 call ubpress(’ECMT’,’R’)
 call ubpress(’HCMT’,’R’)
 page 21

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 9.1/0
page 22

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
Chapter 4

Customising and Running Brunel

4.1 Introduction

The released versions of Brunel contain the recommended configuration for a standard LHCb
reconstruction job. This chapter describes how to execute a standard job, how to modify the
run time behaviour of Brunel, and how to modify its functionality by adding or removing
code.

4.2 Modifying the run time behaviour

Even if you wish to run a standard job, you will need to make some modifications, if only to
define the input and output event data files of your reconstruction job.

The /options subdirectory of the Brunel package contains several files with a name like
Brunel<dbver>.opts, where <dbver> is a SICB database version number (e.g.
Brunelv243r1.opts). There is one such file for each SICB database supported by the
current version of Brunel. This is the top level file that should be passed to the job, as
discussed in Section 4.4. Users should modify the file corresponding to the database they wish
to use (i.e. consistent with the input dataset) to e.g. define the input data, as discussed in the
next subsections.

Every one of these database dependent top level files include the file Brunel.opts which
contains the default Brunel configuration common to all supported database versions, and
which should not need to be modified by most users. This file in turn includes a number of
other files that could be modified to alter the default behaviour. These files are listed in Table
4.1 and their contents are also described in the next subsections.

The /options subdirectory also contains a Brunel.cards file. This file is a SICB data cards
file that can be used to modify the behaviour of the SICB algorithms exceuted within Brunel.
Any SICB data card may be used, with the exception of cards dealing with input event data
 page 23

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
(TRIGGERS card, IOPA ’GETX’, ’GETY’, ’GETZ’ cards) and selection of processing steps
(SKIP data card), since this functionality is handled by Gaudi. Please refer to the SICB
documentation [8] for details of available cards.

4.2.1 Database selection

The Brunel requirements file does not depend explicitly on a specific version of the SICB
geometry and configuration database (SICB/dbase), because Brunel is able to process data
produced by several combinations of SICBMC and dbase versions. In order to configure
Brunel correctly at run time, the environment variable $LHCBDBASE must be explicitly set to
point to the dbase version used to produce the Brunel input data. This can be done from the
command prompt, for example for dbase v241:

The Brunel main program uses the $LHCBDBASE environment variable to determine the name
of the Brunel<dbver>.opts file it should open in order to get its job options. This default
can of course be over-ridden, as described in Section 4.4.2.

Note that on Windows, Developer Studio must be started from the DOS prompt where
LHCBDBASE was defined (simply type msdev at the prompt). On Linux, the script
Brunel.job can be used, giving the database version as the first argument - e.g.:

4.2.2 Defining input data

Brunel uses the Gaudi EventSelector to read in event data from a SICBMC RAWH (or
RAWH2 or RAWH3) file. The relevant job options should be set in the top level database
dependent Brunel<dbver>.opts file by changing the lines that are given as example in
Listing 4.1

Table 4.1 Job options files included by the main Brunel.opts job options file

Job Options File Purpose

BrunelMessage.opts Modify the printing behaviour

BrunelMoni.opts Enable/Disable monitoring

setenv LHCBDBASE $LHCBSOFT/SICB/dbase/v241 // Linux

set LHCBDBASE=%LHCBHOME%\software\NEW\SICB\dbase\v241 // Windows DOS prompt

bsub -q z5_8nh Brunel.job v241

Listing 4.1 Job Options for event input definition

1: EventSelector.Input = {"JOBID=’52310’"}; // Input file name
2: // Number of events to be processed (default is all events)
3: EventSelector.EvtMax = 100;
4: // EventSelector.FirstEvent = 3; //Uncomment to skip some events
page 24

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.2.2.1 Enabling SpillOver

The Brunel<dbver>.opts file also contains examples of the options needed to switch on
the reading of SpillOver events into Brunel. These lines are reproduced in Listing 4.2.

By default, spillover is disabled. To enable it, uncomment Line 1: this reads in the default
spillover configuration for Brunel from the SicbCnv package. You also need to provide an
input file of minimum bias events (RAWH or RAWH2, produced with the correct dbase
version) by uncommenting and modifying Line 2.

The default spillover configuration for Brunel is shown in Listing 4.3.

