
P. Koppenburg

Introduction to DaVinci

• Overview
• First try
• Writing a simple algorithm
• Configuring Common Algorithms
• More about Tools
• Accessing MC truth

This session is not hands-on, but there are many
examples one can try “at home”.

Patrick Koppenburg

Introduction to DaVinci— November 2004 Software week – p. 1/85

http://www.koppenburg.org/address.html

P. Koppenburg

Overview:
• Assumptions

• LHCb applications structure

• DaVinci structure

• Documentation sources

Introduction to DaVinci— November 2004 Software week – p. 2/85

P. Koppenburg

Assumptions
• It is assumed that you know (a little) about

• cmt . . .
• Gaudi (some of it)
• a few LHCb conventions
• C++

• If not, have a look at the Gaudi tutorial (here), or at the
Gaudi documentation

I assume the typical public for this tutorial are people who just
did the Gaudi hands-on and would like to start using DaVinci.

I may well be wrong. . .

Introduction to DaVinci— November 2004 Software week – p. 3/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

P. Koppenburg

Assumptions
• It is assumed that you know (a little) about

• cmt . . .
• Gaudi (some of it)
• a few LHCb conventions
• C++

• If not, have a look at the Gaudi tutorial (here), or at the
Gaudi documentation

I assume the typical public for this tutorial are people who just
did the Gaudi hands-on and would like to start using DaVinci.

I may well be wrong. . .

Don’t hesitate to interrupt

and to ask questions!

Or to correct mistakes.

Introduction to DaVinci— November 2004 Software week – p. 3/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

P. Koppenburg

Conventions

Colour-coding:
• Words in Green are links to other pages
• Words in Blue are links to web pages

Fonts:
• Fixed-width fonts are for code and options

• > echo "This is a shell command"

If it is boxed, then it is directly
copied from a *.h, *.cpp or *.opts file.

Introduction to DaVinci— November 2004 Software week – p. 4/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

P. Koppenburg

DaVinci Links
• DaVinci web page:

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm
From there you’ll find :
• Some documentation
• A “getting started” guide
• FAQ

• Any question can be asked at the DaVinci mailing list:
lhcb-davinci@cern.ch.

• That’s also the forum to propose improvements of
DaVinci

• You need to be registered to use it. Contact the
secretariat at lhcb.secretariat@cern.ch.

• I am writing a reference guide for the “core” DaVinci code

Introduction to DaVinci— November 2004 Software week – p. 5/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/GettingStarted.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/FAQ.htm
mailto:lhcb-davinci@cern.ch
mailto:lhcb.secretariat@cern.ch

P. Koppenburg

Applications

Gauss

(simulation)

Boole

(digitization)

Brunel

(reconstruction)

DaVinci

(analysis)

Gaudi-Applications

• There are four applications based on Gaudi

• They are actually all Gaudi-programs
• The only difference are the packages (shared

libraries) included
• One could easily build an application that does it all

(like in the old SICB days. . .)
• Somewhere here Panoramix and Bender are missing

Introduction to DaVinci— November 2004 Software week – p. 6/85

P. Koppenburg

Applications

Gauss

(simulation)

Boole

(digitization)

Brunel

(reconstruction)

DaVinci

(analysis)

Gaudi-Applications

sim digi dst dst

Data

Introduction to DaVinci— November 2004 Software week – p. 6/85

P. Koppenburg

Packages

DaVinci is a set of
packages containing
the code necessary
to build a shared li-
brary and the rele-
vant options.

They all have the
sub-directories cmt,
src and options

See the Gaudi tuto-
rial for an explanation
of the package struc-
ture.

• DaVinci-specific packages:
Phys/: Physics algorithms and

tools (16 packages)
Tools/: Other tools (2), LoKi (2)
PhysSel/: Specific decay

channel selections (28)

• Borrowed, to be able to redo
things:
Calo/, Muon/: Detector-specific

PID packages (3)
L0/, Trg/, Hlt/: Trigger (19)
Rec/, Tr/: Reconstruction (4)

Introduction to DaVinci— November 2004 Software week – p. 7/85

P. Koppenburg

Structure (a bit old)

Introduction to DaVinci— November 2004 Software week – p. 8/85

P. Koppenburg

Physics Packages (v12r3)
Basic components:

Phys/DaVinci/: Main

Phys/DaVinciKernel/: Base classes

Phys/DaVinciFilter/: Particle filters

Phys/ParticleMaker/: Particle makers

Phys/VertexFit/: Vertex fitters

Phys/DaVinciTransporter/: Transporters

Phys/DaVinciTools/: Anything else

Tools/Utilities/: Simple utilities

Physics analysis:

Phys/PhysSelections/: Generic
selection algorithms

Phys/Ks2PiPiSel/: K
0

S
→ ππ

Phys/CommonParticles/: π
0

Phys/FlavourTagging/: Flavour tagging

Tools/LoKi*/: LoKi, see dedicated lesson

Tools/Stripping/: Stripping tools

MC-truth and test packages

Phys/DaVinciMCTools/: MC Tools

Phys/DaVinciAssociators/: Associators to MC truth

Phys/DaVinciEff/: Efficiency algorithms

Phys/DaVinciTest/: Tests

Phys/DaVinciUser/: Template user package

Introduction to DaVinci— November 2004 Software week – p. 9/85

P. Koppenburg

First try:
• Get it

• Compile it

• Run it

• Particles and ProtoParticles

This part is almost hands-on. Just
follow the instructions on your user
account after the lesson.

Introduction to DaVinci— November 2004 Software week – p. 10/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

This sets the path where cmt will find all neces-
sary packages.
> echo $CMTPATH
/afs/cern.ch/user/p/pkoppenb/cmtuser:/afs/cern.ch/lhcb/soft

ware/releases/DAVINCI/DAVINCI_v12r3:/afs/cern.ch/lhcb/soft

ware/releases/LHCB/LHCB_v16r3:/afs/cern.ch/lhcb/software/

releases/DBASE:/afs/cern.ch/lhcb/software/releases/PARAM:

/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI_v15r3:/afs/cern.

ch/sw/lcg/app/releases/LCGCMT/LCGCMT_26_2d

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

This sets the path where cmt will find all neces-
sary packages.
> echo $CMTPATH
/afs/cern.ch/user/p/pkoppenb/cmtuser:/afs/cern.ch/lhcb/soft

ware/releases/DAVINCI/DAVINCI_v12r3:/afs/cern.ch/lhcb/soft

ware/releases/LHCB/LHCB_v16r3:/afs/cern.ch/lhcb/software/

releases/DBASE:/afs/cern.ch/lhcb/software/releases/PARAM:

/afs/cern.ch/sw/Gaudi/releases/GAUDI/GAUDI_v15r3:/afs/cern.

ch/sw/lcg/app/releases/LCGCMT/LCGCMT_26_2d

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

The DaVinci “project” contains presently 75 pack-
ages. The Phys/DaVinci main package is just
one of it.

