

BRUNEL
LHCb Reconstruction Program

User Guide

Version: 1.6
Issue: 1
Edition: 0
Status:
ID: [Document ID]
Date: 8 January 2001

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

BRUNEL User Guide
 8 January 2001 Version/Issue: 1.6/1
Document Control Sheet

Document Status Sheet

Table 1 Document Control Sheet

Document Title: BRUNEL User Guide

Version: 1.6

Issue: 1

Edition: 0

ID: [Document ID]

Status:

Created: 25 May 2000

Date: 8 January 2001

Access: :

Keywords:

Tools DTP System: Adobe FrameMaker Version: 5.5

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Content
Template:

-- Version: --

Authorship Coordinator: M.Cattaneo

Written by: M.Cattaneo

Table 2 Document Status Sheet

Title: BRUNEL User Guide

ID: [Document ID]

Version Issue Date Reason for change

1 0 26 May 2000 First draft version

1 1 28 July 2000 Minor changes for Brunel v1r2

1.5 1 17 Nov. 2000 Updated for Brunel v1r5, GaudiSys v6

1.6 1 8 Jan 2001 Updated for Brunel v1r6
page 2

BRUNEL User Guide
 Version/Issue: 1.6/1
Document Control Sheet 2
Document Status Sheet 2

Introduction 5
Purpose of this document 5
What does "Brunel" mean? 5
Editor’s note 5

Structure of Brunel 7
Brunel Phases 7
Instantiating Brunel Phases 8
Brunel sub-detector code 8
Instantiating sub-detector sequences 9
Accessing Gaudi services and data from Brunel 9
Adding user code 10

Current Implementation 11
Wrapped SICBDST 11
Choice of execution mode 12
Choice of pileup mode 13
Inclusion of spillover 13
Input/Output definition 14
Monitoring 15
Histograms 15
Debug printout 15
Profiling 16
Known problems 16

Running Brunel 19

References 21
 page 3

BRUNEL User Guide
 Version/Issue: 1.6/1
page 4

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1.6/1
Chapter 1
Introduction

1.1 Purpose of this document

This document is a user guide and reference manual for the LHCb reconstruction program, Brunel. It
should be useful both to users wishing to run the program, and to programmers wishing to add
functionality.

This document does not describe the physics algorithms or the data model.

1.2 What does "Brunel" mean?

All LHCb data processing applications are based on a framework which enforces the GAUDI
architecture. Antoni Gaudi [1] was a Catalan architect who greatly influenced the development of
Barcelona around the beginning of the nineteenth century. For the reconstruction program we decided
to use the name of an engineer. Isambard Kingdom Brunel [2] was a British engineer who greatly
contributed to the industrial revolution in the first half of the eighteenth century.

1.3 Editor’s note

This document is a snapshot of the Brunel software at the time of the release of version v1r6. We have
made every effort to ensure that the information it contains is correct, but in the event of any
discrepancies between this document and information published on the Web, the latter should be
regarded as correct, since it is maintained between releases and, in the case of code documentation, it is
automatically generated from the code.
 page 5

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 1.6/1
We encourage our readers to provide feedback about the structure, contents and correctness of this
document and of other Gaudi documentation. Please send your comments to the editor,
Marco.Cattaneo@cern.ch
page 6

mailto:Marco.Cattaneo@cern.ch

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.6/1
Chapter 2
Structure of Brunel

2.1 Brunel Phases

The LHCb reconstruction program, Brunel, is composed of a number of Gaudi algorithms:
BrunelInitialisation, BrunelFinalisation and a number of BrunelPhases.

BrunelInitialisation is where all initializations which are independent of BrunelPhase are
performed. These can be global program initializations (in the initialize() method), or event by
event initializations (in the execute() method). Note that initializations specific to a given
BrunelPhase should not be performed here.

BrunelFinalisation is where all finalizations which are independent of BrunelPhase are
performed. These can be global program finalizations (in the finalize() method), or event by event
finalizations (in the execute() method). Note that finalizations specific to a given BrunelPhase
should not be performed here.

