- — s R —-'1* -

Introduction to DavVinci

o W 7

~® Overview

First try

Writing a simple algorithm
Configuring Common Algorithms
More about Tools

® Accessing MC truth

‘ This session is not hands-on, but there are many
examples one can try “at home”.

' Patrick Koppenburg
¢
L P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 1/85

http://www.koppenburg.org/address.html

Overview:

e Assumptions

e LHCDb applications structure
e DaVinci structure

e Documentation sources

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 2/85

* |t is assumed that you know (a little) about
°* cmt...
® Gaudi (some of It)

* a few LHCb conventions
° C++

* If not, have a look at the Gaudi tutorial (here), or at the
Gaudi documentation

| assume the typical public for this tutorial are people who just
did the Gaudi hands-on and would like to start using DaVinci.

| may well be wrong. ..

[/

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

* |t is assumed that you know (a little) about
°*cmt...

® Gaudi (some of It)

* afew LHCb conventigs

| assume the ot are people who just

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

Colour-coding:

® \Words in Green are links to other pages

* Words Iin Blue are links to web pages
Fonts:
* Fixed-width fonts are for code and options
® > echo "This 1s a shell command™

IT 1t 1s boxed, then 1t 1s directly
copied from a *.h, *.cpp or *.opts file.

[/

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

® DaVinci web page:
http://Ihncb-comp.web.cern.ch/Incb-comp/Analysis/default.ntm
From there you'll find :

®* Some documentation
* A “getting started” guide
* FAQ
® Any question can be asked at the Davinci mailing list:
lhcb-davinci@cern.ch.
® That’s also the forum to propose improvements of
DaVinci
® You need to be registered to use it. Contact the
secretariat at Ihcb.secretariat@cern.ch.

| am writing a reference guide for the “core” Davinci code

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/GettingStarted.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/FAQ.htm
mailto:lhcb-davinci@cern.ch
mailto:lhcb.secretariat@cern.ch

Gaudi-Applications

Gauss Boole Brunel DaVinci

(simulation) (digitization) (reconstruction) (analysis)

®* There are four applications based on Gaudi
®* They are actually all Gaudi-programs

®* The only difference are the packages (shared
libraries) included

® One could easily build an application that does it all
(like in the old sicB days...)

9 Somewhere here Panoramix and Bender are missing

Gauss

(simulation)

Gaudi-Applications

Boole Brunel DaVinci

(digitization) (reconstruction) (analysis) 2

DaVinci IS a set of
packages containing
the code necessary
to build a shared Ii-
brary and the rele-
vant options.

They all have the
sub-directories cmt,
src and options

See the Gaudi tuto-
rial for an explanation
of the package struc-
ture.

® DaVinci-specific packages:
Phys/ : Physics algorithms and
tools (16 packages)
Tool s/: Other tools (2), LoKi (2)

PhysSel / : Specific decay
channel selections (28)

®* Borrowed, to be able to redo
things:
Cal o/ , Muon/ : Detector-specific
PID packages (3)
LO/,Trg/,H t/: Trigger (19)
Rec/, Tr/ : Reconstruction (4)

Basic packages LHCb Common packages

|
|
¥ High level packoges analysis of MC & realdata |
!
1

DetSys
AssociatorSys |

Basic components:

Phys/ DaVi nci /: Main

Phys/ DaVi nci Ker nel / : Base classes
Phys/ DaVi nci Fi |l ter/: Particle filters
Phys/ Parti cl eMaker/: Particle makers
Phys/ Vert exFit/: Vertex fitters

Phys/ DaVi nci Transporter/: Transporters
Phys/ DaVi nci Tool s/: Anything else

Tool s/ Utilities/: Simple utilities

MC-truth and test packages
Phys/ DaVi nci MCTool s/ :

Physics analysis:

Phys/ PhysSel ecti ons/: Generic
selection algorithms

Phys/ Ks2Pi Pi Sel /: K — nwm

Phys/ CommonParticles/: w0

Phys/ Fl avour Taggi ng/ : Flavour tagging
Tool s/ LoKi */: LoKi, see dedicated lesson

Tool s/ Stri ppi ng/ : Stripping tools

MC Tools

Phys/ DaVi nci Associ at ors/: Associators to MC truth
Phys/ DaVi nci Ef f/: Efficiency algorithms

Phys/ DaVi nci Test/: Tests

Phys/ DaVi nci User/: Template user package

First try:

o Getit

e Compile it

e Runit

e Particles and ProtoParticles

This part i1s almost hands-on. Just
follow the instructions on your user
account after the lesson.

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 10/85

® Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

This sets the path where cmt will find all neces-

sary packages.

> echo $CMTPATH
/afs/cern.ch/user/p/pkoppenb/cmtuser:/afs/cern.ch/lIhcb/so
ware/releases/DAVINCI/DAVINCI v12r3:/afs/cern.ch/lhcb/soft
ware/releases/LLHCB/LHCB v16r3:/afs/cern.ch/lhcb/software/
releases/DBASE:/afs/cern.ch/Ihcb/software/releases/PARAM:
/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI v15r3:/afs/cer
ch/sw/l1cg/app/releases/LCGCMT/LCGCMT_26 2d

P. Koppenburg

® Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

® go to your working directory:
> cd $HOME/cmtuser

This sets the path where cmt will find all neces-

sary packages.

> echo $CMTPATH
/afs/cern.ch/user/p/pkoppenb/cmtuser:/afs/cern.ch/lIhcb/so
ware/releases/DAVINCI/DAVINCI v12r3:/afs/cern.ch/lhcb/soft
ware/releases/LLHCB/LHCB v16r3:/afs/cern.ch/lhcb/software/
releases/DBASE:/afs/cern.ch/Ihcb/software/releases/PARAM:
/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI v15r3:/afs/cer
ch/sw/l1cg/app/releases/LCGCMT/LCGCMT_26 2d

P. Koppenburg

® Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

® go to your working directory:
> cd $HOME/cmtuser

® Get the Davinci package (once):
> getpack Phys/DaVinci v12r3

The Davinci “project” contains presently 75 pack-

ages. The Phys/DaVinci main package Is just
one of It.

Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

go to your working directory:
> cd $HOME/cmtuser

Get the Davinci package (once):
> getpack Phys/DaVinci v12r3

Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

This will set one environment variable for each of
the packages needed

> echo $DAVINCIROOT

/afs/cern.ch/user/p/pkoppenb/cmtuser/Phys/DaVinci/v12r3/

[/

Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

go to your working directory:
> cd $HOME/cmtuser

Get the Davinci package (once):
> getpack Phys/DaVinci v12r3

Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

Make the executable (once):
> make

[/

Set the version of Davinci you want to use (always):
> DaVinciEnv v12r3

go to your working directory:
> cd $HOME/cmtuser

Get the Davinci package (once):
> getpack Phys/DaVinci v12r3

Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

Make the executable (once):
> make

Execute DaVinci (whenever needed):
> DaVinci

Set the version of Davinci you want to use:
> DaVinciEnv v12r3

Setup your environment:
> source $DaVinci_release area/DAVINCI/
DAVINCI1 v12r3/Phys/DaVinci/v12r3/cmt/setup.cs

Execute DaVinci:
> DavVinci

[/

® Set the version of Davinci you want to use:

What did 1t do?

Actually not much

DaVinci Is an alias for:
> which DaVinci

DaVinci: aliased to /afs/cern.ch/user/p/pkoppenb/cmtuser/-

Phys/DaVinci/v12r3/rh73_gcc323/DavVinci .exe

When Davinci IS run with no options, it loads it's
configuration from . . /options/DaVinci .opts

P. Koppenburg

DaVinci .opts is a dummy option file. Removing the
Irrelevant stuff there is:

#include "$DAVINCIROOT/options/DaVinciCommon.opt
#include "$DAVINCIROOT/options/DaVinciReco.opts”
#include "$DAVINCIROOT/options/DaVinciTestData.c
ApplicationMgr.EvtMax = 1000;

* DaVinciCommon.opts is where all default settings and
packages are defined. Don’t touch!