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

This will set one environment variable for each of
the packages needed
> echo $DAVINCIROOT
/afs/cern.ch/user/p/pkoppenb/cmtuser/Phys/DaVinci/v12r3/

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

First try
• Set the version of DaVinci you want to use (always):
> DaVinciEnv v12r3

• go to your working directory:
> cd $HOME/cmtuser

• Get the DaVinci package (once):
> getpack Phys/DaVinci v12r3

• Setup your environment (always):
> cd Phys/DaVinci/v12r3/cmt
> source setup.csh

• Make the executable (once):
> make

• Execute DaVinci (whenever needed):
> DaVinci

Introduction to DaVinci— November 2004 Software week – p. 11/85

P. Koppenburg

Even simpler
• Set the version of DaVinci you want to use:
> DaVinciEnv v12r3

• Setup your environment:
> source $DaVinci_release_area/DAVINCI/
DAVINCI_v12r3/Phys/DaVinci/v12r3/cmt/setup.csh

• Execute DaVinci:
> DaVinci

Introduction to DaVinci— November 2004 Software week – p. 12/85

P. Koppenburg

Even simpler
• Set the version of DaVinci you want to use:
> DaVinciEnv v12r3

• Setup your environment:
> source $DaVinci_release_area/DAVINCI/
DAVINCI_v12r3/Phys/DaVinci/v12r3/cmt/setup.csh

• Execute DaVinci:
> DaVinci

What did it do?

Actually not much

DaVinci is an alias for:
> which DaVinci
DaVinci: aliased to /afs/cern.ch/user/p/pkoppenb/cmtuser/-

Phys/DaVinci/v12r3/rh73_gcc323/DaVinci.exe

When DaVinci is run with no options, it loads it’s
configuration from ../options/DaVinci.opts

Introduction to DaVinci— November 2004 Software week – p. 12/85

P. Koppenburg

DaVinci.opts

DaVinci.opts is a dummy option file. Removing the
irrelevant stuff there is:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"
#include "$DAVINCIROOT/options/DaVinciReco.opts"
#include "$DAVINCIROOT/options/DaVinciTestData.opts"
ApplicationMgr.EvtMax = 1000;

• DaVinciCommon.opts is where all default settings and
packages are defined. Don’t touch!

• DaVinciReco.opts makes the ProtoParticles and
the primary vertex.

• DaVinciTestData.opts provides some BB DST.

Introduction to DaVinci— November 2004 Software week – p. 13/85

P. Koppenburg

ProtoParticles?
ProtoParticles

• are the end of the reconstruction stage
• are the starting point of the physics analysis
• have all the links about how they have been

reconstructed
• Track?
• Calo cluster?

• have a list of PID hypothesis with a probability
• contain the kinematic information

You need to assign them a mass and
a PID to get the full 4-vector.

⇒ Particles

Introduction to DaVinci— November 2004 Software week – p. 14/85

P. Koppenburg

Particles?
• Particle = ProtoParticle + one PID choice

→ one defined mass
• Physics analyses deal with Particles

• You need to know the 4-vectors to compute the mass
of a resonance

• The PID is your choice
• The same ProtoParticle can be made as a π and

as a K . . .
• Some ProtoParticles can be ignored
• All this is done by configuring the ParticleMaker

(described later)

Introduction to DaVinci— November 2004 Software week – p. 15/85

P. Koppenburg

Select Bs → J/ψ φ:

• Design it

• Make particles

• Make J/ψ’s

• Some histograms

• Add the φ

This part is based on the
Tutorial/Analysis package.
All can be found there.

Introduction to DaVinci— November 2004 Software week – p. 16/85

P. Koppenburg

Reminder: Algorithms

Algorithms are objects executed at each event.
The primary vertex for instance is made by an algorithm
declared in DaVinciReco.opts by

ApplicationMgr.TopAlg += { "PrimVtxFinder" };

What DaVinci does is defined by the algorithms that are
called. In Gaudi-jargon an algorithm is a class inheriting from
Algorithm, which contains
• an initialize() method called at begin of run
• an execute() method called at each event.
• a finalize() method called at end of run

To make life easier DaVinci contains a base-class
DVAlgorithm that provides many useful features.

Introduction to DaVinci— November 2004 Software week – p. 17/85

P. Koppenburg

Recent changes
• DVAlgorithm now inherits from the new base-class
GaudiTupleAlg,

• That inherits from GaudiHistoAlg,
• That inherits from GaudiAlgorithm

→ There are many new shortcuts available:

debug() << "Hello world" << endmsg ;
plot(twoMu.m(),"DiMu mass",2.*GeV,4.*GeV);
IDebugTool* m_debug =

tool<IDebugTool>("DebugTool");

They succeed to much longer syntaxes that everyone had to
use one year ago. . .

Introduction to DaVinci— November 2004 Software week – p. 18/85

P. Koppenburg

Design it

One could write a
single algorithm that
makes particles, com-
bines µ into J/ψ and
K into φ and then
makes the Bs.

This is not a good idea!

It is much better to
write a simple algo-
rithm for each task and
to save the intermedi-
ate data in the tran-
sient event store (TES)

Introduction to DaVinci— November 2004 Software week – p. 19/85

P. Koppenburg

Design it

One could write a
single algorithm that
makes particles, com-
bines µ into J/ψ and
K into φ and then
makes the Bs.

This is not a good idea!

It is much better to
write a simple algo-
rithm for each task and
to save the intermedi-
ate data in the tran-
sient event store (TES)

Algorithms TES

Make
Particles

Make J/ψ

Make φ

Make Bs

Proto-
Particles

Charged
Particles

J/ψ

φ

Bs

Introduction to DaVinci— November 2004 Software week – p. 19/85

P. Koppenburg

Design it

Algorithms TES

Make
Particles

Make J/ψ

Make φ

Make Bs

Proto-
Particles

Charged
Particles

J/ψ

φ

Bs

• Algorithms have as
many inputs as
needed, but only
one output

• TES locations can
be read by any algo-
rithm, but only one
can write to them

Let’s start to write the
chain!

Introduction to DaVinci— November 2004 Software week – p. 19/85

P. Koppenburg

Locations in the TES

The output of an algorithm called "MyAlgo" is saved in
• /Event/Phys/MyAlgo/Particles and
• /Event/Phys/MyAlgo/Vertices

Algorithm instance names have to be unique → particles will
be stored in different locations.

This becomes important if you want to test the correlation of
your Bs → J/ψφ selection with the TDR selection of B →

J/ψK0
S, or test the efficiency of the HLT J/ψ selection.

Make sure all algorithm names are unique!
It is mandatory for the stripping.

