

BRUNEL
LHCb Reconstruction Program

User Guide
 Corresponding to Brunel version v3

Version: 3.0
Issue: 1
Date: 28 May 2001

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

BRUNEL User Guide
 28 May 2001 Version/Issue: 3.0/1
Document Control Sheet

Document Status Sheet

Table 0.1 Document Control Sheet

Document Title: BRUNEL User Guide

Version: 3.0

Issue: 1

Edition: 0

ID: [Document ID]

Status:

Created: 25 May 2000

Date: 28 May 2001

Access: :

Keywords:

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Content
Template:

-- Version: --

Authorship Coordinator: M.Cattaneo

Written by: M.Cattaneo

Table 0.1 Document Status Sheet

Title: BRUNEL User Guide

ID: [Document ID]

Version Issue Date Reason for change

1 0 26 May 2000 First draft version

1 1 28 July 2000 Minor changes for Brunel v1r2

1.5 1 17 Nov. 2000 Updated for Brunel v1r5, GaudiSys v6

1.6 1 8 Jan 2001 Updated for Brunel v1r6

3 0 20 May 2001 Updated for Brunel v3

3 1 28 May 2001 Fix a few typos and documentation errors
page 2

BRUNEL User Guide
 Table of Contents Version/Issue: 3.0/1
Table of Contents

Document Control Sheet . 2
Document Status Sheet . . 2

Table of Contents . 3

Chapter 1
Introduction . 5

1.1 Purpose and structure of this document 5
1.2 Package structure . . 5
1.3 What does "Brunel" mean? . 6
1.4 Editor’s note . 6

Chapter 2
Brunel program structure . 7

2.1 Introduction . 7
2.2 Brunel phases . 7

2.2.1 Initialisation . 7
2.2.2 Reconstruction phases and sequences 7
2.2.3 Finalisation . . 8

2.3 Program configuration . . 9
2.3.1 Instantiation of Brunel phases 9
2.3.2 Instantiation of Brunel sequences 9
2.3.3 Instantiation of sub-system algorithms 10

Chapter 3
Current Implementation . 11

3.1 Introduction . 11
3.2 Current functionality . 11

3.2.1 Compatibility with input data 11
3.2.2 SpillOver . 12
3.2.3 Digi Phase . 13
3.2.4 Trigger phase . 13
3.2.5 Reco Phase . 14
3.2.6 Final Fit phase . 14

Chapter 4
Customising and Running Brunel . 15

4.1 Introduction . 15
4.2 Modifying the run time behaviour 15

4.2.1 Defining input data . 16
4.2.2 Enabling SpillOver . 16
 page 3

BRUNEL User Guide
 Table of Contents Version/Issue: 3.0/1
4.2.3 Defining output data . 17
4.2.4 Modifying the printing behaviour 17
4.2.5 Monitoring options . 18
4.2.6 Enabling static execution 20
4.2.7 Additional user job options 21

4.3 Adding user code . 21
4.4 Building and running the job 21

4.4.1 Running the default version 22
4.4.2 Running the default version with modified job options 22
4.4.3 Running the default version with modified requirements 22
4.4.4 Building a modified version 23

4.5 Known problems . 23

Appendix A
References . 25
page 4

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 3.0/1
Chapter 1

Introduction

1.1 Purpose and structure of this document

This document is a user guide and reference manual for the LHCb reconstruction program,
Brunel. It should be useful both to users wishing to run the program, and to programmers
wishing to add functionality. Chapter 2 describes the structure of the program. The current
functionality is described in Chapter 3. Chapter 4 describes how users can modify the
program’s functionality and its run time behaviour.

Brunel is based on the Gaudi software framework [1], and uses CMT [2] for code
management. This guide assumes some familiarity with both of these tools. Please refer to the
corresponding documentation for details on these topics.

This document does not describe the physics algorithms or the data model. A compilation of
notes discussing LHCb reconstruction algorithms and the LHCb data model is available on
the Web [3].

1.2 Package structure

Brunel is implemented as a CMT package, in the "Rec" package group, with the following
subdirectory structure:

— src C++ and Fortran source code

— doc release notes

— job example job

— options default job options and SICB data cards

— cmt CMT requirements file

— Visual Visual Studio Workspace
 page 5

BRUNEL User Guide
Chapter 1 Introduction Version/Issue: 3.0/1
The src directory contains two sub-directories:

— BrunelSicb Brunel code and inteface code to SICB

— ObsoleteSicb Obsolete interface code to SICB (replaced by new C++
implementation)

Please note that the packaging was modified starting from Brunel v3. A top level (i.e. not
under the Rec hat) Brunel package exists in CVS, but this is obsolete and is no longer
maintained.

1.3 What does "Brunel" mean?

All LHCb data processing applications are based on a framework which enforces the GAUDI
architecture. Antoni Gaudi [4] was a Catalan architect who greatly influenced the
development of Barcelona around the beginning of the nineteenth century. For the
reconstruction program we decided to use the name of an engineer. Isambard Kingdom
Brunel [5] was a British engineer who greatly contributed to the industrial revolution in the
first half of the eighteenth century.