The first two lines indicate that the SpillOver algorithm will read in events for two beam
crossings preceding and one beam crossing following the current event. Lines 5 to 10 specify
the data to be loaded. Only data actually expected by Brunel algorithms needs to be
requested. The current default reflects the requirements of the algorithms in the current
Brunel version. To modify these defaults you should modify the file
$SICBCNVROOT/options/Brunel.opts and include the modified file in
Brunel<dbver>.opts. Note that only data whose SICB converter has foreseen SpillOver
can be added in this way.

4.2.3 Defining output data

The Gaudi framework does not provide a facility for writing out event data to ZEBRA files.
For this reason, Brunel calls the SICB routine RECEVOUT to write out the SICB DST file. The
output stream is defined in the Brunel.cards file using an IOPA ’SAVX’ data card as for
SICB (see Listing 4.4).:

By default, a certain number of SICB banks are dropped before writing out the DST. The
current list of dropped banks is given in Listing 3.1. It is possible to disable the dropping of

Listing 4.2 Job Options for spillover

1: //#include "$SICBCNVROOT/options/Brunel.opts" //uncomment for Spillover
2: //SpillOverSelector.Input = {"JOBID=’86160’"}; //evtype 61 for Spillover

Listing 4.3 Default settings for SpillOver from the file $SICBCNVROOT/options/Brunel.opts

1: SpillOverAlg.SpillOverPrev = 2;
2: SpillOverAlg.SpillOverNext = 1;
3: //-----------------------------
4: // Data to be loaded
5: SpillOverAlg.SpillOverData = {
6: "MCOuterTrackerHits", "MCInnerTrackerHits",
7: "Prs/Signals", "Prs/SummedSignals",
8: "Spd/Signals", "Spd/SummedSignals",
9: "Ecal/Signals", "Ecal/SummedSignals",

10: "Hcal/Signals", "Hcal/SummedSignals" };

Listing 4.4 SICB card to define the ZEBRA output file

1: IOPA
2: 'SAVX' 'XO' '$WORKDIR/Brunel.dst!'
 page 25

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
these banks, by setting the job option BrunelFinish.DropDSTBanks to false in the file
BrunelInput.opts.

It is also possible to write out an object-oriented DST to a ROOT file, using the facilities
provided by Gaudi. Please refer to the Gaudi manual [1] for details.

4.2.4 Modifying the printing behaviour

Brunel uses the Gaudi Message Service to print out information. The amount of information
to be printed is controlled by job options. The file BrunelMessage.opts sets up the default
printing behaviour - you should modify this file if you wish to change the defaults. An extract
of this file is shown in Listing 4.5.

Line 2 controls the frequency at which the event number is printed out at the beginning of the
event loop: the default is every event. Line 5 can be used to modify the format of the messages
printed out by the message service. Compared to the default behaviour of Gaudi, this line
prints the name of the algorithm generating the message in a field 80 characters wide. This
can be done to avoid truncating the name of the many Brunel algorithms with long names; on
an 80 column screen the name will appear on one line and the message on the following
line(s). Line 10 sets the default print level to WARNING: only messages flagged WARNING
or above will be printed. Sometimes it may be desirable to over-ride this default for certain
algorithms or services - the current Brunel setting is shown in Lines 13 to 19.

Control of debug printout from the SICB Fortran algorithms used in Brunel is via DEBU,
PRNT and DEBG data cards to be added to the file Brunel.cards.

// Uncomment next line to keep all SICB banks on DST output
//BrunelFinish.DropDSTBanks = false;

Listing 4.5 The $BRUNELROOT/options/BrunelMessage.opts job options file

1: // Print event number at every event
2: EventSelector.PrintFreq = 1;
3:
4: // Modify Message Format to print algorithm name with 80 characters
5: //MessageSvc.Format = "% F%80W%S%7W%R%T %0W%M";
6:
7: //--
8: // Output thresholds (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL)
9: //--

10: MessageSvc.OutputLevel = 4;
11:
12: // Print Chrono statistics at end of job
13: ChronoStatSvc.OutputLevel = 3;
14: ChronoStatSvc.ChronoPrintLevel = 4;
15: ChronoStatSvc.StatPrintLevel = 4;
16:
17: // Suppress excessive warnings from some algorithms
18: TrFit.OutputLevel = 5;
19: TrMonitor.OutputLevel = 5;
page 26

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.2.4.1 Rules for printout from Brunel algorithms

Developers of algorithms to be used in Brunel should remember that their code will be used
in production, and therefore that printout should be kept to a bare minimum. The following
rules are suggested:

• All printout must be via the Gaudi Message Service: use of std::cout is forbidden.