Introduction to DaVinci— November 2004 Software week – p. 20/85

P. Koppenburg

Get the Tutorial package

Get the latest version of the Tutorial/Analysis package.
> cd $HOME/cmtuser/
> getpack Tutorial/Analysis v4
> cmt config
> cmt br make
> source setup.csh
> echo $ANALYSISROOT

/afs/cern.ch/.../cmtuser/Tutorial/Analysis/v4
> echo $DAVINCIROOT

/afs/cern.ch/.../cmtuser/Phys/DaVinci/v12r3

Or, if you don’t have DaVinci in your area
/afs/cern.ch/lhcb/software/releases/DAVINCI/DAVINCI_v12r3/Phys/DaVinci/v12r3/

Introduction to DaVinci— November 2004 Software week – p. 21/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:

cd $ANALYSISROOT
Open a file: emacs options/DVTutorial.opts

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

Input the common initialisation

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

Don’t forget the DLL of the package you just added to
DaVinci

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

#include "$DAVINCIROOT/options/DaVinciReco.opts"

Include the reconstruction of ProtoParticles and
primary vertices

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

#include "$DAVINCIROOT/options/DaVinciReco.opts"

ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial" };

Let’s start the Bs → J/ψφ sequence

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

#include "$DAVINCIROOT/options/DaVinciReco.opts"

ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial" };

Tutorial.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PreLoadParticles.opts"

Use the default algorithm to make particles.
We’ll have a closer look later on.

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

#include "$DAVINCIROOT/options/DaVinciReco.opts"

ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial" };

Tutorial.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PreLoadParticles.opts"

Tutorial.Members += { "TutorialAlgorithm" };

This one we’ll have to write. . .

Introduction to DaVinci— November 2004 Software week – p. 22/85

P. Koppenburg

Start to write the options

It’s a good idea to start with the options. This gives the list of
things to do:
#include "$DAVINCIROOT/options/DaVinciCommon.opts"

ApplicationMgr.DLLs += { "Analysis" };

#include "$DAVINCIROOT/options/DaVinciReco.opts"

ApplicationMgr.TopAlg += { "GaudiSequencer/Tutorial" };

Tutorial.Members += { "PreLoadParticles" };

#include "$PARTICLEMAKERROOT/options/PreLoadParticles.opts"

Tutorial.Members += { "TutorialAlgorithm" };

EventSelector.Input = {

"DATAFILE=’PFN:rfio:/castor/cern.ch/lhcb/DC04/00000543_00000017_5.dst’

TYP=’POOL_ROOTTREE’ OPT=’READ’"};

Add some data to read. You get it from the
Bookkeeping.

Introduction to DaVinci— November 2004 Software week – p. 22/85

http://lhcbdata.home.cern.ch/lhcbdata/bkk/

P. Koppenburg

Let’s write the algorithm

In $ANALYSISROOT type
> emacs src/TutorialAlgorithm.{cpp,h}
Emacs will ask you what you want to create. Answer (D) for
DVAlgorithm (twice) and you will get a template for a new
algorithm that compiles nicely but does nothing at all.

Before you forget it, add the following line to
src/Analysis_load.cpp:
DECLARE_ALGORITHM(TutorialAlgorithm)

Now go to cmt/ and recompile the package.

Introduction to DaVinci— November 2004 Software week – p. 23/85

P. Koppenburg

A look at the header file
#include "DaVinciTools/DVAlgorithm.h"

class TutorialAlgorithm : public DVAlgorithm {

public:

/// Standard constructor

TutorialAlgorithm(const std::string& name, ISvcLocator* pSvcLocator);

virtual ˜TutorialAlgorithm(); ///< Destructor

virtual StatusCode initialize(); ///< Algorithm initialization

virtual StatusCode execute (); ///< Algorithm execution

virtual StatusCode finalize (); ///< Algorithm finalization

protected:

private:

};

• It inherits from DVAlgorithm , which provides the most frequently used
tasks in a convenient way.

• The constructor allows to initialise global variables (mandatory!) and to
declare options.

• The three methods initialize(), execute(), finalize() control
your algorithm. Feel free to add more!

Introduction to DaVinci— November 2004 Software week – p. 24/85

P. Koppenburg

Edit the header file

Cuts should be defined by options, we hence need them to
be data members of the algorithm. In
TutorialAlgorithm.h:
private:

double m_JPsiMassWin ; ///< Mass window
double m_JPsiChi2 ; ///< Max J/psi chiˆ2

We will also need the J/ψ PID, its mass and some statistics

int m_JPsiID ; ///< J/psi ID
double m_JPsiMass ; ///< J/psi mass
int m_nJPsis ; ///< number of J/psis
int m_nEvents ; ///< number of Events

Introduction to DaVinci— November 2004 Software week – p. 25/85

P. Koppenburg

Constructor

All data members have to be initialised in the constructor
TutorialAlgorithm::TutorialAlgorithm(

const std::string& name, ISvcLocator* pSvcLocator)

: DVAlgorithm (name , pSvcLocator)

, m_JPsiID(0)

, m_JPsiMass(0.)

, m_nJPsis(0)

, m_nEvents(0)

{

declareProperty("MassWindow", m_JPsiMassWin = 10.*GeV);

declareProperty("MaxChi2", m_JPsiChi2 = 1000.);

}

• Options have to be defined with declareProperty

• All others can be initialised to a dummy value
• You can just ignore the destructor

Introduction to DaVinci— November 2004 Software week – p. 26/85

P. Koppenburg

Initialisation
debug() << "==> Initialize" << endmsg;

ParticleProperty* m_psi = ppSvc()->find("J/psi(1S)");

m_JPsiID = m_psi->pdgID();

m_JPsiMass = m_psi->mass();

info() << "Will reconstruct " << m_psi->particle() << " (ID="

<< m_JPsiID << ") with mass " << m_JPsiMass << endreq ;

info() << "Mass window is " << m_JPsiMassWin << " MeV" << endreq ;

info() << "Max chiˆ2 is " << m_JPsiChi2 << endreq ;

• To initialise the J/ψ mass and PID you first need to find
the particle properties of the J/ψ.

• DVAlgorithm provides a pointer to the Particle
Property Service ppSvc().

• The name of the J/ψ can be found in
$PARAMFILESROOT/data/ParticleTable.txt.

Introduction to DaVinci— November 2004 Software week – p. 27/85

P. Koppenburg

Initialisation
debug() << "==> Initialize" << endmsg;

ParticleProperty* m_psi = ppSvc()->find("J/psi(1S)");

m_JPsiID = m_psi->pdgID();

m_JPsiMass = m_psi->mass();

info() << "Will reconstruct " << m_psi->particle() << " (ID="

<< m_JPsiID << ") with mass " << m_JPsiMass << endreq ;

info() << "Mass window is " << m_JPsiMassWin << " MeV" << endreq ;

info() << "Max chiˆ2 is " << m_JPsiChi2 << endreq ;

• From the IParticlePropertySvc class one can see in
DoxyGen that there is a method
ParticleProperty * find (const std::string &name);

• Then in ParticleProperty one locates:
double mass() const
int pdgID() const

Introduction to DaVinci— November 2004 Software week – p. 28/85

P. Koppenburg

DVAlgorithm base-class

A look at the DoxyGen web page shows that DVAlgorithm
provides a lot of functionality (not all listed here):

IPhysDesktop* desktop() const;
IMassVertexFitter* massVertexFitter() const;
IVertexFitter* vertexFitter() const;
IGeomDispCalculator* geomDispCalculator() const;
IParticleFilter* particleFilter() const;
IParticlePropertySvc* ppSvc() const;
StatusCode setFilterPassed (bool);
std::string getDecayDescriptor();

We will use some of them.