1.4 Editor’s note

This document is a snapshot of the Brunel software at the time of the release of version v3. We
have made every effort to ensure that the information it contains is correct, but in the event of
any discrepancies between this document and information published on the Web, the latter
should be regarded as correct, since it is maintained between releases and, in the case of code
documentation, it is automatically generated from the code.

We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch
page 6

mailto:Marco.Cattaneo@cern.ch

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 3.0/1
Chapter 2

Brunel program structure

2.1 Introduction

The Brunel reconstruction program is built on the Gaudi framework, and provides
mechanisms for sequencing reconstruction algorithms within this framework. Algorithms
executed in Brunel have access to all the services currently implemented in Gaudi, and to all
data in the Gaudi data stores, as documented in the Gaudi user guide [1].

Reconstruction in Brunel is executed in a number phases, each of which can contain sequences
of sub-detector algorithms. The instantiation of phases and the sequencing of algorithms
within the phases are driven by job options.

2.2 Brunel phases

2.2.1 Initialisation

Brunel is initialised in the BrunelInitialisation algorithm. This Gaudi algorithm is
where all initializations which are independent of BrunelPhase are performed. These can be
global program initializations (in the initialize() method), or event by event
initializations (in the execute() method). Note that initializations specific to a given
BrunelPhase should not be performed here.

2.2.2 Reconstruction phases and sequences

This where the meat of the reconstruction program lies. Actual phases are derived from the
BrunelPhase base class. Each BrunelPhase should be independent of other
BrunelPhases: it should be possible to run only one phase, providing of course that event
 page 7

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 3.0/1
input data in the appropriate format exists1. All initializations and finalizations specific to the
phase should be performed inside the phase.

Each phase consists of a number of Gaudi Sequences, typically one per sub-detector, which
execute a set of reconstruction algorithms in a predefined order.

The following BrunelPhases are currently instantiated:

• BrunelDigi is where simulated RAW Hits are converted into DIGItisings. The
output of this phase has the same format as real RAW data coming from the
detector2. Obviously this phase would not be present when reconstructing real data,
and could be moved to the simulation program when reconstructing simulated data.
Note that this implies some discipline when designing the DIGItised data model, in
particular for what concerns links to Monte Carlo truth information.

• BrunelTrigger is where the LHCb trigger decision is applied. The input event data
are DIGItisings. The output are also DIGItisings, with the addition of the trigger
decision information.

• BrunelReco is where the first pass reconstruction is carried out. By first pass we
mean that the reconstruction algorithms in this phase rely only on DIGItisings and do
not require input from the reconstruction of other subdetectors. This restriction can
be somewhat relaxed by ensuring that subdetectors are reconstructed in a specific
order: those that only require input from the DIGItisings are processed first, those
that require input from the reconstruction of other sub-detectors are processed after
those sub-detectors.

• BrunelFinalFit is the second pass reconstruction, to allow for processing which
requires input from the reconstruction of several subdetectors.

• BrunelMoni is a phase intended purely for monitoring, which could be switched off
during a large production. Monitoring histograms should, wherever possible, be
filled by algorithms that execute in this phase. This phase is discussed in more detail
in section 4.2.5.1

Note that additional phases could easily be implemented if further reconstruction passes are
required.

2.2.3 Finalisation

Brunel is finalised in the BrunelFinalisation algorithm. This Gaudi algorithm is where
all the finalisations which are independent of BrunelPhase are performed. These can be
global program finalizations (in the finalize() method), or event by event finalisations (in
the execute() method). Note that finalisations specific to a given BrunelPhase should not
be performed here.

1. This is not entirely true in the current version of the reconstruction program, due to the underlying calls to
SICBDST routines, which do not have this structure.

2. This is not entirely true in the current version of the reconstruction program, due to the underlying use of
the SICB data model, which does not have this structure
page 8

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 3.0/1
2.3 Program configuration

As with other programs based on Gaudi, Brunel is configured through job options. Several job
options files are distributed with Brunel, in the /options sub-directory. Here we describe
some features of the main job options file, Brunel.opts, which sets up the standard
configuration of Brunel and should not normally be changed by the user. Other job options
files that can be modified to customise the run time behaviour of Brunel are described in
Chapter 4.

2.3.1 Instantiation of Brunel phases

Brunel Phases are Gaudi top Algorithms. They are therefore instantiated using the standard
Gaudi job option ApplicationMgr.TopAlg. Listing 2.1 shows the default value of this
option for the current implementation. Note the different phases in lines 2 to 5, which are
different instances of the class BrunelPhase and will be executed in the order shown

2.3.2 Instantiation of Brunel sequences

Reconstruction code should be executed inside Brunel Phases. Each Brunel Phase instantiates
a Gaudi Sequence for each sub-detector or sub-system participating in that phase. The instance
name of the Sequence follows a specific convention: it is composed of the Phase name (e.g.
BrunelDigi) followed by an abbreviated sub-system name (e.g. MUON), followed by the string
"Seq" (e.g. BrunelDigiMUONSeq). These Sequences are intended to be the phase specific
steering algorithms of the sub-systems: the subsystem reconstruction algorithms have to be
declared as members of the Sequence.