BrunelPhase is where the meat of the reconstruction program lies. BrunelPhase is a base class from
which actual phases are derived. Each BrunelPhase should be independent of other BrunelPhases: it
should be possible to run only one phase, providing of course that event input data in the appropriate
format exists1. All initializations and finalizations specific to the phase should be performed inside the
phase. The following BrunelPhases are currently implemented:

• BrunelDigi is where simulated RAW Hits are converted into DIGItisings. The output of
this phase has the same format as real RAW data coming from the detector2. Obviously this
phase would not be present when reconstructing real data, and could be moved to the
simulation program when reconstructing simulated data. Note that this implies some
discipline when designing the DIGItised data model, in particular for what concerns links to
Monte Carlo truth information.

1. This is not entirely true in the current version of the reconstruction program, due to the underlying calls to SICBDST
routines which do not have this structure.
2. This is not entirely true in the current version of the reconstruction program, due to the underlying use of the SICB
event data model, which does not have this structure.
 page 7

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.6/1
• BrunelTrigger is where the LHCb trigger decision is applied. The input event data are
DIGItisings. The output are also DIGItisings, with the addition of the trigger decision
information.

• BrunelReco is where the first pass reconstruction is carried out. By first pass we mean that
the reconstruction algorithms in this phase rely only on DIGItisings and do not require input
from the reconstruction of other subdetectors. This restriction can be somewhat relaxed by
ensuring that subdetectors are reconstructed in a specific order: those that only require input
from the DIGItisings are processed first, those that require input from the reconstruction of
other sub-detectors are processed after those sub-detectors.

• BrunelFinalFit is the second pass reconstruction, to allow for processing which requires
input from the reconstruction of several subdetectors.

Note that additional phases could easily be implemented if further reconstruction passes are required.

2.1.1 Instantiating Brunel Phases

Brunel Phases are Gaudi top Algorithms. They are therefore instantiated using the standard Gaudi job
option ApplicationMgr.TopAlg [3]. Listing 1 shows the value of this option for the current
implementation. Note the different phases in lines 2 to 5, which are different instances of the class
BrunelPhase and will be executed in the order shown

2.2 Brunel sub-detector code

It is expected that sub-detector specific code will be executed inside one or more Brunel Phases. Each
Brunel Phase instantiates a Gaudi Sequence for each detector participating in that phase. The instance
name of the Sequence follows a specific convention: it is composed of the Phase name (e.g.
BrunelDigi) followed by the abbreviated sub-detector name (e.g. MUON), followed by the string
"Seq" (e.g. BrunelDigiMUONSeq). These Sequences are intended to be the phase specific steering
algorithms of the sub-detectors.

Within each Sequence, the sub-detectors are able to instantiate any number of algorithms by simply
adding the appropriate job option. For example, to instantiate the BrunelDigiECAL and
BrunelDigiHCAL algorithms in the BrunelDigiCALOSeq sequence (and to execute ECAL before
HCAL), one would add the following job option::

Listing 1 Brunel Top Algorithms as defined in $BRUNELOPTS/Common.dst1.txt job options file

1: ApplicationMgr.TopAlg = { "BrunelInitialisation/BrunelInit",
2: "BrunelPhase/BrunelDigi",
3: "BrunelPhase/BrunelTrigger",
4: "BrunelPhase/BrunelReco",
5: "BrunelPhase/BrunelFinalFit",
6: "BrunelFinalisation/BrunelFinish" };

Listing 2 Example of sequence definition in $BRUNELOPTS/Common.dst1.txt job options file

BrunelDigiCALOSeq.Members = { "BrunelDigiECAL", "BrunelDigiHCAL" };
page 8

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.6/1
The advantage of this system is that it is easily extendable and modifiable. To add a new phase, or a new
sub-detector, or a new algorithm (or to change any of their names), it is sufficient to make the
necessary changes to the job options. No changes are necessary to the Brunel steering code.