Introduction to DaVinci— November 2004 Software week – p. 29/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_d_v_algorithm.html

P. Koppenburg

Execute

1. Take the particles from the TES location where the
particle maker algorithm has put them

2. Keep only the ones we need, i.e. muons

3. Combine them to J/ψ’s and fit the vertex

4. Apply some cuts

5. Save the selected J/ψ’s to the TES

6. We probably also would like to fill some histograms

For most of these tasks we have Tools.

Introduction to DaVinci— November 2004 Software week – p. 30/85

P. Koppenburg

Zoology of DaVinci tools

A Tool is a light weight object whose purpose is to help other
components to perform their work.
• The particle filter and filter criteria are very useful tools:

They allow to apply cuts steered by options.
• Vertexing tools: UnconstVertexFitter,
LagrangeMassVertexFitter,
LagrangeGeomVertexFitter . . .

• Geometrical tool
• Particle transporters
• Associators
• . . .

Introduction to DaVinci— November 2004 Software week – p. 31/85

P. Koppenburg

The PhysDesktop

The PhysDesktop is a tool that controls the loading and
saving of the particles that are currently used.
• It collects previously maked particles
• It produces particles and saves them to the TES when

needed

→ It hides the interaction with the TES

To get the particles and vertices, just do
• const ParticleVector& parts =
desktop()->particles();

• const VertexVector& parts =
desktop()->vertices();

Introduction to DaVinci— November 2004 Software week – p. 32/85

P. Koppenburg

Get the particles
// get particles. Filter muons.

const ParticleVector& parts = desktop()->particles();

ParticleVector MuPlus, MuMinus;

StatusCode sc = particleFilter()->filterNegative(parts,MuMinus);

if (sc) sc = particleFilter()->filterPositive(parts,MuPlus);

if (!sc) {

err() << "Error while filtering" << endreq ;

return sc ;

}

verbose() << "Filtered " << MuMinus.size() << " mu- and "

<< MuPlus.size() << " mu+" << endreq ;

• We get the particles from the PhysDesktop tool

• Then we fill them into ParticleVector of µ− and µ+

using the methods of the ParticleFilter (see
DoxyGen)

• We’ll ensure they are actually muons later on.

Introduction to DaVinci— November 2004 Software week – p. 33/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_particle_filter.html

P. Koppenburg

Combine the muons
// combine mu+ and mu-

ParticleVector::const_iterator imup, imum;

for (imum = MuMinus.begin() ; imum != MuMinus.end() ; ++imum){

for (imup = MuPlus.begin() ; imup != MuPlus.end() ; ++imup){

HepLorentzVector twoMu = (*imup)->momentum() + (*imum)->momentum();

verbose() << "Two muon mass is " << twoMu.m()/MeV << endreq ;

if (fabs (twoMu.m() - m_JPsiMass) > m_JPsiMassWin) continue ;

}

}

• Have a look at the Particle class DoxyGen
• ParticleVector is a typedef
std::vector<Particle*>

→ Hence the non-intuitive (*imup)->momentum() syntax

Introduction to DaVinci— November 2004 Software week – p. 34/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_particle.html

P. Koppenburg

Vertex fit

Insert:
// vertex fit

Vertex MuMuVertex;

sc = vertexFitter()->fitVertex(*(*imup),*(*imum),MuMuVertex);

if (!sc){

info() << "Failed to fit vertex" << endreq ; // no big deal

continue ;

}

debug() << "Vertex fit at " << MuMuVertex.position()/cm

<< " with chi2 " << MuMuVertex.chi2() << endreq;

// chi2 cut

if (MuMuVertex.chi2() > m_JPsiChi2) continue ;

• The vertexFitter() method returns a pointer to the
unconstrained vertex fitter UnconstVertexFitter

Introduction to DaVinci— November 2004 Software week – p. 35/85

P. Koppenburg

Create the candidate
Particle Jpsi ;

sc = particleStuffer()->fillParticle(MuMuVertex,Jpsi,

ParticleID(m_JPsiID));

Particle* pJpsi = desktop()->createParticle(&Jpsi);

info() << "Created J/psi candidate with m=" << Jpsi.mass()

<< " and chiˆ2=" << MuMuVertex.chi2() << endreq ;

if (!pJpsi){

err() << "Cannot save particle to desktop" << endreq ;

return StatusCode::FAILURE;

} else setFilterPassed(true);

• The ParticleStuffer tool makes particles from
vertices. It is your job to provide the particle ID.

• Then save the new created particle to the PhysDesktop

• setFilterPassed(true) tells the algorithm that it has
found what it is looking for.

Introduction to DaVinci— November 2004 Software week – p. 36/85

P. Koppenburg

Save the new particles

At the end put:

sc = desktop()->saveDesktop();
return sc;

This will save all new particles in the desktop.

The PhysDesktop has also methods to save a given list of
particles
ParticleVector myPsis ;
sc = desktop()->saveTrees(myPsis);
sc = desktop()->saveTrees(m_JPsiID);

• All particles and vertices will be saved to
/Event/Phys/Jpsi2MuMu/Particles and
/Event/Phys/Jpsi2MuMu/Vertices

Introduction to DaVinci— November 2004 Software week – p. 37/85

P. Koppenburg

Particles and Vertices

The Particle and Vertex classes depend on each other

Vertex* Particle::endvertex() ;
SmartRefVector<Particle> & Vertex::products() ;

To navigate from a particle to its daughters do:
SmartRefVector<Particle> themus
= Jpsi.endVertex()->products() ;

and use themus as any std::vector of pointers.

Note: There is no direct link between Particles .

Introduction to DaVinci— November 2004 Software week – p. 38/85

P. Koppenburg

Finalize

If you have incremented the counters m_nEvents and
m_nJpsis you can print them at the end of the job:

StatusCode TutorialAlgorithm::finalize() {

debug() << "==> Finalize" << endmsg;
info() << "Found " << m_nJPsis << " J/psi in "

<< m_nEvents << " events" << endreq;
return StatusCode::SUCCESS;

}

Note: Unlike in GaudiAlgorithm, don’t
return GaudiAlgorithm::finalize() ; or similar.
This is done in the sysFinalize() method of
DVAlgorithm .

Introduction to DaVinci— November 2004 Software week – p. 39/85

P. Koppenburg

End of C++ part
• We now have a complete

algorithm.
• The execute() method

still fits on a single page,
but becomes a little
longish to my taste

• If you’d like to split it in
smaller methods, you’re
welcome. . .

• You can now compile it.
• The next step is to com-

plete the options.