Listing 2.2 shows how the different sub-system sequences are instantiated within the existing
Brunel phases, in the current version of Brunel.

Listing 2.1 Brunel Top Algorithms as defined in $BRUNELOPTS/Brunel.opts job options file

1: ApplicationMgr.TopAlg = { "BrunelInitialisation/BrunelInit",
2: "BrunelPhase/BrunelDigi",
3: "BrunelPhase/BrunelTrigger",
4: "BrunelPhase/BrunelReco",
5: "BrunelPhase/BrunelFinalFit",
6: "BrunelFinalisation/BrunelFinish" };

Listing 2.2 Brunel Sequences as defined in $BRUNELOPTS/Brunel.opts job options file

BrunelDigi.DetectorList = { "VELO" , "IT", "OT" , "RICH" , "CALO", "MUON" };
BrunelTrigger.DetectorList = { "TRIGGER" };
BrunelReco.DetectorList = { "OT", "IT", "Tr" , "RICH" , "CALO" };
BrunelFinalFit.DetectorList = { "TRAC" };
 page 9

BRUNEL User Guide
Chapter 2 Brunel program structure Version/Issue: 3.0/1
2.3.3 Instantiation of sub-system algorithms

Within each Sequence, the sub-systems are able to instantiate any number of algorithms by
simply adding the appropriate job option. For example, to instantiate the ECALSignal and
HCALSignal instances of the CaloSignalAlgorithm in the BrunelDigiCALOSeq sequence
(and to execute ECAL before HCAL), one would add the following job option:

The advantage of this system is that it is easily extendable and modifiable. To add a new
phase, or a new sub-detector, or a new algorithm (or to change any of their names), it is
sufficient to make the necessary changes to the job options. No changes are necessary to the
Brunel steering code.

In order to further simplify the maintenance of Brunel and of the sub-system code, a
convention has been adopted [6] whereby the sub-systems provide a file called
Brunel.opts in the /options sub-directory of the sub-system algorithms package. This
file contains the sequence member declarations for the sub-system algorithms, and any other
options required to run the algorithms in Brunel. Typically these would be the additional
libraries to be loaded at run-time (ApplicationMgr.DLLs job option) and further include
files for the algorithm specific options. An example is shown in Listing 2.3

This and other similar files are then included in the standard Brunel job options file as shown
in Listing 2.4.

BrunelDigiCALOSeq.Members += { "CaloSignalAlgorithm/EcalSignal" ,
 "CaloSignalAlgorithm/HcalSignal" };

Listing 2.3 The $TRALGORITHMSROOT/options/Brunel.opts file

ApplicationMgr.DLLs += {"VSicbCnv", "VeloEvent"};
BrunelRecoTrSeq.Members +={"TrTrueTracksCreator",
 "TrTracksCreator",
 "TrFitInitializer",
 "TrEventTracksFitter"};

#include "$TRALGORITHMSROOT/options/trailFit.opts"

Listing 2.4 Inclusion of the Tracking algorithms in the $BRUNELOPTS/Brunel.opts job options file

#include "$TRALGORITHMSROOT/options/Brunel.opts"
page 10

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 3.0/1
Chapter 3

Current Implementation

3.1 Introduction

The current version of Brunel is a "hybrid" version, containing Fortran code from the old
SICBDST packages and new C++ code. Communication between the various FORTRAN
algorithms is done, as in SICBDST, via COMMON blocks, in particular the ZEBRA common
block. The C++ algorithms have access to all the Gaudi services, and in particular the Gaudi
data stores. Data is exchanged between the Fortran and C++ worlds by means of converters
which convert data from SICB banks to Transient Event Data objects and vice versa.

The FORTRAN algorithms are controlled via the SICB data cards file, the C++ algorithms via
job options. This is discussed in Section 4.2.

3.2 Current functionality

3.2.1 Compatibility with input data

Table 3.1 shows the compatibility between Brunel versions and SICBMC/dbase versions used
to produce the input data

Since SICBMC v244, it is possible to add PileUp to events at the generator level. For this
reason, the addition of PileUp in Brunel is not supported. We use the terminology that PileUp

Table 3.1 Version compatibility table

Brunel version SICBMC version dbase version

v3r1 v245 or later v238 or later

v3 v243 and v244 v237
 page 11

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 3.0/1
is due to multiple interactions in the current beam crossing . The effects on detector response
of interactions occurring in preceding or subsequent beam crossings are called SpillOver.

3.2.2 SpillOver

Brunel can read more than one event into the Event Data Store. In addition to the main event
(that may contain PileUp, as discussed in the previous section), additional SpillOver events
may be read into parallel event data structures. By default, only the SpillOver data actually
required by reconstruction algorithms is read in. These defaults are controlled by job options,
as described in Section 4.2.2.

The spillover events are read into additional branches of the LHCb data model, as shown in
Table 3.2. Note that the events are merely made available in the transient event data store, and

it is up to the digitisation algorithms to make use of this information if required. None of the
event information is modified, in particular the time of flight information of the hits is not
modified: the labels Prev, Next etc. are for convenience only, it is up to the algorithms using
this infomation to add appropriate timing offsets when required.