• The algorithm name used to create the the MsgStream object should be kept short -
this name is printed out to the log file and by default is truncated to 18 characters.

• Any messages introduced to debug the code should use the DEBUG output level

• INFO level messages should not be used in the execute() method of algorithms (i.e. in
the event loop). A possible exception would be to flag errors which are not fatal to the
algorithm’s execution (e.g. if the track fit fails on a particular track). It should not be
used to flag "normal" errors (e.g. an empty hits container).

• WARNING, ERROR and FATAL messages are reserved for real problems that cause
an algorithm to return an error. An explanatory message must always be printed
whenever and algorithm does not behave as expected. It is suggested to use
WARNING when the problem affects only the current algorithm, ERROR if it affects
the current event (i.e. that processing of the current event should stop), and FATAL if
it affects the rest of the job (i.e. that the job should stop).

4.2.5 Monitoring options

A number of possibilities exist to monitor the execution of Brunel. These are steered by job
options in the file BrunelMoni.opts and by SICB data cards in the file Brunel.cards.

4.2.5.1 Monitoring histograms filled by C++ code

Brunel algorithms book and fill histograms via the standard Gaudi histogram service. These
histograms can be saved either as ROOT or HBOOK histograms, as described in the Gaudi
Users Guide. By default, Brunel saves these histograms in HBOOK format, in a file called
Histos.hbook, as shown in Listing 4.6. Remove lines 2 and 3 if you wish to suppress the
printing of histograms, or replace them with the equivalent lines for ROOT if you wish to save
them in ROOT format.

Of course, suppressing the printout of histograms does not prevent their filling. The time
spent filling the histograms would then be wasted. In a program used in production, it would
be preferable to be able to suppress the filling of histograms. This has been foreseen in Brunel
by instantiating a Brunel phase, BrunelMoni, dedicated to the filling of monitoring
histograms. Monitoring histograms should be filled, wherever possible, by dedicated
monitoring algorithms executed in this BrunelMoni phase. It is then simple to suppress the
monitoring histograms by not executing this phase in a production job. By default, Brunel

Listing 4.6 Histogram persistency options from the file BrunelMoni.opts

1: // Hbook persistency (use HBookCnv v* in requirements)
2: #include "$STDOPTS/Hbook.opts"
3: HistogramPersistencySvc.OutputFile = "Histos.hbook";
 page 27

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
instantiates the BrunelMoni phase and executes it as the last phase of the event loop. To
suppress monitoring histograms, remove line 1 of Listing 4.7 from the file
BrunelMoni.opts..

The remaining lines of Listing 4.7 set up the sequences and algorithms of the BrunelMoni
phase, as described in Sections 2.3 and 3.10.

4.2.5.2 Monitoring histograms filled by SICB subdetector code

Any of the histograms filled by the SICB reconstruction code can be filled and saved in the
standard way, by providing the appropriate SICB data cards in the file Brunel.cards, for
example:

4.2.5.3 Profiling

Brunel makes use of Gaudi Auditors to monitor the code performance at run time. The
following auditors are available:

NameAuditor Prints out the name of an algorithm whenever its execute() method is called.
Disabled by default.

ChronoAuditor Monitors CPU usage of each algorithm and reports at the end of the job the
total and average time per algorithm. Enabled by default.

MemoryAuditor Prints out information on memory usage, in particular whenever the memory
allocation changes. Currently only works on Linux. Disabled by default.

The default behaviour of these auditors can be changed using the following job options in the
file BrunelMoni.opts:

Listing 4.7 Monitoring options from the file BrunelMoni.opts

1: ApplicationMgr.TopAlg += { "BrunelPhase/BrunelMoni" };
2: //--
3: // Detectors to monitor
4: //--
5: BrunelMoni.DetectorList = { "IT", "OT", "Tr" };
6: //--
7: // Monitoring algorithms
8: //--
9: BrunelMoniOTSeq.Members = { "OTDigitChecker" };

10: BrunelMoniTrSeq.Members = { "TrMonitor" };

IOPA
 ’RHIS’ ’HO’ ’rich.hbook!’
 ’T1VE’ ’HO’ ’trigL1.hbook!’