The list of sub-detector names and sub-algorithm classes currently implemented is shown in Table 3

2.2.1 Instantiating sub-detector sequences

The reason for the naming convention described above is to provide a simple method for selecting
which sub-detectors to reconstruct and in which order. It is sufficient to provide a DetectorList job
option for each phase, containing the list of sub-detectors to be processed in that phase, as shown in
Listing 3.

2.3 Accessing Gaudi services and data from Brunel

Brunel sub-detector algorithms are instances of Gaudi algorithms. As such they have access to all the
services currently implemented in Gaudi, and to all data in the Gaudi data stores. Please refer to the
Gaudi user guide [3] for details.

Table 3 Sub-detector algorithms currently implemented in Brunel

Sub-detector Abbreviation Algorithms implemented

Calorimeters CALO BrunelDigiECAL
BrunelDigiHCAL
BrunelRecoECAL
BrunelRecoHCAL

Muon Detector MUON BrunelDigiMUON

Ring Imaging Cherenkov RICH BrunelDigiRICH
BrunelRecoRICH

Tracking Detectors TRAC BrunelDigiTRAC
BrunelRecoTRAC
BrunelFinalFitTRAC

Trigger System TRIGGER BrunelTriggerTRIGGER

Vertex Locator VELO BrunelDigiVELO

Listing 3 Processing order of sub-detector algorithms in Brunel.

1: BrunelDigi.DetectorList = { "VELO","TRAC","RICH","CALO","MUON" };
2: BrunelTrigger.DetectorList = { "TRIGGER" };
3: BrunelReco.DetectorList = { "TRAC" , "RICH" , "CALO" };
4: BrunelFinalFit.DetectorList = { "TRAC" };
 page 9

BRUNEL User Guide
Chapter 2 Structure of Brunel Version/Issue: 1.6/1
2.4 Adding user code

User code can be added to Brunel in several ways:

1. By providing a Gaudi Algorithm that can be run as a top algorithm outside of a Brunel phase.
This would typically be a monitoring algorithm that would analyse the progress of the
reconstruction. It can be inserted into the application by declaring it as an additional
ApplicationMgr.TopAlg in the option shown in Listing 1

2. By providing a new sub-detector algorithm to be called within a given Brunel Phase. It is
instantiated by adding the appropriate algorithm name to the Members list of appropriate
sequence in the job options file, as shown for example in Listing 2.

3. By replacing an existing sub-detector algorithm.

4. In the current implementation, it is also possible to add a Fortran analysis routine, using the
SICB user routines SUINIT, SUANAL, SULAST. SUANAL is called at the end of all event
processing.
page 10

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
Chapter 3
Current Implementation

The current version of Brunel implements the "wrapping" of SICBDST Fortran code: Brunel is simply
a skeleton within Gaudi which calls the full set of SICBDST Fortran algorithms. There are no C++
algorithms in this version. Version v1r6 of Brunel uses version v235r3 of SICBDST.

3.1 Wrapped SICBDST

The SICBDST code has been wrapped into Brunel Phases and Brunel sub-detector algorithms. Each
algorithm calls the corresponding FORTRAN steering routine, as summarised in Table 4

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine

BrunelInitialisation DETINIT (calls ECINIT, ECDINIT,
HCINIT, HCDINIT, MUGINIT, MPINIT)

BrunelDigiVELO VSDIGI

BrunelDigiTRAC WDDIGI

BrunelDigiRICH RIDIGI

BrunelDigiECAL ECDIGI

BrunelDigiHCAL HCDIGI

BrunelDigiMuon MUDIGI

BrunelTriggerTRIGGER TRIGGER

BrunelRecoTRAC AXTFIT

BrunelRecoRICH RIRECO
 page 11

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
Communication between the various FORTRAN algorithms is done, as in SICBDST, via COMMON
blocks, in particular the ZEBRA common block. The FORTRAN algorithms are controlled via the
SICB data cards file. All data cards recognised by SICBDST are valid, with the exception of cards
dealing with input event data (TRIGGERS card, IOPA ’GETX’, ’GETY’, ’GETZ’ cards) and selection
of processing steps (SKIP data card). Please refer to the SICB documentation [4] for details

3.2 Choice of execution mode

Four types of excution mode exist for Brunel: with or without Pileup, and using either shared libraries
or a statically linked excution. Listing 4 shows the first part of the main Brunel job options file
$BRUNELOPTS/BrunelOptions.txt. You should uncomment one (and only one!) of the lines 9
to 14, corresponding to the chosen execution mode.