3.2.2.1 Limitations

The current implementation of spillover has the following limitations:

• In order to determine the probability of interactions in previous and subsequent
bunch crossings, the spillover algorithm takes the instantaneous luminosity from the
current event (as used to generate PileUp). Based on this probability, it uses a random
number generator to simulate the actual number of interactions in each of the bunch
crossings (let's call this number num_inter). If, in a given bunch crossing,
num_inter is greater than zero, then an event is read into the SpillOver transient
event structure from the SpillOver input file. This approach is an approximation: if
num_inter > 0, the SpillOver algorithm always reads one (and only one) event from
the input file, regardless of the value of num_inter. In theory the event read from
the input file should contain num_inter piled up events; in practice one just reads the
next event. It would be possible to do the correct thing by skipping events until one
with the right PileUp multiplicity is found, or to open several input files, each
containing events with a fixed PileUp multiplicity. Neither of these possibilities is
currently implemented.

Table 3.2 SpillOver in the Transient Event Data Model

Beam crossing Event path

Previous /Event/Prev

One before previous /Event/PrevPrev

Next /Event/Next

One after next /Event/NextNext
page 12

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 3.0/1
• Since SpillOver events will be combined by digitisers into a single Raw event, it is
only foreseen to provide the /MC part of the event. Furthermore, only those parts of
the /MC subevent whose converter foresees SpillOver are available.

3.2.3 Digi Phase

The digitisation phase converts input MonteCarlo Hits data (RAWH, RAWH2) into digitised
Raw data. The following sub-systems participate in this phase:

3.2.3.1 VELO

Fortran digitisation from package digvdet v2r2. TDR geometry.

3.2.3.2 Inner Tracker

C++ digitisation from package ITAlgorithms v4. The output is NOT converted back to
SICB banks WIDG, which are no longer available.

3.2.3.3 Outer Tracker

C++ digitisation from package OTAlgorithms v4. The output is NOT converted back to
SICB banks WODG, which are no longer available.

3.2.3.4 RICH

Fortran digitisation from package recrich v5r4 (RIDIGI). TDR geometry.

3.2.3.5 CALOrimeters

C++ digitisation from package CaloAlgs v2. TDR geometry. Output is converted back to
SICB banks ECEL, HCEL, ECPC.

3.2.3.6 MUON

Fortran digitisation from package digmuon v4. TDR geometry.

3.2.4 Trigger phase

The trigger phase executes the Fortran L1 and L2 trigger algorithms from the packages
trihadr v4, trilvl2 v5r1, trimuon v5, trit0v v5, triskel v4, trit1tr
v3r3, trivert v5r1, trielec v5r1
 page 13

BRUNEL User Guide
Chapter 3 Current Implementation Version/Issue: 3.0/1
These packges implement the TP trigger algorithms, with the exception of the L1 track trigger,
which is no longer available due to the absence of WIDG and WODG banks in the output of
the tracking digitisation.

3.2.5 Reco Phase

3.2.5.1 Inner Tracker

C++ hit reconstruction from package ITAlgorithms v4. The output is NOT converted back
to SICB banks

3.2.5.2 Outer Tracker

C++ hit reconstruction from package OTAlgorithms v4. The output is NOT converted back
to SICB banks

3.2.5.3 Tracking system

C++ track reconstruction from package TrAlgorithms v4. This consists of track seeding,
track following, and track fit, with cheated pattern recognition (using MC truth information).
The output is converted back to SICB banks AXAT, AXTP.

3.2.5.4 RICH

FORTRAN reconstruction, including "extended tracking", from package recrich v5r4
(RIRECO). TDR geometry.

3.2.5.5 CALOrimeters

FORTRAN reconstruction from packages rececal v7 and rechcal v6 . Not tuned to
latest geometry as used by the digitisation.

3.2.6 Final Fit phase

This is where the last reconstruction pass is made, currently purely in FORTRAN from the
axreclib v4r1 package.
page 14

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
Chapter 4

Customising and Running Brunel

4.1 Introduction

The released version of Brunel contains the recommended configuration for a standard LHCb
reconstruction job. This chapter describes how to execute a standard job, how to modify the
run time behaviour of Brunel, and how to modify its functionality by adding or removing
code.

4.2 Modifying the run time behaviour

Even if you wish to run a standard job, you will need to make some modifications, if only to
define the input and output event data files of your reconstruction job.

The /options subdirectory of the Brunel package contains a main Brunel.opts file that
should not need to be modified by most users. This file includes a number of other files that
should be modified to alter the default behaviour. These files are listed in Table 4.1 and their
contents are described in the next subsections.