Introduction to DaVinci— November 2004 Software week – p. 40/85

P. Koppenburg

Options
Tutorial.Members += { "PreLoadParticles" };

[...]

Tutorial.Members += { "TutorialAlgorithm/Jpsi2MuMu" };

Jpsi2MuMu.PhysDesktop.InputLocations = { "Phys/PreLoadParticles" } ;

Jpsi2MuMu.MassWindow = 50*MeV ;

Jpsi2MuMu.MaxChi2 = 100 ;

Jpsi2MuMu.OutputLevel = 3 ;

• We already have the PreLoadParticles and
TutorialAlgorithm algorithms in the Tutorial
sequence: Let’s call it Jpsi2MuMu.

• Configure the cuts and the verbosity level.
• Tell the PhysDesktop from where to take the particles.
• It automatically adds "/Event/" to the location if

necessary.

Introduction to DaVinci— November 2004 Software week – p. 41/85

P. Koppenburg

Particle Filtering

Remember the particle filtering code:
ParticleVector MuPlus, MuMinus;

StatusCode sc = particleFilter()->filterNegative(parts,MuMinus);

if (sc) sc = particleFilter()->filterPositive(parts,MuPlus);

We want to make sure that only muons will be used:
Jpsi2MuMu.ParticleFilter.CriteriaNames = { "PIDFilterCriterion/Muons" } ;

Jpsi2MuMu.ParticleFilter.Muons.ParticleNames = {"mu+", "mu-"} ;

• The ParticleFilter tool accepts a list of filter criteria
• In this case we just want to filter according to PID

→ PIDFilterCriterion

• Simply tell it what particles you need

Introduction to DaVinci— November 2004 Software week – p. 42/85

P. Koppenburg

Particle Filtering

The
ParticleFilter
is a very powerful
tool that accepts
many filter crite-
ria, all based on
the same interface
IFilterCriterion.

In the DoxyGen
documentation
you have the full
list of criteria.

• FlightDistanceFilterCriterion

• KinFilterCriterion: P , PT
• LifetimeSignificanceFilterCriterion

• Mass(Difference)FilterCriterion: m,
∆m

• Momentum2FlightAngleFilterCriterion

• PIDFilterCriterion

• PVIPFilterCriterion: IP on primary
vertices

• TrackTypeFilterCriterion

• TrueMCFilterCriterion: require tracks
from a given decay

• VtxFilterCriterion: cut on the track’s
decay vertex

• BooleanFilterCriterion: allows to com-
bine filter criteria

Introduction to DaVinci— November 2004 Software week – p. 43/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_i_filter_criterion.html

P. Koppenburg

Run it

> DaVinci ../options/DVTutorial_1.opts | tee out

In file out we find what we did at initialization:
Jpsi2MuMu INFO Will reconstruct J/psi(1S) (ID=443) with mass 3096.87

Jpsi2MuMu INFO Mass window is 50 MeV

Jpsi2MuMu INFO Max chiˆ2 is 100

In execute():
Jpsi2MuMu INFO Created J/psi candidate with m=3104.2 and chiˆ2=0.166344

Jpsi2MuMu INFO Created J/psi candidate with m=3089.36 and chiˆ2=0.5617

In finalize():
Jpsi2MuMu SUCCESS Passed 176 times in 500 calls -> (35.2+/-2.13587)%, rejection= 2.84091+/-0.172381

Jpsi2MuMu INFO Found 176 J/psi in 500 events

The first line above is printed by DVAlgorithm based on the
number of times execute() issued a
setFilterPassed(true) or false.

Introduction to DaVinci— November 2004 Software week – p. 44/85

P. Koppenburg

Let’s add histograms

Since DVAlgorithm inherits from GaudiHistoAlg, you
can use the “on-demand” histogram booking service.

Add the following histogram at a convenient place:

plot(twoMu.m(),"DiMu mass",2.*GeV,4.*GeV);

And add a persistency in the options:
ApplicationMgr.HistogramPersistency = "HBOOK";

HistogramPersistencySvc.OutputFile = "DVHistos.hbook";

Jpsi2MuMu.HistoProduce = true ; // default anyway

Feel free to use ROOT as persistency if you prefer. Hbook is
probably going to dissappear someday. . .

Introduction to DaVinci— November 2004 Software week – p. 45/85

P. Koppenburg

Histograms

Dimuon mass [MeV]

1

10

10 2

10 3

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

• Here’s the nice J/ψ
peak you get

• Exercise 1: You
could add two
histograms of the
µ’s PT , one before
the J/ψ cuts and
one after.

• Exercise 2: That
could encourage
you to add a PT cut
to your µ selection.
You can do this by
options only!

Introduction to DaVinci— November 2004 Software week – p. 46/85

P. Koppenburg

Histograms

All

Selected

Muon PT [MeV]

1

10

10 2

0 2000 4000 6000 8000 10000

• Here’s the nice J/ψ
peak you get

• Exercise 1: You
could add two
histograms of the
µ’s PT , one before
the J/ψ cuts and
one after.

• Exercise 2: That
could encourage
you to add a PT cut
to your µ selection.
You can do this by
options only!

Introduction to DaVinci— November 2004 Software week – p. 46/85

P. Koppenburg

Histograms

All

Selected

Muon PT [MeV]

1

10

10 2

0 2000 4000 6000 8000 10000

• Here’s the nice J/ψ
peak you get

• Exercise 1: You
could add two
histograms of the
µ’s PT , one before
the J/ψ cuts and
one after.

• Exercise 2: That
could encourage
you to add a PT cut
to your µ selection.
You can do this by
options only!

Introduction to DaVinci— November 2004 Software week – p. 46/85

P. Koppenburg

What we have learned so far
• To configure a simple DaVinci job
• To write a simple DVAlgorithm

• To get and save data using the PhysDesktop

• To use tools to perform the common tasks
• To navigate in DoxyGen to find the class definitions

One more exercise: Adapt the TutorialAlgorithm so that
one can re-use this algorithm to also reconstruct φ → KK:
Tutorial.Members += { "TutorialAlgorithm/Jpsi2MuMu" };

[...]

Tutorial.Members += { "TutorialAlgorithm/Phi2KK" };

Phi2KK.PhysDesktop.InputLocations = { "Phys/PreLoadParticles" } ;

Phi2KK.ParticleFilter.CriteriaNames = { "PIDFilterCriterion/Kaons" } ;

Phi2KK.ParticleFilter.Kaons.ParticleNames = {"K+", "K-"} ;

Introduction to DaVinci— November 2004 Software week – p. 47/85

P. Koppenburg

Use and configure
standard algorithms:

• More about the
ParticleMaker

• Make the φ using common tools

• CombineParticles

• RefineSelection

• Common particles

• The SelResult object

This part is based on the
Tutorial/Analysis package.
All can be found there.