® DaVinciReco.opts makes the ProtoParticles and
the primary vertex.

* DaVinciTestData.opts provides some BB DST.

[/

rotoParticles

® are the end of the reconstruction stage
® are the starting point of the physics analysis

* have all the links about how they have been
reconstructed

* Track?
e Calo cluster?

* have a list of PID hypothesis with a probability
e contain the kinematic information

You need to assign them a mass and
a PID to get the full 4-vector.

— Particles

e Particle =ProtoParticle + one PID choice
— one defined mass

® Physics analyses deal with Particles

* You need to know the 4-vectors to compute the mass
of a resonance

®* The PID is your choice

* The same ProtoParticle can be made as a w and
asakK...

* Some ProtoParticles can be ignored

* All this is done by configuring the ParticleMaker
(described later)

[/

- Select By — J /v ¢:

e Design it

e Make particles

e Make J/4’s

e Some histograms
e Add the ¢

This part Is based on the
Tutorial/Analysis package.
All can be found there.

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 16/85

Algorithms are objects executed at each event.
The primary vertex for instance is made by an algorithm
declared in DaVinciReco.opts by

ApplicationMgr.TopAlg += { "PrimVtxFinder" };

What Davinci does is defined by the algorithms that are
called. In Gaudi-jJargon an algorithm is a class inheriting from
Algorithm, which contains

e an initialize() method called at begin of run
e an execute() method called at each event.
e a finali1ze() method called at end of run

To make life easier DaVinci contains a base-class
DVAIgorithm that provides many useful features.

Recent changes

DVAlgorithm now inherits from the new base-class
GaudiTupleAlq,

That inherits from GaudiHistoAlg,
That inherits from GaudiAlgorithm

— There are many new shortcuts available:

debug() << "Hello world" << endmsg ;
plot(twoMu.m(),""DiMu mass",2.*GeV,4.*GeV);
IDebugTool™ m _debug =

tool<1DebugTool>("DebugTool™);

They succeed to much longer syntaxes that everyone had to
use one year ago. ..

[/
RGP

Introduction to DaVinci— November 2004 Software week — p. 18/85

PRODUCT DESIGMER

FUNCTIOMN MEANS
MOTHIMNG. DESIGHM
IS EVERYTHING.

One could write a
single algorithm that
makes particles, com-
bines p into J/4 and
K Into ¢ and then
makes the Bs.

This is not a good idea!

It IS much better to
write a simple algo-
rithm for each task and
to save the intermedi-
ate data in the tran-
sient event store (TES)

Algorithms

Make
Particles

Make J /1)

Make ¢

Make B, m

7
/ F
L

TES

One could write a
single algorithm that
makes particles, com-
bines p into J/4 and
K Into ¢ and then
makes the Bs.

This is not a good idea!

It IS much better to
write a simple algo-
rithm for each task and
to save the intermedi-
ate data in the tran-
sient event store (TES)

Algorithms

Make
Particles

Make J /1)

Make ¢

Make B, m

J
/ ¥
b

TES

® Algorithms have as
many inputs as
needed, but only
one output

* TES locations can
be read by any algo-
rithm, but only one
can write to them

Let's start to write the
chain!

The output of an algorithm called "*"MyAlgo" is saved in
e /Event/Phys/MyAlgo/Particles and
e /Event/Phys/MyAlgo/Vertices

Algorithm instance names have to be unigue — particles will
be stored in different locations.

This becomes important if you want to test the correlation of
your By — J /4 ¢ selection with the TDR selection of B —

J /K2, or test the efficiency of the HLT J /4 selection.

Make sure all algorithm names are unique!

It is mandatory for the stripping.

[/

Get the latest version of the Tutorial/Analysis package.

> cd $HOME/cmtuser/
getpack Tutorial/Analysis v4
cmt config
cmt br make
source setup.csh
> echo $ANALYSISROOT
/afs/cern.ch/.../cmtuser/Tutorial/Analysis/v4
> echo $DAVINCIROOT
/afs/cern.ch/.../cmtuser/Phys/DaVinci/v12r3

V V V V

Or, if you don’t have DavVinci In your area
/afs/cern.ch/lhcb/software/releases/DAVINCI/DAVINCI v12r3/Phys/DaVinci/v12

It's a good idea to start with the options. This gives the list of
things to do:

cd $ANALYSISROOT
Open a file: emacs options/DVTutorial .opts

[/

It's a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

Input the common Initialisation
s

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

Don'’t forget the DLL of the package you just added to
DaVinci

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

#include ""$DAVINCIROOT/options/DaVinciReco.opts™

Include the reconstruction of ProtoParticles and
primary vertices

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

#include ""$DAVINCIROOT/options/DaVinciReco.opts™
ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial' };

Let’s start the Bs — J /4 ¢ sequence

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

#include ""$DAVINCIROOT/options/DaVinciReco.opts™
ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial' };
Tutorial _.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PrelLoadParticles.opts™

Use the default algorithm to make particles.
We’ll have a closer look later on.

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

#include ""$DAVINCIROOT/options/DaVinciReco.opts™
ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial' };
Tutorial _.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PrelLoadParticles.opts™
Tutorial _.Members += { "TutorialAlgorithm" };

This one we’ll have to write. ..
/)

It's a good idea to start with the options. This gives the list of
things to do:

#include "$DAVINCIROOT/options/DaVinciCommon.opts"
ApplicationMgr.DLLs += { "Analysis" };

#include ""$DAVINCIROOT/options/DaVinciReco.opts™
ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial' };
Tutorial _.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PrelLoadParticles.opts™
Tutorial _.Members += { "TutorialAlgorithm" };
EventSelector.Input = {
"DATAFILE="PFN:rfi1o:/castor/cern.ch/lIhcb/DC04/00000543 00000017 _5.ds
TYP="POOL_ROOTTREE” OPT="READ”'"};

Add some data to read. You get it from the

Bookkeeping.

http://lhcbdata.home.cern.ch/lhcbdata/bkk/

In SANALYSISROQOT type
> emacs src/TutorialAlgorithm.{cpp,h}
Emacs will ask you what you want to create. Answer (D) for
DVAlIgorithm (twice) and you will get a template for a new
algorithm that compiles nicely but does nothing at all.

Before you forget it, add the following line to
src/Analysis_load.cpp:
DECLARE_ALGORITHM(TutoriralAlgorithm)

Now go to cmt/ and recompile the package.

#include "DaVinciTools/DVAlgorithm.h"
class TutorialAlgorithm : public DVAlgorithm {
public:

/// Standard constructor

TutorialAlgorithm(const std::string& name, ISvcLocator* pSvclLocator);

virtual “TutorialAlgorithm(Q); ///< Destructor
virtual StatusCode initialize(); ///< Algorithm initialization
virtual StatusCode execute O: ///< Algorithm execution
virtual StatusCode finalize (); ///< Algorithm finalization
protected:
private:
}:

* |t inherits from DVAIgorithm , which provides the most frequently used
tasks in a convenient way.

® The constructor allows to initialise global variables (mandatory!) and to
declare options.

® The three methods Initialize(), execute(), finalize() control
our algorithm. Feel free to add more!