Table 4.1 Job options files included by the main Brunel.opts job options file

Job Options File Purpose

BrunelInputs.opts Define input data and SpillOver mode

BrunelMessage.opts Modify the printing behaviour

BrunelMoni.opts Enable/Disable monitoring

BrunelStatic.opts Enable/Disable static execution mode

BrunelUser.opts Hook for additional user defined job options
 page 15

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
The /options subdirectory also contains a Brunel.cards file. This file is a SICB data cards
file that can be used to modify the behaviour of the SICB algorithms exceuted within Brunel.
Any SICB data card may be used, with the exception of cards dealing with input event data
(TRIGGERS card, IOPA ’GETX’, ’GETY’, ’GETZ’ cards) and selection of processing steps
(SKIP data card), since this functionality is handled by Gaudi. Please refer to the SICB
documentation [7] for details of available cards.

4.2.1 Defining input data

The current version of Brunel uses the Gaudi EventSelector to read in event data from a
SICBMC RAWH (or RAWH2) file. The relevant job options are found in the
BrunelInput.opts file and are reproduced in Listing 4.1

Note that Brunel version v3 expects input data produced with SICBMC v243 or greater.

4.2.2 Enabling SpillOver

The BrunelInput.opts file also contains the options needed to switch on the reading of
SpillOver events into Brunel. These lines are reproduced in Listing 4.2.

By default, spillover is disabled. To enable it, uncomment Line 3: this reads in the default
spillover configuration for Brunel from the SicbCnv package. You also need to provide an
input file of minimum bias events (RAWH or RAWH2, produced with SICBMC v243 or
greater) by uncommenting and modifying Line 4.

The default spillover configuration for Brunel is shown in Listing 4.3.

The first two lines indicate that the SpillOver algorithm will read in events for two beam
crossings preceding and one beam crossing following the current event. Lines 5 to 10 specify
the data to be loaded. Only data actually expected by Brunel algorithms needs to be
requested. The current default reflects the requirements of the algorithms in the current
Brunel version. To modify these defaults you should modify the file

Listing 4.1 Job Options for event input definition

1: // Input file name (all on one line!)
2: EventSelector.Input = {"JOBID=’44814’"};
3: // Number of events to be processed (default is all events)
4: EventSelector.EvtMax = 100;
5:
6: // Enable next card if you wish to skip some events
7: // EventSelector.FirstEvent = 3;

Listing 4.2 Job Options for spillover

1: // SPILLOVER: Uncomment next two lines to add spillover events.
2: //--
3: // #include "$SICBCNVROOT/options/Brunel.opts"
4: // SpillOverSelector.Input = {"FILE=’SICBMC_v244_mbias_1.rawh’"};
page 16

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
$SICBCNVROOT/options/Brunel.opts and include the modified file in BrunelInput.opts.
Note that only data whose SICB converter has foreseen SpillOver can be added in this way.

4.2.3 Defining output data

The Gaudi framework does not provide a facility for writing out event data to ZEBRA files.
For this reason, Brunel calls the SICB routine RECEVOUT to write out the SICB DST file. The
output stream is defined in the Brunel.cards file using an IOPA ’SAVX’ data card as for
SICB (see Listing 4.4).:

In addition, it is possible to write out an object-oriented DST to a ROOT file, using the
facilities provided by Gaudi. Please refer to the Gaudi manual [1] for details.

4.2.4 Modifying the printing behaviour

Brunel uses the Gaudi Message Service to print out information. The amount of information
to be printed is controlled by job options. The file BrunelMessage.opts sets up the default
printing behaviour - you should modify this file if you wish to change the defaults. An extract
of this file is shown in Listing 4.5.

Line 2 controls the frequency at which the event number is printed out at the beginning of the
event loop: the default is every event. Line 5 modifies the format of the messages printed out
by the message service. Compared to the default behaviour of Gaudi, this line prints the name
of the algorithm generating the message in a field 80 characters wide. This has been done to
avoid truncating the name of the many Brunel algorithms with long names; on an 80 column
screen the name will appear on one line and the message on the following line(s). Line 10 sets
the default print level to INFOrmational messages: all messages flagged INFO or above will
be printed. Lines 11 and 12 are temporary, they are needed to work around a bug in the
current version of Gaudi

Listing 4.3 Default settings for SpillOver from the file $SICBCNVROOT/options/Brunel.opts

1: SpillOverAlg.SpillOverPrev = 2;
2: SpillOverAlg.SpillOverNext = 1;
3: //-----------------------------
4: // Data to be loaded
5: SpillOverAlg.SpillOverData = {
6: "MCOuterTrackerHits", "MCInnerTrackerHits",
7: "Prs/Signals", "Prs/SummedSignals",
8: "Spd/Signals", "Spd/SummedSignals",
9: "Ecal/Signals", "Ecal/SummedSignals",

10: "Hcal/Signals", "Hcal/SummedSignals" };

Listing 4.4 SICB card to define the ZEBRA output file

1: IOPA
2: ’SAVX’ ’XO’ ’$WORKDIR/Brunel.dst!’
 page 17

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
Control of debug printout from the SICB Fortran algorithms used in Brunel is via DEBU,
PRNT and DEBG data cards to be added to the file Brunel.cards.

4.2.4.1 Rules for printout from Brunel algorithms

Developers of algorithms to be used in Brunel should remember that their code will be used
in production, and therefore that printout should be kept to a bare minimum. The following
rules are suggested:

• All printout must be via the Gaudi Message Service: use of std::cout is forbidden.