AuditorSvc.Auditors = { "NameAuditor", "ChronoAuditor", "MemoryAuditor" };
NameAuditor.Enable = false;
ChronoAuditor.Enable = true;
MemoryAuditor.Enable = false;
page 28

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.2.6 Enabling static execution

If you wish to execute the statically linked version of Brunel, you need to over-ride all the job
options that define the DLLs to be loaded by the application manager. This is done by
uncommenting the following line in the file Brunel<dbver>.opts:

4.2.7 Additional job options

An additional user job options should be defined near the end of the file
Brunel<dbver>.opts. Since the parsing of job options is sequential, any of the options
previously defined can be redefined here.

4.2.7.1 Suppressing reconstruction phases

You may wish to suppress one of the reconstruction phases by redefining the
ApplicationMgr.TopAlg option shown in Listing 2.1.

A special case is if you wish to use Brunel simply as an analysis framework, switching off all
the reconstruction phases. In this case, the ApplicationMgr.TopAlg option would become:

Line 1 is necessary to correctly initialise the event in the ZEBRA memory; line 2 adds a private
C++ analysis algorithm MyAlg, while line 3 is necessary to invoke the Fortran user analysis
routine SUANAL. Of course it is not necessary to provide both lines 2 and 3, it depends on the
application.

4.2.7.2 Controlling the muon background

By default, Brunel removes any previously added muon background from the input RAWH
file, and regenerates the muon background according to the parameterisation defined by the
MUBG and MUBC cards in the standard.stream file of the SICB database. This is done in the
digitisation phase, before creating the muon digitisings. To suppress the muon background
simulation, you should add the following job option to BrunelUser.opts:

//ApplicationMgr.DLLs = {"NONE"};

1: ApplicationMgr.TopAlg = { "BrunelInitialisation/BrunelInit",
2: "MyAlg",
3: "BrunelFinalisation/BrunelFinish" };

BrunelDigiMUON.addBkg = false;
 page 29

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.3 Adding user code

User code should be added to an existing Brunel Phase. The way to do this depends on the
packaging of the algorithm to be added:

1. If the new algorithm is part of a package already known to Brunel, it is sufficient to
add the algorithm to the appropriate sequence, in the package specific
Brunel.opts file (see for example Listing 2.3).

2. If the new algorithm is part of a package not yet known to Brunel, the new package
should provide a Brunel.opts file in the /options subdirectory. This file should
have a structure similar to that in Listing 2.3 and be included in the main
Brunel.opts file (or near the end of the Brunel<dbver>.opts file), as shown in
Listing 2.4. You should of course use the new package in the Brunel CMT
requirements file.

3. It is also possible to add a Fortran analysis routine, using the SICB user routines
SUINIT, SUANAL, SULAST. SUANAL is called at the end of all event processing. These
routines should be linked into the application as shown for example in Listing 4.8.

In this example the user analysis code (including the routine SUANAL) has been saved
in the MyAnal subdirectory of the Brunel package.

4.4 Building and running the job

This section gives simple instructions on how to execute a Brunel job. Familiarity is assumed
with CMT [9]. The instructions are given for Linux at CERN. Windows procedures are similar,
the difference should be fairly obvious to anyone who is familiar with the Windows
development environment. An example job for executing Brunel on Linux in both interactive
and batch environments is distributed with Brunel in the /job subdirectory. You should tailor
it to your needs, using the information below.

Note that the LHCBDBASE environment variable must always be set before running a Brunel
job. Thiis was described in Section 4.2.1.

Listing 4.8 Example or requirements for linking user FORTRAN code into Brunel

1: application Brunel ../src/BrunelMain.cpp \
2: $(BRUNELSICBROOT)/src/Objs/*.F \
3: ../src/MyAnal/*.F
page 30

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.4.1 Running the default version

If you wish to execute the default version of Brunel, without changing any of the job options,
you simply have to set up all the necessary environment variables and then execute the job:

This is useful to check that your environment is set correctly. The file myjob.log should be
identical to the sample output in the production area: $BRUNELROOT/job/linux.log
(except of course for differences due to the execution time of the two jobs). The job should also
produce an hbook histogram file in the current directory, whose contents should be identical
to the sample histogram output in the production area: $BRUNELROOT/job/linux.hbook
(similar sample files win.log and win.hbook exist for the Windows platform)

4.4.2 Running the default version with modified job options

In real life you will certainly need to modify the job options, if only to change the name of the
input file. In this case you should copy the job options directory from the official area, edit one
or more files, and change the logical name pointing to these files:

If you have changed the name of the top level job options file (useful if you need to launch
several jobs in parallel), you also need to tell Brunel where to find the modified file, either
before executing the job:

or as an argument to the job:

Note that these instructions are valid also if you want to change the Brunel functionality by
excuting only a subset of the standard algorithms, sequences or phases: it is sufficient to make
the necessary changes to the job options. Similarly if you want to add an algorithm from a
component library already known to Brunel.

cd ~/myBrunelTest
source $LHCBSOFT/Rec/Brunel/v9r1/cmt/setup.csh
setenv LHCBDBASE $LHCBSOFT/SICB/dbase/v241
$BRUNELROOT/rh61_gcc2952/Brunel.exe > myjob.log

cd ~/myBrunelTest
source $LHCBNEW/Rec/Brunel/v9r1/cmt/setup.csh
cp $BRUNELROOT/options/*.* .
emacs ...
setenv BRUNELOPTS .
setenv SICBCARDS ./Brunel.cards
setenv LHCBDBASE $LHCBSOFT/SICB/dbase/v241
$BRUNELROOT/rh61_gcc2952/Brunel.exe > myjob.log

setenv JOBOPTPATH ./myBrunel.opts

$BRUNELROOT/rh61_gcc2952/Brunel.exe ./myBrunel.opts > myjob.log
 page 31

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
4.4.3 Running the default version with modified requirements

If you wish to use a new version of an existing component library, or use algorithms from a
component library not yet known to Brunel, you will need to modify the running
environment of Brunel. In this case it may be sufficient to modify the CMT requirements file
and rebuild the Brunel environment, without actually rebuilding the Brunel executable::

4.4.4 Building a modified version

In most cases, developers will need to build a new Brunel executable. Since Brunel is a
standard CMT package, it is sufficient to type gmake in the /cmt sub-directory. The
procedure becomes:

4.5 Problem reporting and resolution

4.5.1 Known Problems

The following problems and workarounds are known:

• On Windows, the LHCBHOME environment variable must contain a path with at least
one backslash (e.g. "%SITEROOT%\lhcb"). If not, ZEBRA will complain when trying
to open the file $LHCBHOME/sim/data/v111-prob-2d-d0.hbook. This is a
feature of the shift library for Windows..

cd ~/newmycmt
getpack Rec/Brunel v9r1
cd Rec/Brunel/v9r1/cmt
emacs requirements
...
source setup.csh
setenv LHCBDBASE $LHCBSOFT/SICB/dbase/v241
cd ../job
$LHCBNEW/Rec/Brunel/v9r1/rh61_gcc2952/Brunel.exe > myjob.log

cd ~/newmycmt
getpack Rec/Brunel v9r1
cd Rec/Brunel/v9r1/cmt
emacs requirements
...
source setup.csh
setenv LHCBDBASE $LHCBSOFT/SICB/dbase/v241
gmake
cd ../job
../rh61_gcc2952/Brunel.exe > myjob.log
page 32

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
• With the static executable of Brunel, it is not possible to save histograms produced by
C++ algorithms via the Gaudi histogram service.

4.5.2 Getting help

If your problem cannot be resolved by looking at this guide, you could try using the LHCb
software discussion mailing list, lhcb-soft-talk@cern.ch.

4.5.3 Reporting problems

If you think you have found a bug in Brunel or in Gaudi, or if you would like to request a new
feature, please use the LHCb problem reporting system:
http://cern.ch/hep-service-prms/lhcb.html
 page 33

http://cern.ch/hep-service-prms/lhcb.html
mailto:lhcb-soft-talk@cern.ch

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 9.1/0
page 34

BRUNEL User Guide
Appendix A References Version/Issue: 9.1/0
Appendix A

References

1 The GAUDI users guide is available at:
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/GUG/Output/GUG.htm

2 CMT documentation is available at http://cern.ch/lhcb-comp/Support/html/cmt.htm

3 A compendium of LHCb notes concerning reconstruction is available at:
http://cern.ch/lhcb-comp/Reconstruction/LHCbNotesOfInterest.html