Cuts should be defined by options, we hence need them to
be data members of the algorithm. In
TutorialAlgorithm._h:

private:
double m JPsiMassWin ; ///< Mass window
double m JPsiChi2 ; ///< Max J/psi chi 2

We will also need the J/+ PID, its mass and some statistics

int m_JPsilID ; //7/< J/psit 1D

double m JPsiMass ; ///< J/psi mass

Int m_nJPsis ; ///< number of J/psis
iInt m_nEvents ; ///< number of Events

All data members have to be Initialised in the constructor

TutorialAlgorithm: :TutorialAlgorithm(
const std::string& name, ISvclLocator* pSvclLocator)
: DVAlIgorithm (name , pSvclLocator)
, m_JPsi1ID(0)
, m_JPsiMass(0.)
, m_nJPsis(0)
, m_nEvents(0)
{
declareProperty("'MassWindow', m_JPsiMassWin = 10.*GeV);
declareProperty(""MaxChi2", m JPsiChi2 = 1000.);

}

® Options have to be defined with declareProperty
* All others can be initialised to a dummy value
/ You can just ignore the destructor

debug() << "==> Initialize" << endmsg;
ParticleProperty* m _psi = ppSvc(Q->find("J3/psi(1S)");
m JPsiID = m_psi->pdglD();
m_JPsiMass = m_psi->mass();
info() << "Will reconstruct " << m_psi->particle() << " (I1D="

<< m_JPsilID << ") with mass " << m_JPsiMass << endreq ;
info() << "Mass window s " << m_JPsiMassWin << " MeV" << endreq ;
Info() << "Max chi™2 i1s " << m_JPsiChi2 << endreq ;

* To initialise the J /4 mass and PID you first need to find
the particle properties of the J /4.

® DVAIgorithm provides a pointer to the Particle
Property Service ppSvc().

®* The name of the J/+ can be found Iin
$PARAMFILESROOT/data/ParticleTable.txt.

debug() << "==> Initialize" << endmsg;
ParticleProperty* m _psi = ppSvc(Q->find("J3/psi(1S)");
m JPsiID = m_psi->pdglD();
m_JPsiMass = m_psi->mass();
info() << "Will reconstruct " << m_psi->particle() << " (I1D="

<< m_JPsilID << ") with mass " << m_JPsiMass << endreq ;
info() << "Mass window s " << m_JPsiMassWin << " MeV" << endreq ;
Info() << "Max chi™2 i1s " << m_JPsiChi2 << endreq ;

* From the IParticlePropertySvc class one can see In
DoxyGen that there is a method

ParticleProperty * find (const std::string &name);

* Then in ParticleProperty one locates:
double mass() const
int pdglD() const

A look at the DoxyGen web page shows that DVAIgorithm
provides a lot of functionality (not all listed here):

IPhysDesktop* desktop() const;
IMassVertexFitter* massVertexFitter() const;
IVertexFitter* vertexFitter() const;
IGeomDispCalculator* geomDispCalculator() cons
IParticleFilter* particleFilter() const;
IParticlePropertySvc* ppSvc() const;
StatusCode setFi1lterPassed (bool);

std: :string getDecayDescriptor();

We will use some of them.

[/

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_d_v_algorithm.html

. Take the particles from the TES location where the
particle maker algorithm has put them

. Keep only the ones we need, I.e. muons
. Combine them to J /+)’s and fit the vertex

. Apply some cuts
. Save the selected J/4’s to the TES
. We probably also would like to fill some histograms

For most of these tasks we have Tools.

[/

A Tool is a light weight object whose purpose is to help other
components to perform their work.

* The particle filter and filter criteria are very useful tools:
They allow to apply cuts steered by options.

Vertexing tools: UnconstVertexFitter,
LagrangeMassVertexFitter,
LagrangeGeomVertexFitter ...

Geometrical tool
Particle transporters
Associators

The PhysDesktop Is a tool that controls the loading and
saving of the particles that are currently used.

* |t collects previously maked particles

® |t produces particles and saves them to the TES when
needed

= |t hides the Interaction with the TES

To get the particles and vertices, just do

¢ const ParticleVectoré& parts =
desktop()->particles();

¢ const VertexVectoré& parts =
desktop()->vertices();

// get particles. Filter muons.
const ParticleVectoré& parts = desktop()->particles();
ParticleVector MuPlus, MuMinus;
StatusCode sc = particleFilter()->filterNegative(parts,MuMinus);
IT (sc) sc = particleFilterQQ->fTilterPositive(parts,MuPlus);
iIT (Isc) {

err() << "Error while filtering" << endreq ;

return sc ;

+
verbose() << "Filtered " << MuMinus.size() << " mu- and "
<< MuPlus.size() << " mu+" << endreq ;

We get the particles from the PhysDesktop tool

Then we fill them into ParticleVector of p~ and ™

using the methods of the ParticleFilter (see
DoxyGen)

We’ll ensure they are actually muons later on.

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_particle_filter.html

// combine mu+ and mu-
ParticleVector::const _i1terator imup, Imum;
for (imum = MuMinus.begin() ; tmum '= MuMinus.end() ; ++imum){
for (imup = MuPlus.begin() ; tmup '= MuPlus.end() ; ++imup){
HepLorentzVector twoMu = (C*imup)->momentum() + (C*imum)->momentum();
verbose() << "Two muon mass iIs " << twoMu.m()/MeV << endreq ;
iIf (fabs (twoMu.m() - m_JPsiMass) > m JPsiMassWin) continue ;

}
}

* Have a look at the Particle class DoxyGen

® ParticleVector is a typedef
std: :vector<Particle*>

— Hence the non-intuitive (*1mup)->momentum() syntax

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_particle.html

Insert:;

// vertex fTit
Vertex MuMuVertex;
sc = vertexFitter(Q->fitVertex(*Cimup) ,*(C*imum) ,MuMuVertex) ;
IT (Isc){
info() << "Failed to fit vertex" << endreq ; // no big deal
continue ;
+
debug() << "Vertex fFit at " << MuMuVertex.position()/cm
<< " with chi2 " << MuMuVertex.chi2() << endreq;
// chi2 cut
IT (MuMuVertex.chi2() > m JPsiChi2) continue ;

* The vertexFitter() method returns a pointer to the
unconstrained vertex fitter UnconstVertexFitter

Particle Jpsi ;
sc = particleStuffer(Q->fillParticle(MuMuVertex,Jpsi,
ParticlelD(m_JPsilID));
Particle* pJpsi = desktop()->createParticle(&Jpsi);
iInfo() << "Created J/psi candidate with m=" << Jpsi.mass()
<< " and chi™2=" << MuMuVertex.chi2() << endreq ;

1T (IpJpsi){
err() << "Cannot save particle to desktop"™ << endreq ;
return StatusCode: :FAILURE;

} else setFilterPassed(true);

* The ParticleStuffer tool makes particles from
vertices. It is your job to provide the particle ID.

®* Then save the new created particle to the PhysDesktop

* setFilterPassed(true) tells the algorithm that it has
found what it is looking for.

At the end put:

sc = desktop()->saveDesktop();
return sc;

This will save all new particles in the desktop.

The PhysDesktop has also methods to save a given list of
particles

ParticleVector myPsis ;
sc = desktop()->savelrees(myPsis);
sc = desktop()->saveTrees(m _JPsilID);

* All particles and vertices will be saved to
/Event/Phys/Jpsi2MuMu/Particles and
/Event/Phys/Jpsi2MuMu/Vertices

The Particle and Vertex classes depend on each other

Vertex* Particle::.endvertex() ;
SmartRefVector<Particle> & Vertex::products() ;

To navigate from a particle to its daughters do:

SmartRefVector<Particle> themus
= Jpsi.endVertex()->products() ;

and use themus as any std: :vector of pointers.

Note: There is no direct link between Particles .