• Any messages introduced to debug the code should use the DEBUG output level

• INFO level messages should not be used in the execute() method of algorithms (i.e. in
the event loop). A possible exception would be to flag errors which are not fatal to the
algorithm’s execution (e.g. if the track fit fails on a particular track). It should not be
used to flag "normal" errors (e.g. an empty hits container).

• WARNING, ERROR and FATAL messages are reserved for real problems that cause
an algorithm to return an error. An explanatory message must always be printed
whenever and algorithm does not behave as expected. It is suggested to use
WARNING when the problem affects only the current algorithm, ERROR if it affects
the current event (i.e. that processing of the current event should stop), and FATAL if
it affects the rest of the job (i.e. that the job should stop).

4.2.5 Monitoring options

A number of possibilities exist to monitor the execution of Brunel. These are steered by job
options in the file BrunelMoni.opts and by SICB data cards in the file Brunel.cards.

4.2.5.1 Monitoring histograms filled by C++ code

Brunel algorithms book and fill histograms via the standard Gaudi histogram service. These
histograms can be saved either as ROOT or HBOOK histograms, as described in the Gaudi
Users Guide. By default, Brunel saves these histograms in HBOOK format, in a file called

Listing 4.5 The $BRUNELROOT/options/BrunelMessage.opts job options file

1: // Print event number at every event
2: EventSelector.PrintFreq = 1;
3:
4: // Modify Message Format to print algorithm name with 80 characters
5: MessageSvc.Format = "% F%80W%S%7W%R%T %0W%M";
6:
7: //--
8: // Output thresholds (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL)
9: //--

10: MessageSvc.OutputLevel = 3;
11: ToolSvc.OutputLevel = 3;
12: OTDigitize.OutputLevel = 3;
page 18

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
Histos.hbook, as shown in Listing 4.6. Remove lines 2 and 3 if you wish to suppress the
printing of histograms, or replace them with the equivalent lines for ROOT if you wish to save
them in ROOT format.

Of course, suppressing the printout of histograms does not prevent their filling. The time
spent filling the histograms would then be wasted. In a program used in production, it would
be preferable to be able to suppress the filling of histograms. This has been foreseen in Brunel
by instantiating a Brunel phase, BrunelMoni, dedicated to the filling of monitoring
histograms. Monitoring histograms should be filled, wherever possible, by dedicated
monitoring algorithms executed in this BrunelMoni phase. It is then simple to suppress the
monitoring histograms by not executing this phase in a production job. By default, Brunel
instantiates the BrunelMoni phase and executes it as the last phase of the event loop. To
suppress monitoring histograms, remove line 1 of Listing 4.7 from the file
BrunelMoni.opts. The remaining lines of Listing 4.7 set up the sequences and algorithms
of the BrunelMoni phase, as described in Section 2.3.

4.2.5.2 Standard SICB DST checking histograms

In SICBDST it was possible to link into the program a set of analysis histograms that were
filled during a call to the SUANAL routine at the end of the event loop. This is also possible
with Brunel, by adding line 3 of Listing 4.8, to the Brunel requirements file. Note that the
environment variable SICBDSTROOT has to be explicitly defined in the requirements file,
because Brunel does not use the SICBDST package. This will be improved in a future version
of Brunel. By default these histograms are not linked into Brunel.

Listing 4.6 Histogram persistency options from the file BrunelMoni.opts

1: // Hbook persistency (use HBookCnv v* in requirements)
2: #include "$STDOPTS/Hbook.opts"
3: HistogramPersistencySvc.OutputFile = "Histos.hbook";

Listing 4.7 Monitoring options from the file BrunelMoni.opts

1: ApplicationMgr.TopAlg += { "BrunelPhase/BrunelMoni" };
2: //--
3: // Detectors to monitor
4: //--
5: BrunelMoni.DetectorList = { "IT", "OT", "Tr" };
6: //--
7: // Monitoring algorithms
8: //--
9: BrunelMoniOTSeq.Members = { "OTDigitChecker" };

10: BrunelMoniTrSeq.Members = { "TrMonitor" };

Listing 4.8 Definition of Brunel application in CMT requirements file

1: application Brunel $(GAUDICONFROOT)/src/GaudiMain.cpp \
2: ../src/BrunelSicb/*.F ../src/BrunelSicb/*.cpp \
3: $(SICBDSTROOT)/dst/*.F
 page 19

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
To fill and save these histograms you should enable the following SICB data card in the file
Brunel.cards:

4.2.5.3 Monitoring histograms filled by SICB subdetector code

Any of the histograms filled by the SICB reconstruction code can be filled and saved in the
standard way, by providing the appropriate SICB data cards in the file Brunel.cards, for
example:

4.2.5.4 Profiling

Brunel makes use of Gaudi Auditors to monitor the code performance at run time. The
following auditors are available:

NameAuditor Prints out the name of an algorithm whenever its execute() method is called.
Disabled by default.