BrunelRecoECAL ECRECO

BrunelRecoHCAL HCRECO

BrunelFinalFitTRAC AXRECO

BrunelFinalisation SUANAL
RECEVOUT

Table 4 List of wrapped SICBDST sub-detector steering routines

Brunel Algorithm SICBDST steering routine

Listing 4 Execution mode specific Brunel options

1: //--
2: // Setup spillover if wanted This must be the first statement
3: //--
4: #include "$BRUNELOPTS/SpillOver.txt"
5:
6: //--
7: // Define the execution mode:
8: //--
9: #include "$BRUNELOPTS/Dynamic.dst1.txt"

10:
11: // Other possibilities are:
12: // #include "$BRUNELOPTS/Dynamic.dst2.txt"
13: // #include "$BRUNELOPTS/Static.dst1.txt"
14: // #include "$BRUNELOPTS/Static.dst2.txt"
page 12

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
3.2.1 Choice of pileup mode

Brunel uses the Gaudi implementation of pileup. If you choose a pileup execution mode, you should
also select whether you are doing pileup on signal events or on minimum bias events, as shown in
Listing 5

3.2.2 Inclusion of spillover

It is also possible to read in additional (spillover) events. In order to switch on spillover you should
include the file $BRUNELOPTS/SpillOver.txt in your job options, as shown in line 4 of
Listing 4. This file, reproduced in Listing 6,.shows that, if spillover is included and enabled, only one

additional event is read in by default, corresponding to the previous beam crossing. Up to a total of 4
spillover events can be read in by changing the values of the SpillOverAlg.SpillOverPrev
and SpillOverAlg.SpillOverNext job options. The spillover events are read into additional
branches of the LHCb data model, as shown in Table 5.. Note that the events are merely made available

in the transient event data store of Gaudi. None of the event information is modified, in particular the
time of flight information of the hits is not modified: the labels Prev, Next etc. are for convenience only,
it is up to the algorithms using this infomation to add appropriate timing offsets when required.

Listing 5 Job option for selection of pileup mode

1: // Use LUMISIGNAL if main event is signal, otherwise LUMIMINBIAS
2: PileUpAlg.PileUpMode = "LUMISIGNAL";
3: // PileUpAlg.PileUpMode = "LUMIMINBIAS";

Listing 6 Job options for spillover

1: //##
2: // Options file for adding spillover to Brunel
3: //==
4: ApplicationMgr.TopAlg += { "SpillOverAlg" };
5: SicbEventCnvSvc.enableSpillover = true;
6: SpillOverAlg.SpillOverMode = "LUMI";
7: // Enable next two lines to modify number of spillover events.
8: // Default is Prev = 1, Next = 0; Maximum is Prev=2, Next=2
9: // SpillOverAlg.SpillOverPrev = 2;

10: // SpillOverAlg.SpillOverNext = 1;

Table 5

Beam crossing Event path

Previous /Event/Prev

One before previous /Event/PrevPrev

Next /Event/Next

One after next /Event/NextNext
 page 13

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
3.2.2.1 Limitations

The current implementation of spillover has the following limitations:

• It is not possible to add pileup to the spillover events within Brunel. If required, the events
read into the spillover input stream should come from a file of previously piled-up events.

• The probability of having a pileup event in a given beam crossing depends on the
instantaneous luminosity for that event, which is taken at random from the luminosity
distribution of the fill. Currently, independent values of the instantaneous luminosity are taken
for each of the pileup events and for the spillover. In a future version the same instantaneous
luminosity will be used for all sub-events of a given main event.

• Since spillover events will be combined by digitisers into a single Raw event, only the /MC
part of the event is provided. Furthermore, only those parts of the /MC subevent which have a
converter in the SicbCnv package are available.