If you have incremented the counters m_nEvents and
m_nJpsis you can print them at the end of the job:

StatusCode TutoriralAlgorithm::finalize() {

debug() << ""==> FiInalize" << endmsg;

Info() << "Found " << m _nJPsis << " J/psi 1In '
<< m_nEvents << ' events" << endreq;

return StatusCode: :SUCCESS;

¥

Note: Unlike in GaudiAlgorithm, don’t

return GaudiAlgorithm::finalize() ; orsimilar.
This is done in the sysFinal 1ze() method of
gorithm.

Fie Edt Options Buflers Took G+ Help

COrX OB O VBRI ?

g

/f Main executien

'l

it
i2

for

StatuzCode

debug () <<
setFilterFPazsed(fas
++m_nEvents;

werboze() <«

e

sel s

// combine o+ and ou-
ParticleVector: (con:t_iterator imup, im

StatusCece Tutorialllgorithm: :execute() |

&4 encmeg
{/ Manclatery. Zet bte true if event iz accepted

{/ get particlea. Filter nuens.
conat ParticleVectors parts = desktep()->particleszi),
FarticleVector MuFlus,

Mulhinus

g enddreq

€ MuMinus . sizel) <«
¢ endrey |

asc = particleFilter|)-rEilterNMegative (parts,Fullinus);
(ac) a€ = particleFilter()->filterFositive(parts, MuFlua);
¢lael |

err() <<

return sec

<¢ MoFlus,size()

| dirum = Puolbinus begin() ; isum != MuMinus.eng() ,; ++iomm) |

for | imgp = PuPlus.begini) ,;, imop '=

MuFlus.ensl(}

+timp)|

HeplorentzVector tweMu = (*imup)->mementumi) + (*isum)->mementumi) ;
C <« twolla, mi)/MeV << endreq ;

verboze() ¢
// mass cut

if { Rabe [twolly.mi)

// wextex Eit

Vertex MuMoVertex:
g = vertexFitter()->EitVerteax (™ (¥iomg) , * (*imum) , MuluVertesx) ;

it ('acl|
infaf) <=
centinwe ;
|
debugiy <«
<c
{f chiz ot

if { MuMuVertex.chiz ()

{7/ make particle
Farticle Jpai ;

2 = particleStufferii-rfillParticle (MuMuVerten, Jpei, ParticleID(m JP=iID));

= m_JPaiMass |

e entlreq |

» m_JP2iMasaWin |

comtinue ;

/i ne bid deal

<¢ MuMuVertex. positioni) /am

€< MuMuVertex.chi2i()

3 m_JPaiChi2)

centinue ;

Farticle* plpai - dezktop()-rcreateFarticle(&Jpail .,
¢ Jpzsi massil <<
¢ MuMuVertex.chiZ() << endreg .

infai) <«
€<
if ('pIpai)|

err() <¢

return StatusCode:

I
zetFilterPazsed(
+im_nJPsia ;

£ imup

| 4F immam

{/ nave desktop
ac = desktop()->saveDesktop();
return se;

yi

FLILURE;

P. Koppenburg

<¢ endreg;

24 endreq |

!

We now have a complete
algorithm.

The execute() method
still fits on a single page,
but becomes a little
longish to my taste

If you'd like to split it in
smaller methods, you're
welcome. ..

You can now compile it.

The next step Is to com-
plete the options.

Tutorial .Members += { "PreLoadParticles" };
[---1

Tutorial .Members += { "TutorialAlgorithm/Jpsi2MuMu' };
Jpsi2MuMu.PhysDesktop. InputLocations = { 'Phys/PreLoadParticles" } ;
Jpsi2MuMu.MassWindow = 50*MeV ;

Jpsi2MuMu.MaxChi2 = 100 ;

Jpsi2MuMu.OutputLevel = 3 ;

* \We already have the PreLoadParticles and

TutorialAlgorithm algorithms in the Tutorial
sequence: Let’s call it Jpsi2MuMu.

Configure the cuts and the verbosity level.
Tell the PhysDesktop from where to take the particles.

It automatically adds "*/Event/"" to the location if
necessary.

Remember the particle filtering code:

ParticleVector MuPlus, MuMinus;
StatusCode sc = particleFilter()->filterNegative(parts,MuMinus);
IT (sc) sc = particleFilter(Q->fTilterPositive(parts,MuPlus);

We want to make sure that only muons will be used:

Jpsi2MuMu.ParticleFilter.CriteriaNames = { "PIDFi1lterCriterion/Muons' } ;
Jpsi2MuMu.ParticleFilter _Muons.ParticleNames = {"mu+", "mu-"} ;

* The ParticleFilter tool accepts a list of filter criteria

® |n this case we just want to filter according to PID
— PIDFilterCriterion
e Simply tell it what particles you need

The
articleFilter
IS a very powerful
tool that accepts
many filter crite-
ria, all based on
the same interface
IF1lterCriterion.

In the DoxyGen
documentation
you have the full
list of criteria.

FlightDistanceFilterCriterion
KinFilterCriterion: P, Pr
LifetimeSignificanceFilterCriterion

Mass(Difference)FilterCriterion: m,
Am

Momentum2FlightAngleFilterCriterion
PIDFilterCriterion

PVIPFilterCriterion: IP on primary
vertices

TrackTypeFilterCriterion

TrueMCFilterCriterion: require tracks
from a given decay

VtxFilterCriterion: cut on the track’s
decay vertex

BooleanFilterCriterion: allows to com-
bine filter criteria

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_i_filter_criterion.html

> DaVinci ../options/DVTutorial _1.opts | tee out

In file out we find what we did at initialization:

Jpsi2MuMu INFO Will reconstruct J/psi(1S) (1D=443) with mass 3096.87
Jpsi2MuMu INFO Mass window is 50 MeV
Jpsi2MuMu INFO Max chi™2 is 100

In execute():

Jpsi2MuMu INFO Created J/psi candidate with m=3104.2 and chi™2=0.16634
Jpsi2MuMu INFO Created J/psi candidate with m=3089.36 and chi™2=0.5617

In Finali1ze():

Jpsi2MuMu SUCCESS Passed 176 times in 500 calls -> (35.2+/-2.13587)%, rej
Jpsi2MuMu INFO Found 176 J/psi In 500 events

The first line above is printed by DVAIgorithm based on the
number of times execute() issued a
tFi1lterPassed(true) or false.

Since DVAIgorithm inherits from GaudiHistoAlg, you
can use the “on-demand” histogram booking service.

Add the following histogram at a convenient place:
plot(twoMu.m(),""DiMu mass'",2.*GeV,4.*GeV);

And add a persistency in the options:

ApplicationMgr._HistogramPersistency = ""HBOOK";
HistogramPersistencySvc.OutputFile = "DVHistos.hbook";
Jpsi2MuMu.HistoProduce = true ; // default anyway

Feel free to use ROOT as persistency if you prefer. Hbook is
probably going to dissappear someday. ..

* Here’s the nice J/¢ 1°°
peak you get

|'|HH'| it

® Here’s the nice J /4
peak you get

® Exercise 1: You
could add two
histograms of the
u's Pr, one before
the J /4 cuts and
one after.

102

10

il

ﬂ

W"

T

T’P.-

0

2000

4000

6000

8000 10000
Muon P; [MeV]

[/
P.Koppenburg Introduction to DaVinci— Noverber 2004 Software week — p. 46/85

® Here’s the nice J /4
peak you get

Exercise 1: You
could add two
histograms of the
u's Pr, one before
the J /4 cuts and
one after.

Exercise 2: That
could encourage =
you to add a Pr cut , ||

102

10 -

to your p selection. |

i

W"

Uy |

T’P.-

You can do this by o 2o
options only!