ChronoAuditor Monitors CPU usage of each algorithm and reports at the end of the job the
total and average time per algorithm. Enabled by default.

MemoryAuditor Prints out information on memory usage, in particular whenever the memory
allocation changes. Currently only works on Linux. Disabled by default.

The default behaviour of these auditors can be changed using the following job options in the
file BrunelMoni.opts:

4.2.6 Enabling static execution

If you wish to execute the statically linked version of Brunel, you need to over-ride all the job
options that define the DLLs to be loaded by the application manager. This is done by
modifying the file BrunelStatic.opts, by uncommenting the line:

IOPA
 ’CHCK’ ’HO’ ’$WORKDIR/Brunel.hbook!’

IOPA
C T1VE are SICBDST L1 trigger monitoring histograms
 ’T1VE’ ’HO’ ’$LHCBHOME/scratch/Brunel/T1VE_brunel.hbook!’

AuditorSvc.Auditors = { "NameAuditor", "ChronoAuditor", "MemoryAuditor" };
NameAuditor.Enable = false;
ChronoAuditor.Enable = true;
MemoryAuditor.Enable = false;

//ApplicationMgr.DLLs = {"NONE"};
page 20

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
4.2.7 Additional user job options

An additional dummy job options file, BrunelUser.opts, is provided to allow users an
additional hook for modifying the job options without having to touch the main job options
file Brunel.opts. Since this file is the last file to be included, any of the options previously
defined can be redefined here. For example you may wish to suppress one of the
reconstruction phases by redefining the ApplicationMgr.TopAlg option shown in Listing
2.1

4.3 Adding user code

User code should be added to an existing Brunel Phase. The way to do this depends on the
packaging of the algorithm to be added:

1. If the new algorithm is part of a package already known to Brunel, it is sufficient to
add the algorithm to the appropriate sequence, in the package specific
Brunel.opts file (see for example Listing 2.3).

2. If the new algorithm is part of a package not yet known to Brunel, the new package
should provide a Brunel.opts file in the /options subdirectory. This file should
have a structure similar to that in Listing 2.3 and be included in the main
Brunel.opts file (or in the BrunelUser.opts file), as shown in Listing 2.4. You
should of course use the new package in the Brunel CMT requirements file.

3. It is also possible to add a Fortran analysis routine, using the SICB user routines
SUINIT, SUANAL, SULAST. SUANAL is called at the end of all event processing.
These routines should be linked into the application as shown in Listing 4.8 for the
SICBDST monitoring histograms (note that use of this method is incompatible with
also linking the SICB monitoring histograms since the routines called have the same
name!)

4.4 Building and running the job

This section gives simple instructions on how to execute a Brunel job. Familiarity is assumed
with CMT. The instructions are given for Linux at CERN. Windows procedures are similar, the
difference should be fairly obvious to anyone who is familiar with the Windows development
environment. An example job for executing Brunel in both interactive and batch
environments is distributed with Brunel in the /job subdirectory. You should tailor it to your
needs, using the information below.
 page 21

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
4.4.1 Running the default version

If you wish to execute the default version of Brunel, without changing any of the job options,
you simply have to set up all the necessary environment variables and then execute the job:

This is useful to check that your environment is set correctly. The file myjob.log should be
identical to the sample output in the production area: $BRUNELROOT/job/linux.log
(except of course for differences due to the execution time of the two jobs). The job should also
produce an hbook histogram file in the current directory, whose contents should be identical
to the sample histogram output in the production area: $BRUNELROOT/job/linux.hbook
(similar sample files win.log and win.hbook exist for the Windows platform)

4.4.2 Running the default version with modified job options

In real life you will certainly need to modify the job options, if only to change the name of the
input file. In this case you should copy the job options directory from the official area, edit one
or more files, and change the logical name pointing to these files:

If you have modified the main job options file Brunel.opts (not recommended), you also
need to tell Brunel where to find the modified file, before executing the job:

Note that these instructions are valid also if you want to change the Brunel functionality by
excuting only a subset of the standard algorithms, sequences or phases: it is sufficient to make
the necessary changes to the job options. Similarly if you want to add an algorithm from a
component library already known to Brunel.

4.4.3 Running the default version with modified requirements

If you wish to use a new version of an existing component library, or use algorithms from a
component library not yet known to Brunel, you will need to modify the running

cd ~/myBrunelTest
source $LHCBNEW/Brunel/v3/cmt/setup.csh
$BRUNELROOT/i386_linux22/Brunel.exe > myjob.log

cd ~/myBrunelTest
source $LHCBNEW/Brunel/v3/cmt/setup.csh
cp $BRUNELROOT/options/*.* .
emacs ...
setenv BRUNELOPTS .
setenv SICBCARDS ./Brunel.cards
$BRUNELROOT/i386_linux22/Brunel.exe > myjob.log

setenv JOBOPTPATH ./Brunel.opts
page 22

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
environment of Brunel. In this case it may be sufficient to modify the CMT requirements file
and rebuild the Brunel environment, without actually rebuilding the Brunel executable::

4.4.4 Building a modified version

In most cases, developers will need to build a new Brunel executable. Since Brunel is a
standard CMT package, it is sufficient to type gmake in the /cmt sub-directory. The
procedure becomes:

4.5 Known problems

The following problems and workarounds are known:

• When building Brunel on Linux, you have to source setup.csh before typing
gmake. If you do not do this, gmake will not find the source file of the main program.