3.3 Input/Output definition

The current version of Brunel uses the Gaudi SicbEventSelector to read in event data from a
SICBMC RAWH file. The relevant job options are shown in Listing 7

If you have chosen an execution mode with pileup, you also have to define the file containing the pileup
events, as shown in Listing 8

If you have chosen to enable spillover, you also have to define the file containing the spillover events,
as shown in Listing 9. Note that different files must be used for spillover and for pileup.

Listing 7 Job Options for event input definition

1: // Input file name (all on one line!)
2: EventSelector.Input = {"JOBID=’19612’"};
3: // Number of events to be processed (default is all events)
4: EventSelector.EvtMax = 100;
5: // Print event number at each event
6: EventSelector.PrintFreq = 1;
7:
8: // Enable next card if you wish to skip some events
9: // EventSelector.FirstEvent = 3;

Listing 8 Job Options for pileup

1: // Define the file containing the pileup events
2: PileUpSelector.JobInput = "JOBID 19065";

Listing 9 Job Options for spillover

1: // Define the file containing the pileup events
2: SpillOverSelector.JobInput = "JOBID 25411";
page 14

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
The Gaudi framework does not provide a facility for writing out event data to ZEBRA files. For this
reason, Brunel calls the SICB routine RECEVOUT to write out the SICB DST file. The output stream
is defined using an IOPA ’SAVX’ data card as for SICBDST [4] (see Listing 10).:

In addition, it is possible to write out an object-oriented DST to a ROOT file, using the facilities
provided by Gaudi. Please refer to the Gaudi manual [3] for details

3.4 Monitoring

3.4.1 Histograms

In the current version of Brunel, the only predefined histograms are those created by the subdetector
code inside SICBDST, control of filling and of output of these histograms is via the SICB data cards in
the usual way.

The standard SICBDST checking histograms are also linked into Brunel by default. This is done by line
3 in Listing 11, taken from,the Brunel requirements file.

Fill of these histograms is enabled with the following SICB data card:

In addition, it is possible for users to define their own histograms inside Gaudi algorithms, using the
facilities provided by Gaudi. Such histograms are output by the Gaudi histogram service, to a file
defined by the following job option

3.4.2 Debug printout

In the current version of Brunel, control of debug printout from the SICBDST Fortran algorithms is via
the SICB data cards in the usual way.

Listing 10 SICB card fto define ZEBRA output file

1: IOPA
2: 'SAVX' 'XO' '$WORKDIR/Brunel.dst!'

Listing 11 Definition of Brunel application in CMT requirements file

1: application Brunel ../Brunel/*.cpp \
2: $(SICBDSTROOT)/src/sicbvers.F \
3: $(SICBDSTROOT)/dst/*.F \
4: ../Brunel/*.F

IOPA
'CHCK' 'HO' '$WORKDIR/Brunel.hbook!'

HistogramPersistencySvc.OutputFile = "histo.hbook";
 page 15

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
In addition, it is possible to define the level of debug printout available from the Gaudi Services and
from the Brunel control framework via the standard Gaudi MessageSvc job options:

3.4.3 Profiling

Brunel makes use of Gaudi Auditors to monitor the code performance at run time. The following
auditors are available:

NameAuditor Prints out the name of an algorithm whenever its execute() method is called.
Disabled by default.

ChronoAuditor Monitors CPU usage of each algorithm and reports at the end of the job the total and
average time per algorithm. Enabled by default.

MemoryAuditor Prints out information on memory usage, in particular whenever the memory
allocation changes. Currently only works on Linux. Enabled by default.

The default behaviour of these auditors can be changed using the following job options:

3.5 Known problems

The following problems and workarounds are known:

• When building Brunel on Linux, you have to source setup.csh before typing gmake. If
you do not do this, gmake will not find some of the SICBDST files.