4000

6000

8000 10000
Muon P; [MeV]

P.Koppenburg Introduction to DaVinci— Noverber 2004 Software week — p. 46/85

What we have learned so far

To configure a simple DavVinci job

To write a simple DVAIgorithm

To get and save data using the PhysDesktop

To use tools to perform the common tasks

To navigate in DoxyGen to find the class definitions

One more exercise: Adapt the TutorralAlgorithm so that
one can re-use this algorithm to also reconstruct ¢ — KK:

Tutorial .Members += { "TutorialAlgorithm/Jpsi2MuMu' };

[---1

Tutorial .Members += { "TutorialAlgorithm/Phi2KK" };
Phi12KK.PhysDesktop. InputLocations = { "Phys/PreLoadParticles”™ } ;
Phi2KK.ParticleFilter.CriteriaNames = { "PIDFi1lterCriterion/Kaons" } ;
Phi2KK_ParticleFilter._Kaons.ParticleNames = {"K+", "K-"} ;

1 [
THGCH

Introduction to DaVinci— November 2004 Software week — p. 47/85

-~ Use and configure
. 7 standard algorithms:

e More about the
ParticleMaker

e Make the ¢ using common tools

e CombineParticles

e RefineSelection
e Common particles
e The SelResult object

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 48/85

The 1ParticleMaker interface (DoxyGen) is the base of
several particle maker tools. They all make Particles
starting from ProtoParticles

Conbi nedParti cl eMaker: makes particles from charged
rotoParticles

NoPl DsParti cl eMaker: make particles ignoring PID

Phot onFr omver gedPar t i cl eMaker: makes ~ from
merged w°

(Cnv) Phot onParti cl eMaker: make ~
Particl eMaker Seq: allow a sequence of particle makers

MCParti cl eMaker: makes particles from MC truth
MCParticles

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_i_particle_maker.html

A Particle

aker can be declared to the PhysDesktop .

One could have defined a ParticleMaker to Jpsi2MuMu,
but it's more transparent to use PreLoadParticles.

The options are:

Tutorial .Members += { "PreLoadParticles" };
PreLoadParticles.PhysDesktop.ParticleMakerType =
""CombinedParticleMaker";

PreLoadParticles is a DVAlgorithm with one

article

a

Ker defined that only saves the created

narticles.

The CombinedParticleMaker makes Particles from
charged ProtoParticles combining the PID information
of all detectors. It is documented from the Davinci page.

The (main) options and default values are:

Particles = { "muon", "electron", 'kaon"™, '"proton', 'pion" } ;
MuonSelection = "det="MUON’ mu-pi="-8.0"" ;

ElectronSelection = "det="CALO” e-pi1=70.0"" ;

KaonSelection = "det="RICH”* k-pi1="2.0" k-p="-2.0"" ;
ProtonSelection = "det="RICH> p-p1="3.0"" ;

PionSelection = """ ;

¢ Kaons for instance are made using the RICH with cuts:

L(K)
L ()

DLL(K —7) =InL(K) —InL(7w) = In

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

The CombinedParticleMaker makes Particles from
charged ProtoParticles combining the PID information
of all detectors. It is documented from the Davinci page.

The (main) options and default values are:

Particles = { "muon", "electron", 'kaon"™, '"proton', 'pion" } ;
MuonSelection = "det="MUON’ mu-pi="-8.0"" ;

ElectronSelection = "det="CALO” e-pi1=70.0"" ;

KaonSelection = "“det="RICH”* k-pi1="2.0" k-p="-2.0"" ;
ProtonSelection = "det="RICH> p-p1="3.0"" ;

PionSelection = """ ;

ExclusiveSelection = true ;

® ExclusiveSelection means that only one Particle
IS made for each ProtoParticle, in the order of
preference given in ""Particles". This is a very
dangerous option.

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

We should have defined the cut on the muons in the particle
maker rather than in the particle filter.

To make only muons and kaons:

Tutorial _.Members += { "PreLoadParticles" };
PreLoadParticles.PhysDesktop.ParticleMakerType =
"CombinedParticleMaker";
PreLoadParticles.PhysDesktop.CombinedParticleMaker.Particles =
{ "muon', "kaon"™ } ;
PreLoadParticles.PhysDesktop.CombinedParticleMaker.KaonSelection =
{ "det="RICH”> k-pi="2.0" k-p="-2.0"" };
PreLoadParticles.PhysDesktop.CombinedParticleMaker _MuonSelection
{ "det="MUON” mu-pi="-10.0"" }; // looser
PreLoadParticles.PhysDesktop.CombinedParticleMaker _ExclusiveSelection
= false ;

This Is bad practice: Here ""PreLoadParticles' has a
pptentially conflicting name.

[5
TRCP

To make the ¢ one can re-use the TutortalAlgorithm as
In the suggested exercise

Or, one can use the generic CombineParticles algorithm.

® This algorithm reconstructs any (one-level) decay
according to what is defined in the decay descriptor

® |t requires one FilterCriterion per input or output
particle.

® |t's actually written using LoKi

You'd better learn to use this algorithm: it might become
mandatory for the next stripping!

ApplicationMgr.DLLsS
//
Tutorial .Members += { "CombineParticles/Phi2KK" };
Phi12KK.PhysDesktop. InputLocations = { "Phys/PreLoadParticles”™ } ;
Phi12KK.DecayDescriptor = "phi1(1020) -> K+ K-"';
Phi2KK.Selections = {"K+ : PVIPFilterCriterion",

K- : PVIPFilterCriterion",

"ph1(1020) : BooleanFilterCriterion/PhiFilter'};
Phi2KK.PVIPFilterCriterion.MinlPsignif = 2 ;
Phi2KK_.PhiFilter_AndList = { "MassFilterCriterion",

"VtxFilterCriterion" };
Phi2KK.PhiFilter._MassFilterCriterion.Window = 20*MeV ;
Phi2KK.PhiFilter_VtxFilterCriterion.MaxChi2 = 100 ;

+= { "PhysSelections™, "LoKi" };

® This selects ¢ in a mass window of 20 MeV and with a
x? > 100,

®* made from kaons with a IP /o1p > 2 on all reconstructed
primary vertices.

DecayDescri pt or: Mandatory.
* Only simple decay descriptors understood!
® Add [- . .]cc if you want both combinations.

Sel ect i ons: vector of strings of the type
"particle - Criterion/Name" ;

* Use the BooleanFilterCriterion with no options
when you don’t want to filter anything

® All particles in the descriptor must be declared.
® Charge-conjugates are never implicit

CombineParticles.DecayDescriptor = "[rho(770)+ -> pi0 pi+]jcc"” ;
CombineParticles.Selections = { "rho(770)0 : MassFilterCriterion',
"pi+ - PVIPFilterCriterion",

"pi- - PVIPFilterCriterion', // 1111
"p10 : MassFilterCriterion"” } ;

Bs2JpsiPhi

Bs2JpsiPhi
Bs2JpsiPhi

Bs2JpsiPhi

Bs2JpsiPhi
Bs2JpsiPhi
Bs2JpsiPhi
Bs2JpsiPhi

Tutorial _.Members += { "CombineParticles/Bs2JpsiPhi" };

-PhysDesktop. InputLocations = { "Phys/Phi2KK",

"Phys/Jpsi2MuMu*

)

.DecayDescriptor = "B sO -> phi(1020) J/psi(15)";

.Selections = {""B sO : BooleanFilterCriterion/BFilter",
“"J/psi1(1S) : BooleanFilterCriterion",
"ph1(1020) : BooleanFilterCriterion'};

-BFilter_AndList = { "MassFilterCriterion"

, "VtxFilterCriterion"

., 'PVIPFilterCriterion" };
-BF1lter_MassFilterCriterion.Window = 50*MeV ;
.BFilter.VtxFilterCriterion.MaxChi2 = 100 ;
.BFilter_PVIPFi1lterCriterion.MaxIPsignift = 5 ;

_BFilter_PVIPFilterCriterion.CutBestPV = true ;

* This selects By in a mass window of 50 MeV, a x? > 100,
and IP /oIP < 5 w.r.t the vertex it points to.