• On Windows, the LHCBHOME environment variable must contain a path with at least
one backslash (e.g. "%SITEROOT%\lhcb"). If not, ZEBRA will complain when trying
to open the file $LHCBHOME/sim/data/v111-prob-2d-d0.hbook. This is a
feature of the shift library for Windows..

• With the static executable of Brunel, it is not possible to save histograms produced by
C++ algorithms via the Gaudi histogram service.

cd ~/newmycmt
getpack Rec/Brunel v3
cd Rec/Brunel/v3/cmt
emacs requirements
...
source setup.csh
cd ../job
$LHCBNEW/Rec/Brunel/v3/i386_linux22/Brunel.exe > myjob.log

cd ~/newmycmt
getpack Rec/Brunel v3
cd Rec/Brunel/v3/cmt
emacs requirements
...
source setup.csh
gmake
cd ../job
../i386_linux22/Brunel.exe > myjob.log
 page 23

BRUNEL User Guide
Chapter 4 Customising and Running Brunel Version/Issue: 3.0/1
page 24

BRUNEL User Guide
Appendix A References Version/Issue: 3.0/1
Appendix A

References

1 The GAUDI users guide is available at:
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v7/GUG/Output/GUG.htm

2 CMT documentation is available at http://cern.ch/lhcb-comp/Support/html/cmt.htm

3 A compendium of LHCb notes concerning reconstruction is available at:
http://cern.ch/lhcb-comp/Reconstruction/LHCbNotesOfInterest.html

4 See for example http://www.gaudiclub.com/ingles/i_vida/i_menu.html for more
information about Antoni Gaudi

5 See for example http://www.spartacus.schoolnet.co.uk/RAbrunel.htm for more
information about Isambard Kingdom Brunel

6 Sub-detector job options for Brunel,
http://cern.ch/lhcb-comp/Support/Conventions/options.pdf

7 The SICB documentation is available at: http://cern.ch/lhcb-comp/SICB/
 page 25

http://www.spartacus.schoolnet.co.uk/RAbrunel.htm
http://www.gaudiclub.com/ingles/i_vida/i_menu.html
http://cern.ch/lhcb-comp/Frameworks/Gaudi/Gaudi_v7/GUG/Output/GUG.htm
http://cern.ch/lhcb-comp/SICB/
http://cern.ch/lhcb-comp/Support/html/cmt.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Support/Conventions/options.pdf
http://cern.ch/lhcb-comp/Reconstruction/LHCbNotesOfInterest.html

BRUNEL User Guide
Appendix A References Version/Issue: 3.0/1
page 26

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose and structure of this document
	1.2 Package structure
	1.3 What does "Brunel" mean?
	1.4 Editor’s note

	Chapter 2 Brunel program structure
	2.1 Introduction
	2.2 Brunel phases
	2.2.1 Initialisation
	2.2.2 Reconstruction phases and sequences
	2.2.3 Finalisation

	2.3 Program configuration
	2.3.1 Instantiation of Brunel phases
	2.3.2 Instantiation of Brunel sequences
	2.3.3 Instantiation of sub-system algorithms

	Chapter 3 Current Implementation
	3.1 Introduction
	3.2 Current functionality
	3.2.1 Compatibility with input data
	3.2.2 SpillOver
	3.2.2.1 Limitations

	3.2.3 Digi Phase
	3.2.3.1�� VELO
	3.2.3.2 Inner Tracker
	3.2.3.3 Outer Tracker
	3.2.3.4 RICH
	3.2.3.5 CALOrimeters
	3.2.3.6 MUON

	3.2.4 Trigger phase
	3.2.5 Reco Phase
	3.2.5.1 Inner Tracker
	3.2.5.2 Outer Tracker
	3.2.5.3 Tracking system
	3.2.5.4 RICH
	3.2.5.5 CALOrimeters

	3.2.6 Final Fit phase

	Chapter 4 Customising and Running Brunel
	4.1 Introduction
	4.2 Modifying the run time behaviour
	4.2.1 Defining input data
	4.2.2 Enabling SpillOver
	4.2.3 Defining output data
	4.2.4 Modifying the printing behaviour
	4.2.4.1 Rules for printout from Brunel algorithms

	4.2.5 Monitoring options
	4.2.5.1 Monitoring histograms filled by C++ code
	4.2.5.2 Standard SICB DST checking histograms
	4.2.5.3 Monitoring histograms filled by SICB subdetector code
	4.2.5.4 Profiling

	4.2.6 Enabling static execution
	4.2.7 Additional user job options

	4.3 Adding user code
	4.4 Building and running the job
	4.4.1 Running the default version
	4.4.2 Running the default version with modified job options
	4.4.3 Running the default version with modified requirements
	4.4.4 Building a modified version

	4.5 Known problems