Introduction to DaVinci— November 2004 Software week – p. 48/85

P. Koppenburg

The ParticleMaker tools

The IParticleMaker interface (DoxyGen) is the base of
several particle maker tools. They all make Particles
starting from ProtoParticles

CombinedParticleMaker: makes particles from charged
ProtoParticles

NoPIDsParticleMaker: make particles ignoring PID

PhotonFromMergedParticleMaker: makes γ from
merged π0

(Cnv)PhotonParticleMaker: make γ

ParticleMakerSeq: allow a sequence of particle makers

MCParticleMaker: makes particles from MC truth
MCParticles

Introduction to DaVinci— November 2004 Software week – p. 49/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_i_particle_maker.html

P. Koppenburg

PreLoadParticles

A ParticleMaker can be declared to the PhysDesktop .

One could have defined a ParticleMaker to Jpsi2MuMu,
but it’s more transparent to use PreLoadParticles.

The options are:

Tutorial.Members += { "PreLoadParticles" };
PreLoadParticles.PhysDesktop.ParticleMakerType =

"CombinedParticleMaker";

PreLoadParticles is a DVAlgorithm with one
ParticleMaker defined that only saves the created
particles.

Introduction to DaVinci— November 2004 Software week – p. 50/85

P. Koppenburg

The CombinedParticleMaker

The CombinedParticleMaker makes Particles from
charged ProtoParticles combining the PID information
of all detectors. It is documented from the DaVinci page.

The (main) options and default values are:
Particles = { "muon", "electron", "kaon", "proton", "pion" } ;

MuonSelection = "det=’MUON’ mu-pi=’-8.0"’ ;

ElectronSelection = "det=’CALO’ e-pi=’0.0"’ ;

KaonSelection = "det=’RICH’ k-pi=’2.0’ k-p=’-2.0"’ ;

ProtonSelection = "det=’RICH’ p-pi=’3.0"’ ;

PionSelection = "" ;

• Kaons for instance are made using the RICH with cuts:

DLL(K − π) = lnL(K) − lnL(π) = ln
L(K)

L(π)

Introduction to DaVinci— November 2004 Software week – p. 51/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

P. Koppenburg

The CombinedParticleMaker

The CombinedParticleMaker makes Particles from
charged ProtoParticles combining the PID information
of all detectors. It is documented from the DaVinci page.

The (main) options and default values are:
Particles = { "muon", "electron", "kaon", "proton", "pion" } ;

MuonSelection = "det=’MUON’ mu-pi=’-8.0"’ ;

ElectronSelection = "det=’CALO’ e-pi=’0.0"’ ;

KaonSelection = "det=’RICH’ k-pi=’2.0’ k-p=’-2.0"’ ;

ProtonSelection = "det=’RICH’ p-pi=’3.0"’ ;

PionSelection = "" ;

ExclusiveSelection = true ;

• ExclusiveSelection means that only one Particle
is made for each ProtoParticle , in the order of
preference given in "Particles". This is a very
dangerous option.

Introduction to DaVinci— November 2004 Software week – p. 51/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm

P. Koppenburg

Back to our example options

We should have defined the cut on the muons in the particle
maker rather than in the particle filter.

To make only muons and kaons:

Tutorial.Members += { "PreLoadParticles" };

PreLoadParticles.PhysDesktop.ParticleMakerType =

"CombinedParticleMaker";

PreLoadParticles.PhysDesktop.CombinedParticleMaker.Particles =

{ "muon", "kaon" } ;

PreLoadParticles.PhysDesktop.CombinedParticleMaker.KaonSelection =

{ "det=’RICH’ k-pi=’2.0’ k-p=’-2.0’" };

PreLoadParticles.PhysDesktop.CombinedParticleMaker.MuonSelection =

{ "det=’MUON’ mu-pi=’-10.0’" }; // looser

PreLoadParticles.PhysDesktop.CombinedParticleMaker.ExclusiveSelection

= false ;

This is bad practice: Here "PreLoadParticles" has a
potentially conflicting name.

Introduction to DaVinci— November 2004 Software week – p. 52/85

P. Koppenburg

Build the φ

To make the φ one can re-use the TutorialAlgorithm as
in the suggested exercise

Or, one can use the generic CombineParticles algorithm.
• This algorithm reconstructs any (one-level) decay

according to what is defined in the decay descriptor
• It requires one FilterCriterion per input or output

particle.
• It’s actually written using LoKi

You’d better learn to use this algorithm: it might become
mandatory for the next stripping!

Introduction to DaVinci— November 2004 Software week – p. 53/85

P. Koppenburg

Build the φ
ApplicationMgr.DLLs += { "PhysSelections", "LoKi" };

//

Tutorial.Members += { "CombineParticles/Phi2KK" };

Phi2KK.PhysDesktop.InputLocations = { "Phys/PreLoadParticles" } ;

Phi2KK.DecayDescriptor = "phi(1020) -> K+ K-";

Phi2KK.Selections = {"K+ : PVIPFilterCriterion",

"K- : PVIPFilterCriterion",

"phi(1020) : BooleanFilterCriterion/PhiFilter"};

Phi2KK.PVIPFilterCriterion.MinIPsignif = 2 ;

Phi2KK.PhiFilter.AndList = { "MassFilterCriterion",

"VtxFilterCriterion" };

Phi2KK.PhiFilter.MassFilterCriterion.Window = 20*MeV ;

Phi2KK.PhiFilter.VtxFilterCriterion.MaxChi2 = 100 ;

• This selects φ in a mass window of 20 MeV and with a
χ2 > 100,

• made from kaons with a IP/σIP > 2 on all reconstructed
primary vertices.

Introduction to DaVinci— November 2004 Software week – p. 54/85

P. Koppenburg

Syntax of CombineParticles

DecayDescriptor: Mandatory.
• Only simple decay descriptors understood!
• Add [...]cc if you want both combinations.

Selections: vector of strings of the type
"particle : Criterion/Name" ;
• Use the BooleanFilterCriterion with no options

when you don’t want to filter anything
• All particles in the descriptor must be declared.
• Charge-conjugates are never implicit

CombineParticles.DecayDescriptor = "[rho(770)+ -> pi0 pi+]cc" ;

CombineParticles.Selections = { "rho(770)0 : MassFilterCriterion",

"pi+ : PVIPFilterCriterion",

"pi- : PVIPFilterCriterion", // !!!!

"pi0 : MassFilterCriterion" } ;

Introduction to DaVinci— November 2004 Software week – p. 55/85

P. Koppenburg

Build the Bs

Tutorial.Members += { "CombineParticles/Bs2JpsiPhi" };

Bs2JpsiPhi.PhysDesktop.InputLocations = { "Phys/Phi2KK",

"Phys/Jpsi2MuMu" } ;

Bs2JpsiPhi.DecayDescriptor = "B_s0 -> phi(1020) J/psi(1S)";

Bs2JpsiPhi.Selections = {"B_s0 : BooleanFilterCriterion/BFilter",

"J/psi(1S) : BooleanFilterCriterion",

"phi(1020) : BooleanFilterCriterion"};

Bs2JpsiPhi.BFilter.AndList = { "MassFilterCriterion"

, "VtxFilterCriterion"

, "PVIPFilterCriterion" };

Bs2JpsiPhi.BFilter.MassFilterCriterion.Window = 50*MeV ;

Bs2JpsiPhi.BFilter.VtxFilterCriterion.MaxChi2 = 100 ;

Bs2JpsiPhi.BFilter.PVIPFilterCriterion.MaxIPsignif = 5 ;

Bs2JpsiPhi.BFilter.PVIPFilterCriterion.CutBestPV = true ;

• This selects Bs in a mass window of 50 MeV, a χ2 > 100,
and IP/σIP < 5 w.r.t the vertex it points to.