That's the end of the selection!
We now have the full chain selecting Bg — J /¢

We’'ll come back to it later when we discuss MC truth and
efficiencies.

RefineSelection allows to filter particles from a given
location in the TES.

Options:

Parti cl eNanes: Vector of particle names.
* C.C. not implicit! (to be changed...?)
* Non listed particles are not filtered, i.e. accepted!

Fi | t er Nanes: Vector of ParticleFilter names.

®* Note that these are ParticleFilter tools, not
FilterCriterion!

® Giving a dummy filter allows to merge several TES
locations to one (this is done in the stripping, but not
very useful now that CheckSellResult exists).

ccepted Particles are cloned

ApplicationMgr.DLLs += { "PhysSelections" };
ApplicationMgr.TopAlg += { "RefineSelection" };
RefineSelection.PhysDesktop. InputLocation = { "Phys/PrelLoadParticles" };
RefineSelection.ParticleNames = { "mu+'", "mu-"", "K+", "K-" }; // no c.c. !
RefineSelection.FilterNames = { "MuF", “MuF', "KF" , "KF'" };

RefineSelection.MuF.CriteriaNames = { "KinFilterCriterion" } ;
RefineSelection_ MuF._KinFilterCriterion_.MinPt = 300 ;

RefineSelection.KF.CriteriaNames = { "KinFilterCriterion",
“"PVIPFilterCriterion”™ } ;

RefineSelection.KF._KinFilterCriterion.MinPt = 500 ;

RefineSelection.KF_.PVIPFilterCriterion_MinIPsignit = 5.0 ;

This selects p with Pr > 300 MeV and K with
Pr > 500 MeV and IP/orp > 5.

If there are pions in ""Phys/PrelLoadParticles", they
will all pass!. .. But there’s a solution.

HLTselBs2PhiPhi

RefineSelection.

One very nice feature of RefineSelection is that it allows
to filter particles by cutting on its daughters:

RefineSelection.
RefineSelection.

RefineSelection.

-Members += {"'RefineSelection"} ;
RefineSelection.
RefineSelection.
RefineSelection.
RefineSelection.

PhysDesktop. InputLocations = {"Phys/HLTPhi1"}; // Phis

ParticleNames = {"phi(1020)", "K+", "K-"};

FilterNames = {"PhiF", "KF", "KF"};

KF.CriteriaNames = {"KinFilterCriterion",
"PVIPFilterCriterion"} ;

KF_KinFilterCriterion.MinMomentum = 1000.; // hlt tuned
KF.PVIPFilterCriterion_MinlPsignit = 1.; // hlt tuned

PhiFilter.CriteriaNames = {"MassFilterCriterion'};
PhiFilter_MassFilterCriterion.Window = 24*MeV; // hlt tune

There are actually no K in ""Phys/HLTPhi"": The input are
¢, the output are ¢, but one cuts on the momentum of theK.

Don’t get confused by the different syntax:
® RefineSelection : 1 ParticleFilter / particle
® CombineParticles 1 FilterCriterion/ particle

CombineParticles.Selections = { "phi(1020) : BooleanFilterCriterion/PhiF"
CombineParticles.PhiF._AndList = { "MassFilterCriterion",
"VtxFilterCriterion" };
CombineParticles.PhiF._MassFilterCriterion.Window = 20*MeV ;
CombineParticles.PhiF.VtxFilterCriterion.MaxChi2 = 100 ;

But:

RefineSelection.Particles = { "ph1(1020)" } ;
RefineSelection.FilterNames = { "PhiFilter" };
RefineSelection.PhiFilter_CriteriaNames = { "MassFilterCriterion",
"VtxFilterCriterion™ } ;
RefineSelection.PhiFilter_MassFilterCriterion.Window = 20*MeV ;
ineSelection.PhiFilter._.VtxFilterCriterion.MaxChi2 = 100 ;

PIDF1 Il ter selects (or rejects) particles of a given PID.
Options:

Particl eNanes: Names of particles

Rej ect = fal se: Keep them or reject them?

ApplicationMgr.TopAlg += { "Sequencer/SegPreselMuon' };
SegPreselMuon.Members = {

"PreLoadParticles/Combined",

“"PIDF1lter/FilterMuon',

"RefineSelection/PreselMuon' };

FilterMuon.PhysDesktop. InputLocations = { ""Phys/Combined" } ;
FilterMuon.ParticleNames = { "mu+", "mu-" } ;
FilterMuon.Reject = false ; // default

Fi1lterMuon just filters u from the default
LoadParticles, which is useful in the stripping.

PreselMuon_MuFilter.
PreselMuon.MuFi1lter.
PreselMuon_MuFilter.

PreselMuon_MuFilter.
PreselMuon._MuFi1lter.

PreselMuon.MuFi1lter.
PreselMuon_MuFilter.

PreselMuon.PhysDesktop. InputLocations = {"Phys/FilterMuon'};
PreselMuon.ParticleNames = { "mu+", "mu-"" };
PreselMuon.FilterNames = { "MuFilter"™, "MuFilter" };

CriteriaNames = { "KinFilterCriterion" } ;
KinFilterCriterion_.MinPt = 3000 * MeV ; // from Hans
KinFilterCriterion.MinMomentum = 5000 * MeV ; // fro

CriteriaNames += { "TrackTypeFilterCriterion" } ;
TrackTypeFilterCriterion.RequireLong = true ; // does

CriteriaNames += { "PVIPFilterCriterion"” } ;
PVIPFilterCriterion.MinlPsignit = 5.0 ; // from Hans

This is the whole preselection for the “good muon” stream we
have added to the stripping.

It starts from the standard particle maker, selects muons and
pplies some cuts: 0O line of C++!

Some particles are already made for you, with options
configured by the experts
70 are made by the package Phys/CommonParticles

ApplicationMgr.DLLs += { "CommonParticles"™ };
ApplicationMgr.TopAlg += { "ResolvedPiOAlg" };

#include ""$COMMONPARTICLESROOT/options/ResolvedPi0OAlg.opts™
ApplicationMgr.TopAlg += { "MergedPi10Alg" };

#include ""$COMMONPARTICLESROOT/options/MergedPi10Alg.opts™

K¢ are made by the package Phys/Ks2PiPiSel

#include "$KS2PIPISELROOT/options/Ks2Pi1PiSel . opts™
. O-
For tight Kg:
#include "$KS2PIPISELROOT/options/bestKs2PiPiSel .opts™

J /1 can be found PhysSel/Jpsi
... More to come

Each DVAIgorithm writes out a SelResult object
containing

* the result of the Fi1lterPassed output
* the decay descriptor

* the output location of the algorithm

All this I1s written to the TES In
SelResultLocation: :Default.