// Global output level
MessageSvc.OutputLevel = 3;

// Over-ride global level for some algorithms
BrunelInit.OutputLevel = 2;
BrunelDigiVELO.OutputLevel = 2;
BrunelRecoVELO.OutputLevel = 2;

Listing 12 Job options to control default Auditor behaviour

//--
// Enable/Disable some monitoring by setting lines below to true/false
//--
NameAuditor.Enable = false;
ChronoAuditor.Enable = true;
MemoryAuditor.Enable = true;

//--
// Enable/Disable monitoring of methods of individual algorithms
// by setting lines below to true/false
//--
myAlgorithm.AuditInitialize = false;
myAlgorithm.AuditExceute = true;
myAlgorithm.AuditFinalize = false;
page 16

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
• On NT, the LHCBHOME environment variable must contain a path with at least one backslash
(e.g. "V:\cern.ch\lhcb"). If not, ZEBRA will complain when trying to open the file
$LHCBHOME/sim/data/v111-prob-2d-d0.hbook. This is a feature of the shift
library for Windows..

• Auditors are not currently working in the static exceutable of Brunel.
 page 17

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 1.6/1
page 18

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1.6/1
Chapter 4
Running Brunel

Brunel is implemented as a CMT [5] package, with the following subdirectory structure:

— Brunel C++ and Fortran source code

— doc release notes

— job example job

— options structure of example steering data cards

— mgr CMT requirements file

— Visual Visual Studio Workspace

The job subdirectory contains an example job for running Brunel on Linux. The options subdirectory
contains and example structure of Gaudi job options files (the top file of the structure is
BrunelOptions.txt) and a SICB data file (Brunel.cards). You should customise these files
according to your needs.

The files BrunelOptions.txt and Brunel.cards are picked up by default when you run one
of the example jobs on Linux, or inside Visual Studio on NT. To pick up different files, you should
modify the following two lines in the requirements file

Set the paths for Brunel and SICBDST data cards.
set JOBOPTPATH ${BRUNEOPTS}/BrunelOptions.txt
set SICBCARDS ${BRUNELOPTS}/Brunel.cards
 page 19

BRUNEL User Guide
Chapter 4 Running Brunel Version/Issue: 1.6/1
page 20

BRUNEL User Guide
Appendix A References Version/Issue: 1.6/1
Appendix A
References

1 See for example http://www.gaudiclub.com/ingles/i_vida/i_menu.html for more
information about Antoni Gaudi

2 See for example http://www.spartacus.schoolnet.co.uk/RAbrunel.htm for more
information about Isambard Kingdom Brunel

3 The GAUDI users guide is available at:
http://cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf

4 The SICB documentation is available at: http://cern.ch/lhcb-comp/SICB/

5 CMT documentation is available at http://cern.ch/lhcb-comp/Support/html/cmt.htm
 page 21

http://www.spartacus.schoolnet.co.uk/RAbrunel.htm
http://www.gaudiclub.com/ingles/i_vida/i_menu.html
http://cern.ch/lhcb-comp/Components/Gaudi_v6/gug.pdf
http://cern.ch/lhcb-comp/SICB/
http://cern.ch/lhcb-comp/Support/html/cmt.htm

BRUNEL User Guide
Appendix A References Version/Issue: 1.6/1
page 22

	Document Control Sheet
	Document Status Sheet
	Chapter 1 Introduction
	1.1�� Purpose of this document
	1.2�� What does "Brunel" mean?
	1.3�� Editor’s note

	Chapter 2 Structure of Brunel
	2.1�� Brunel Phases
	2.1.1�� Instantiating Brunel Phases

	2.2�� Brunel sub-detector code
	2.2.1�� Instantiating sub-detector sequences

	2.3�� Accessing Gaudi services and data from Brunel
	2.4�� Adding user code

	Chapter 3 Current Implementation
	3.1�� Wrapped SICBDST
	3.2�� Choice of execution mode
	3.2.1�� Choice of pileup mode
	3.2.2�� Inclusion of spillover
	3.2.2.1�� Limitations

	3.3�� Input/Output definition
	3.4�� Monitoring
	3.4.1�� Histograms
	3.4.2�� Debug printout
	3.4.3�� Profiling

	3.5�� Known problems

	Chapter 4 Running Brunel