4 Information about the LHCb Event Data model is available at:
http://cern.ch/lhcb-comp/Frameworks/EventModel/

5 See for example http://www.gaudiclub.com/ingles/i_vida/i_menu.html for more
information about Antoni Gaudi

6 See for example http://www.spartacus.schoolnet.co.uk/RAbrunel.htm for more
information about Isambard Kingdom Brunel

7 Sub-detector job options for Brunel,
http://cern.ch/lhcb-comp/Support/Conventions/options.pdf

8 The SICB documentation is available at: http://cern.ch/lhcb-comp/SICB/

9 Documentation on CMT and on its use within LHCb is available at:
http://cern.ch/lhcb-comp/Support/html/cmt.htm

10 The forward tracking, an optical model method. LHCb note 2002-008.
http://weblib.cern.ch/abstract?LHCb-2002-008@LHBLHB
 page 35

http://www.spartacus.schoolnet.co.uk/RAbrunel.htm
http://www.gaudiclub.com/ingles/i_vida/i_menu.html
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v9/GUG/Output/GUG.htm
http://cern.ch/lhcb-comp/SICB/
http://cern.ch/lhcb-comp/Support/html/cmt.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Support/Conventions/options.pdf
http://cern.ch/lhcb-comp/Reconstruction/LHCbNotesOfInterest.html
http://cern.ch/lhcb-comp/Support/html/cmt.htm
http://cern.ch/lhcb-comp/Frameworks/EventModel/
http://weblib.cern.ch/abstract?LHCb-2002-008@LHBLHB

BRUNEL User Guide
Appendix A References Version/Issue: 9.1/0
page 36

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose and structure of this document
	1.2 Package structure
	1.3 What does "Brunel" mean?
	1.4 Editor’s note

	Chapter 2 Brunel program structure
	2.1 Introduction
	2.2 Brunel phases
	2.2.1 Initialisation
	2.2.2 Reconstruction phases and sequences
	2.2.3 Finalisation

	2.3 Program configuration
	2.3.1 Instantiation of Brunel phases
	2.3.2 Instantiation of Brunel sequences
	2.3.3 Instantiation of sub-system algorithms

	Chapter 3 Current Implementation
	3.1 Introduction
	3.2 Supported versions and compatibility with input data
	3.3 Detector Description
	3.4 Event Data Model
	3.4.1 PileUp
	3.4.2 SpillOver
	3.4.2.1 Limitations

	3.5 Random numbers
	3.6 Digi Phase
	3.6.1 VELO
	3.6.2 Inner Tracker
	3.6.3 Outer Tracker
	3.6.4 RICH
	3.6.5 CALOrimeters
	3.6.6 MUON

	3.7 Trigger phase
	3.7.1 Technical Proposal (TP) trigger algorithms
	3.7.2 L0 trigger

	3.8 Reco Phase
	3.8.1 Inner Tracker
	3.8.2 Outer Tracker
	3.8.3 Velo Tracking
	3.8.4 Forward tracking
	3.8.5 Upstream tracking and track fit
	3.8.6 RICH
	3.8.7 CALOrimeters

	3.9 Final Fit phase
	3.10 Moni Phase
	3.10.1 ITMCHitsMonitor, ITDigitsMonitor
	3.10.2 OTDigitChecker
	3.10.3 TrMonitor, TrCreat, TrFitIn
	3.10.4 L0CaloMonit
	3.10.5 ITDigitChecker
	3.10.6 FwtAnalyse
	3.10.7 SpdMonit, PrsMonit, EcalMonit, HcalMonit

	3.11 Output data

	Chapter 4 Customising and Running Brunel
	4.1 Introduction
	4.2 Modifying the run time behaviour
	4.2.1 Database selection
	4.2.2 Defining input data
	4.2.2.1 Enabling SpillOver

	4.2.3 Defining output data
	4.2.4 Modifying the printing behaviour
	4.2.4.1 Rules for printout from Brunel algorithms

	4.2.5 Monitoring options
	4.2.5.1 Monitoring histograms filled by C++ code
	4.2.5.2 Monitoring histograms filled by SICB subdetector code
	4.2.5.3 Profiling

	4.2.6 Enabling static execution
	4.2.7 Additional job options
	4.2.7.1 Suppressing reconstruction phases
	4.2.7.2 Controlling the muon background

	4.3 Adding user code
	4.4 Building and running the job
	4.4.1 Running the default version
	4.4.2 Running the default version with modified job options
	4.4.3 Running the default version with modified requirements
	4.4.4 Building a modified version

	4.5 Problem reporting and resolution
	4.5.1 Known Problems
	4.5.2 Getting help
	4.5.3 Reporting problems