You can read the result of any algorithm from any algorithm
or tool. You need:

#i1nclude ""Event/SelResult.h"

[/

Some algorithms read out the SelResul t object:

® CheckSelResult reads the SelResult of a given list
of algorithms and allows to perform an and and or of
these results. Useful if you want a sequencer to depend
on an algorithm executed in another sequence.

e SelResultCorrelations prints a correlation table of
efficiencies of various algorithms

Algorithm = 1 1 2 3 4 5
1 AlIBd2JpsiKsTracks 86.82% | ****** 08.26% 99.16% 86.82% 93.32%
2 HLTALlJpsis 87.47% | 98.99% F**F** 100.00% 87.47% 92.39%
3 HLTHighlIPJpsi 82.63% | 94.37% 94.47% F***** 82.63% 88.18%
4 TDRselBd2Jpsi2MuMu 100.00% | 100.00% 100.00% 100.00% ****** 100.00%
5 Bd2JpsiKsAndTDR 89.68% |

96.39% 94.73% 95.71% 89.68% FFFFFF

Every option file beginning with DV is complete and can be
used instead of DaVinci .opts. There are 141 available.
Here are a few:

$DAVI NCI ROOT/ opti ons/ DVW it eM ni Dst . opt s: writes
a mini-DST

$DAVI NCI ROOT/ opt i ons/ DVReadM ni Dst . opt s: reads it
back

$DAVI NCI ROOT/ opti ons/ DVTri ggerFilter. opts:
writes out events that pass LO and L1.

PhysSel / */ */ opt i ons/ DVTDRsel *. opt s: execute TDR
selection

PhysSel / */ */ opti ons/ DVPresel *. opt s: execute
pre-selection

~ Some more Tools:

e \ertex Fitters

e The Geometrical Tool

e About the Primary Vertices
e Reminder about Tools

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 68/85

Unconst VertexFitter: IVertexFitter
Performs an unconstrained vertex fit.

Lagr angeMassVertexFitter: IMassVertexFitter
A kinematical constrained fit using Lagrange multipliers
method with mass and geometrical constraint. If a
particle has I" > 1 MeV, its daughters are used in the fit.

DVAIgorithm interfaces them with vertexFitter() and
massVertexFitter():

Particle JPsi;

Vertex PsiVertex;

ParticleVector TheMus = ..._;

StatusCode sc = vertexFitter(Q->TitVertex(TheMus, PsiVertex);

sc = massVertexFitterOQ->fitWithMass ('J3/psi1(1S)', TheMus,
PsiVertex, JPsi) ;

There are also methods with 2—4 particles as input.

[/

® The GeomDispCalculator tool
(IGeomDi1spCalculator) is interfaced by
geomDispCalculator() in DVAIgorithm.

— |t allows to calculate distances between Particles and
Vertices.

Particle Mul, Mu2;

Vertex PV, JpsiVx;

double 1p, dca, v2v, err;

StatusCode sc = geomDispCalculator()->calclmpactPar(Mul, PV, 1p, err);
sc = geomDispCalculator()->calcCloseAppr(Mul, Mu2, dca, err);

sc = geomDispCalculator()->calcVertexDis(PV, JpsiVx, v2v, err) ;

To get the primary vertices:

Vertices* PV = get<Vertices>(VertexLocation::Primary));
for (1v=PV->begin();i1vI=PV->end();++i1v) {
Vertex* v = *i1v;
double 1p = -1 ,1pe = -1_;
StatusCode sc = geomDispCalculator()->calclmpactPar(
*part, *Civ), i1p, ipe);

All this assumes that you use these tools from
DVAlgorithm and that you need only one of each kind.
If you use these tools from a simple GaudiAlgorithm or
from a tool, or you need more than one, you will need to
delare them yourself. This is very easy now:

#include "DaVinciTools/1GeomDispCalculator™
#include "DaVinciTools/IFilterCriterion"

IGeomDispCalculator* m_geom =
tool<lGeomDispCalculator>("GeomDispCalculator™);

std: :string m_myFCname = "PVIPFilterCriterion" ;
IFilterCriterion* 1_myFC =
tool<IFilterCriterion>(m_myFCname, this);

Here you could pass ""PVIPFilterCriterion’™ as an

If you need several ParticleFilter toolsina
DVAIgorithm, you need to declare some yourself

declareProperty("ParticleFilterl",
m_MuFilterName = "MuFilter');
declareProperty("ParticleFilter2",
m JpsiFilterName = "JPsiFilter");

IParticleFilter* m _MuFilter = tool<IlParticleFilter>
("ParticleFilter”™, m MuFilterName, this);
IParticleFilter* m _JpsiFilter = tool<lParticleFilter>

("ParticleFilter™, m JPsiFilterName, this);

The options:

MyAlg.ParticleFilterl = { "JPsiFilter" };
MyAlg.ParticleFilter2 = { "MuFilter"™ };
MyAlg.MuFilter.CriteriaNames = { "KinFilterCriterion" };
MyAlg.JPsiFilter._CriteriaNames = { "MassFilterCriterion" };

Introduction to DaVinci— November 2004 Software week — p. 74/85

~ MC truth:

e Efficiency algorithms
e DebugTool
e Decay Finder

e All this Is based on the
DaVincrAssociators
— see Philippe’s talk

P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 75/85

DaVinci contains two algorithms that allow to calculate
selection efficiencies

MCES f Bui | der : efficiency
Ef f Sel Check: selection efficiencies

As we will not be using these algorithms on background, it's
recommended to put the options in a separate file, to be put
after the selection options.

#include "$ANALYSISROOT/options/Efficiency.opts”

In SANALYSISROOT/options/EfFiciency.opts, write

ApplicationMgr.TopAlg += { "MCEffBuilder/EffMcTruth" };
EffMcTruth.MCDecay = "[B _sO -> (phi1(1020) -> "K+ "K-)
(J/psi1(1S) -> "mu+ “mu- {, gamma})]cc";

It should not be in the Tutorial sequencer (or the
efficiencies would all be 1 by construction)

MCETTBuil lder needs to know the decay descriptor of
the decay.

Decay descriptors are described on the web. Particles
with a “~” are the ones to be reconstructed.

But it's easier to steal them from the EvtGen decay file in
$LHCBRELEASES/DBASE/Gen/DecFi1les/v6r3/dkfTiles

[/

^
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DBASE/Gen/DecFiles/v6r3/dkfiles/

B R R B R B B R P e R B e e S R R e e e R S W S I e e R e I e e

AEXEEEAELTEAETIXTEIATEITATELTEAAXTXALALAALAAXAXAXAAIAIAIAITATITXAXAIAAIAIAIATATAAXAXAXAAIAIAIAAXAXAXKXXXXXX

Decay analyzed (MC truth) [B sO -> (phi(1020) -> "K+ "K-) (J/psi(1S) -> m

Events processed 500

Decay Of Interest Generated (/ Events) 497 0.994
Dols Gen, Reconstructible (ALL) (/ Generated) 103 0.207243
Dols Gen, Reconstructed (ALL) (/ Generated) 109 0.219316
Dols Gen, Rec’ble & Rec’ted (ALL) 92

Rec. efficiency: (Rec’tible & Rec’ted)/Rec’tible (ALL): 0.893204 +- 0.030

® A long track is “reconstructible” if it has 3r, 3¢ in the Velo,
and 1z, 1 stereo clusters in each of the seeding stations.

® A track can be reconstructed although it is not
reconstructible

The full definitions are here

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/v8/recrecdefinition.htm

In "SANALYSISROOT/options/EfFiciency.opts”, write

ApplicationMgr.TopAlg += { "EFffSelCheck/EffBs2JpsiPhi" };
EffBs2JpsiPhi_.Histograms = true;

EffBs2JpsiPhi_.MCDecay = "[B sO -> (phi1(1020) -> K+ "K-)
(J/psi1(1S) -> "mu+ “mu- {, gamma})]cc";
EffBs2JpsiPhi.SelDecay = "[B_sO -> (phi(1020) -> K+ K-)
(J/psi1(1S) -> mut+ mu-)Jcc';

The MC decay descriptor is the same as before.

The selection decay is what we actually reconstruct.
There are no “ " needed.