Introduction to DaVinci— November 2004 Software week – p. 56/85

P. Koppenburg

The end!

That’s the end of the selection!

We now have the full chain selecting Bs → J/ψφ

We’ll come back to it later when we discuss MC truth and
efficiencies.

Introduction to DaVinci— November 2004 Software week – p. 57/85

P. Koppenburg

RefineSelection

RefineSelection allows to filter particles from a given
location in the TES.

Options:

ParticleNames: Vector of particle names.
• C.C. not implicit! (to be changed. . . ?)
• Non listed particles are not filtered, i.e. accepted!

FilterNames: Vector of ParticleFilter names.
• Note that these are ParticleFilter tools, not
FilterCriterion !

• Giving a dummy filter allows to merge several TES
locations to one (this is done in the stripping, but not
very useful now that CheckSelResult exists).

• Accepted Particles are cloned
Introduction to DaVinci— November 2004 Software week – p. 58/85

P. Koppenburg

RefineSelection example
ApplicationMgr.DLLs += { "PhysSelections" };

ApplicationMgr.TopAlg += { "RefineSelection" };

RefineSelection.PhysDesktop.InputLocation = { "Phys/PreLoadParticles" };

RefineSelection.ParticleNames = { "mu+", "mu-", "K+", "K-" }; // no c.c. !

RefineSelection.FilterNames = { "MuF", "MuF", "KF" , "KF" };

RefineSelection.MuF.CriteriaNames = { "KinFilterCriterion" } ;

RefineSelection.MuF.KinFilterCriterion.MinPt = 300 ;

RefineSelection.KF.CriteriaNames = { "KinFilterCriterion",

"PVIPFilterCriterion" } ;

RefineSelection.KF.KinFilterCriterion.MinPt = 500 ;

RefineSelection.KF.PVIPFilterCriterion.MinIPsignif = 5.0 ;

This selects µ with PT > 300 MeV and K with
PT > 500 MeV and IP/σIP > 5.

If there are pions in "Phys/PreLoadParticles", they
will all pass!. . . But there’s a solution.

Introduction to DaVinci— November 2004 Software week – p. 59/85

P. Koppenburg

Cut on daughters

One very nice feature of RefineSelection is that it allows
to filter particles by cutting on its daughters:
HLTselBs2PhiPhi.Members += {"RefineSelection"} ;

RefineSelection.PhysDesktop.InputLocations = {"Phys/HLTPhi"}; // Phis

RefineSelection.ParticleNames = {"phi(1020)", "K+", "K-"};

RefineSelection.FilterNames = {"PhiF", "KF", "KF"};

RefineSelection.KF.CriteriaNames = {"KinFilterCriterion",

"PVIPFilterCriterion"} ;

RefineSelection.KF.KinFilterCriterion.MinMomentum = 1000.; // hlt tuned

RefineSelection.KF.PVIPFilterCriterion.MinIPsignif = 1.; // hlt tuned

RefineSelection.PhiFilter.CriteriaNames = {"MassFilterCriterion"};

RefineSelection.PhiFilter.MassFilterCriterion.Window = 24*MeV; // hlt tuned

There are actually no K in "Phys/HLTPhi": The input are
φ, the output are φ, but one cuts on the momentum of theK.

Introduction to DaVinci— November 2004 Software week – p. 60/85

P. Koppenburg

CombineParticles versus RefineSelection

Don’t get confused by the different syntax:
• RefineSelection : 1 ParticleFilter / particle
• CombineParticles : 1 FilterCriterion / particle

CombineParticles.Selections = { "phi(1020) : BooleanFilterCriterion/PhiF" , ... }

CombineParticles.PhiF.AndList = { "MassFilterCriterion",

"VtxFilterCriterion" };

CombineParticles.PhiF.MassFilterCriterion.Window = 20*MeV ;

CombineParticles.PhiF.VtxFilterCriterion.MaxChi2 = 100 ;

But:
RefineSelection.Particles = { "phi(1020)" } ;

RefineSelection.FilterNames = { "PhiFilter" };

RefineSelection.PhiFilter.CriteriaNames = { "MassFilterCriterion",

"VtxFilterCriterion" } ;

RefineSelection.PhiFilter.MassFilterCriterion.Window = 20*MeV ;

RefineSelection.PhiFilter.VtxFilterCriterion.MaxChi2 = 100 ;

Introduction to DaVinci— November 2004 Software week – p. 61/85

P. Koppenburg

PIDFilter

PIDFilter selects (or rejects) particles of a given PID.

Options:

ParticleNames: Names of particles

Reject = false: Keep them or reject them?
ApplicationMgr.TopAlg += { "Sequencer/SeqPreselMuon" };

SeqPreselMuon.Members = {

"PreLoadParticles/Combined",

"PIDFilter/FilterMuon",

"RefineSelection/PreselMuon" };

FilterMuon.PhysDesktop.InputLocations = { "Phys/Combined" } ;

FilterMuon.ParticleNames = { "mu+", "mu-" } ;

FilterMuon.Reject = false ; // default

FilterMuon just filters µ from the default
PreLoadParticles, which is useful in the stripping.

Introduction to DaVinci— November 2004 Software week – p. 62/85

P. Koppenburg

Listing continued
PreselMuon.PhysDesktop.InputLocations = {"Phys/FilterMuon"};

PreselMuon.ParticleNames = { "mu+", "mu-" };

PreselMuon.FilterNames = { "MuFilter", "MuFilter" };

PreselMuon.MuFilter.CriteriaNames = { "KinFilterCriterion" } ;

PreselMuon.MuFilter.KinFilterCriterion.MinPt = 3000 * MeV ; // from Hans

PreselMuon.MuFilter.KinFilterCriterion.MinMomentum = 5000 * MeV ; // from BTagging

PreselMuon.MuFilter.CriteriaNames += { "TrackTypeFilterCriterion" } ;

PreselMuon.MuFilter.TrackTypeFilterCriterion.RequireLong = true ; // does nothing ?;

PreselMuon.MuFilter.CriteriaNames += { "PVIPFilterCriterion" } ;

PreselMuon.MuFilter.PVIPFilterCriterion.MinIPsignif = 5.0 ; // from Hans

This is the whole preselection for the “good muon” stream we
have added to the stripping.
It starts from the standard particle maker, selects muons and
applies some cuts: 0 line of C++!