EffSelCheck produces a histograms of m, P, Pr, z, r,

zpv, Tpv, decay distance and flight time for all initial and

Intermediate particles and for MC truth, selected and
}, associated.

^

Mass window for this sub-tree head ... 5.3696 +- 0.05 (GeV/c2)
TEEIEEIEIIITIAITIXTAEITIAITXAITIAITXAITXAITXAITXAITAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAITXAXTXAITXATXIXhX
Dols Selected (/ Reconstructed) 44 0.40367
Dols Selected, In Mass Window 44 0.40367
Dols Sel, Associated (Comp.OR.Chi2) (/ Selected) 44 1

Dols Sel, Assoc (Comp.OR.Chi2), In Mass Window 44 1
Efficiency: (Sel and Assoc(.0OR.))/Reconstructed 0.40367 +- 0.046
Efficiency: (Sel and Assoc(.OR.) and Mass)/Reconstructed 0.40367 +- 0.046
Purity: (Selected and Associated(.OR.))/Selected 1+- 0

® Looking at the Bg, we have 44 selected
¢ all being associated to truth
* There are similar tables for J /4

event

particles

® |t looks like this:

Name
GeV

B sO 255.062
+-->3/psi1(1S) 202.675
| +-—>mu+ 91.705
| +—-—>mu- 110.970
+-->phi(1020) 52.387
+-->K- 21.810

30.577

GeV

O O Fr OO W

.686
127
-106
-106
-030
-494
-494

GeV

254 .
202.
91.
110.
S52.
21.
30.

915
651
705
970
377
804
573

®* The debug tool provides a human-readable dump of the

® |t works both with MC truth and with reconstructed

Particle

Px Py

GeV GeV
-20.824 -0.062
-19.344 -1.318
-7.480 -1.478
-11.865 0.160
-1.479 1.256
-0.498 0.523
-0.981 0.733

Pz

Ge
254 .
201.
91.
110.
52.
21.
30.

Vv

063
721
388
334
341
792
549

There are provided algorithms that call the debug tool:

DumpEvent: No options. Dumps the whole MC event.
PrintTree: Prints the reconstructed tree

Tutorial .Members += { "PrintTree/PrintFoundBs" };
PrintFoundBs.DebugTool . Informations = "Name E M P Px Py Pz Pt phi Vz"
PrintFoundBs.PhysDesktop. InputLocations = { "Phys/Bs2JpsiPhi" } ;
PrintFoundBs.OutputLevel = 3 ;

PrintMCTree: Prints the MC decay tree of particles of a given
ID

Tutorial _Members += { "PrintMCTree/PrintTrueBs" };
PrintTrueBs.DebugTool.Informations = "Name E M P Px Py Pz Pt phi Vz" ;
PrintTrueB.ParticleNames = { "B s0'", "B s"0" } ;
PrintTrueBs.OutputLevel = 3 ;

PrintTrueB.Depth = 2; // down to the K and mu

The DebugTool can be used directly from an algorithm, for
Instance to print only when something goes wrong. It is not

already present in DVAIgorithm.

® Declare it:
#include "DaVinciMCTools/I1DebugTool.h"

Use it:

IDebugTool* m_debug = tool<lDebugTool>("DebugTool™);
m_debug->printTree(part [, depth]);
m_debug->printAncestor(mcpart);

Configure it:

Jpsi2MuMu.DebugTool . Informations = "Name E M P Px Py Pz Pt phi Vz" ;
Jpsi2MuMu.DebugTool .PrintDepth = 3 ;

There are other methods and options. Have a look at
DoxyGen.

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_debug_tool.html

* The decay finder allows to find any decay in the event

* |t works both on MC and reconstructed particles
® |t uses a decay descriptor string. Look at the DOC.

Practical example:

#include "DaVinciMCTools/1(MC)DecayFinder.h"
I (MC)DecayFinder* m_finder = tool<l(MC)DecayFinder>("(MC)DecayFinder') ;

const (MC)Particle *result = NULL;
while (m_finder->findDecay((mc)parts.result()){
// the decay has been found

m_debug->printTree(result) ;

}
Or just test if a decay Is here:

bool found = m_debug->hasDecay((mnc)parts) ;

Conclusion

* ' During the last year Davinci evolved from a

.~ framework for writing selection code in C++ to a
“"" set of algorithms and tools that allow to perform
many tasks with very little private code.

* |f you feel something is missing. Please write
something generic and add it to DaVinci!
® The evolution of Davinci Is now driven by the HLT.
Encourages the development of generic code

Forces common components to handle both
on- and offline particles

| Sets up a framework that can also be used for
| the stripping

L % P. Koppenburg Introduction to DaVinci— November 2004 Software week — p. 85/85

	Introduction to DaVinci
	~
	Assumptions
	Assumptions

	Conventions
	DaVinci Links
	Applications
	Applications

	Packages
	Structure (a bit old)
	Physics Packages (code {v12r3})
	~
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}

	Even simpler
	Even simpler

	code {DaVinci.opts}
	code {ProtoParticles}?hypertarget {ProtoParticle}{}
	code {Particles}?hypertarget {Particle}{}
	~
	Reminder: Algorithmshypertarget {Algorithms}{}
	Recent changes
	Design it
	Design it
	Design it

	Locations in the TES
	Get the code {Tutorial} packagehypertarget {Tutorial}{}
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options

	Let's write the algorithm
	A look at the header file
	Edit the header file
	Constructorhypertarget {Constructor}{}
	Initialisationhypertarget {Initialization}{}
	Initialisation
	code {DVAlgorithm} base-classhypertarget {DVAlgorithm}{}
	Executehypertarget {Execute}{}
	Zoology of DaVinci toolshypertarget {Tools}{}
	The code {PhysDesktop}hypertarget {PhysDesktop}{}
	Get the particles
	Combine the muons
	Vertex fit
	Create the candidate
	Save the new particles
	code {Particles} and code {Vertices}hypertarget {Vertex}{}
	Finalize
	End of code {C++} part
	Options
	Particle Filtering
	Particle Filteringhypertarget {FilterCriterion}{}hypertarget {ParticleFilter}{}
	Run it
	Let's add histograms
	Histogramshypertarget {GaudiHistoAlg}{}
	Histogramshypertarget {GaudiHistoAlg}{}
	Histogramshypertarget {GaudiHistoAlg}{}

	What we have learned so far
	~
	The code {ParticleMaker} toolshypertarget {ParticleMaker}{}
	code {PreLoadParticles}
	The code {CombinedParticleMaker}hypertarget {CombinedParticleMaker}{}
	The code {CombinedParticleMaker}hypertarget {CombinedParticleMaker}{}

	Back to our example options
	Build the Pphi
	Build the Pphi
	Syntax of code {CombineParticles}hypertarget {ConbineParticles}{}
	Build the PsB
	The end!
	code {RefineSelection}hypertarget {RefineSelection}{}
	code {RefineSelection} example
	Cut on daughters
	code {CombineParticles} versus code {RefineSelection}
	code {PIDFilter}hypertarget {PIDFilter}{}
	Listing continued
	Common particles
	code {SelResult}hypertarget {SelResult}{}
	The code {SelResult} objecthypertarget {CheckSelResult}{}
	Ready-to-use option files
	~
	Vertex Fitters
	Geometrical Tool
	Primary vertex
	Reminder about Tools
	Practical example
	Tools
	~
	Efficiency algorithms
	Reconstruction efficiency
	Reconstruction efficiency
	Selection efficiency
	Selection efficiency
	The code {DebugTool}hypertarget {DebugTool}{}
	Debug algorithms
	Using the debug tool
	Decay Finder
	Conclusion