Introduction to DaVinci— November 2004 Software week – p. 63/85

P. Koppenburg

Common particles

Some particles are already made for you, with options
configured by the experts

π0 are made by the package Phys/CommonParticles

ApplicationMgr.DLLs += { "CommonParticles" };

ApplicationMgr.TopAlg += { "ResolvedPi0Alg" };

#include "$COMMONPARTICLESROOT/options/ResolvedPi0Alg.opts"

ApplicationMgr.TopAlg += { "MergedPi0Alg" };

#include "$COMMONPARTICLESROOT/options/MergedPi0Alg.opts"

K0
S are made by the package Phys/Ks2PiPiSel

#include "$KS2PIPISELROOT/options/Ks2PiPiSel.opts"

For tight K0
S:

#include "$KS2PIPISELROOT/options/bestKs2PiPiSel.opts"

J/ψ can be found PhysSel/Jpsi

. . . More to come
Introduction to DaVinci— November 2004 Software week – p. 64/85

P. Koppenburg

SelResult

Each DVAlgorithm writes out a SelResult object
containing
• the result of the FilterPassed output
• the decay descriptor
• the output location of the algorithm

All this is written to the TES in
SelResultLocation::Default.

You can read the result of any algorithm from any algorithm
or tool. You need:

#include "Event/SelResult.h"

Introduction to DaVinci— November 2004 Software week – p. 65/85

P. Koppenburg

The SelResult object

Some algorithms read out the SelResult object:
• CheckSelResult reads the SelResult of a given list

of algorithms and allows to perform an and and or of
these results. Useful if you want a sequencer to depend
on an algorithm executed in another sequence.

• SelResultCorrelations prints a correlation table of
efficiencies of various algorithms

Algorithm Eff. 1 2 3 4 5

--

1 AllBd2JpsiKsTracks 86.82% | ****** 98.26% 99.16% 86.82% 93.32%

2 HLTAllJpsis 87.47% | 98.99% ****** 100.00% 87.47% 92.39%

3 HLTHighIPJpsi 82.63% | 94.37% 94.47% ****** 82.63% 88.18%

4 TDRselBd2Jpsi2MuMu 100.00% | 100.00% 100.00% 100.00% ****** 100.00%

5 Bd2JpsiKsAndTDR 89.68% | 96.39% 94.73% 95.71% 89.68% ******

Introduction to DaVinci— November 2004 Software week – p. 66/85

P. Koppenburg

Ready-to-use option files

Every option file beginning with DV is complete and can be
used instead of DaVinci.opts. There are 141 available.
Here are a few:

�

DAVINCIROOT/options/DVWriteMiniDst.opts: writes
a mini-DST

�

DAVINCIROOT/options/DVReadMiniDst.opts: reads it
back

�

DAVINCIROOT/options/DVTriggerFilter.opts:
writes out events that pass L0 and L1.

PhysSel/*/*/options/DVTDRsel*.opts: execute TDR
selection

PhysSel/*/*/options/DVPresel*.opts: execute
pre-selection

Introduction to DaVinci— November 2004 Software week – p. 67/85

P. Koppenburg

Some more Tools:
• Vertex Fitters

• The Geometrical Tool

• About the Primary Vertices

• Reminder about Tools

Introduction to DaVinci— November 2004 Software week – p. 68/85

P. Koppenburg

Vertex Fitters
UnconstVertexFitter: IVertexFitter

Performs an unconstrained vertex fit.

LagrangeMassVertexFitter: IMassVertexFitter
A kinematical constrained fit using Lagrange multipliers
method with mass and geometrical constraint. If a
particle has Γ > 1 MeV, its daughters are used in the fit.

DVAlgorithm interfaces them with vertexFitter() and
massVertexFitter():

Particle JPsi;

Vertex PsiVertex;

ParticleVector TheMus = ...;

StatusCode sc = vertexFitter()->fitVertex(TheMus, PsiVertex);

sc = massVertexFitter()->fitWithMass ("J/psi(1S)", TheMus,

PsiVertex, JPsi) ;

There are also methods with 2–4 particles as input.
Introduction to DaVinci— November 2004 Software week – p. 69/85

P. Koppenburg

Geometrical Tool
• The GeomDispCalculator tool

(IGeomDispCalculator) is interfaced by
geomDispCalculator() in DVAlgorithm .

→ It allows to calculate distances between Particles and
Vertices .

Particle Mu1, Mu2;

Vertex PV, JpsiVx;

double ip, dca, v2v, err;

StatusCode sc = geomDispCalculator()->calcImpactPar(Mu1, PV, ip, err);

sc = geomDispCalculator()->calcCloseAppr(Mu1, Mu2, dca, err);

sc = geomDispCalculator()->calcVertexDis(PV, JpsiVx, v2v, err) ;

Introduction to DaVinci— November 2004 Software week – p. 70/85

P. Koppenburg

Primary vertex

To get the primary vertices:
Vertices* PV = get<Vertices>(VertexLocation::Primary));

for (iv=PV->begin();iv!=PV->end();++iv) {

Vertex* v = *iv;

double ip = -1 ,ipe = -1.;

StatusCode sc = geomDispCalculator()->calcImpactPar(

*part, *(*iv), ip, ipe);

}

Introduction to DaVinci— November 2004 Software week – p. 71/85

P. Koppenburg

Reminder about Tools

All this assumes that you use these tools from
DVAlgorithm and that you need only one of each kind.
If you use these tools from a simple GaudiAlgorithm or
from a tool, or you need more than one, you will need to
delare them yourself. This is very easy now:

#include "DaVinciTools/IGeomDispCalculator"

#include "DaVinciTools/IFilterCriterion"

IGeomDispCalculator* m_geom =

tool<IGeomDispCalculator>("GeomDispCalculator");

std::string m_myFCname = "PVIPFilterCriterion" ;

IFilterCriterion* i_myFC =

tool<IFilterCriterion>(m_myFCname, this);

Here you could pass "PVIPFilterCriterion" as an
option.

Introduction to DaVinci— November 2004 Software week – p. 72/85

P. Koppenburg

Practical example

If you need several ParticleFilter tools in a
DVAlgorithm , you need to declare some yourself

declareProperty("ParticleFilter1",

m_MuFilterName = "MuFilter");

declareProperty("ParticleFilter2",

m_JpsiFilterName = "JPsiFilter");

IParticleFilter* m_MuFilter = tool<IParticleFilter>

("ParticleFilter", m_MuFilterName, this);

IParticleFilter* m_JpsiFilter = tool<IParticleFilter>

("ParticleFilter", m_JPsiFilterName, this);

The options:

MyAlg.ParticleFilter1 = { "JPsiFilter" };

MyAlg.ParticleFilter2 = { "MuFilter" };

MyAlg.MuFilter.CriteriaNames = { "KinFilterCriterion" };

MyAlg.JPsiFilter.CriteriaNames = { "MassFilterCriterion" };

Introduction to DaVinci— November 2004 Software week – p. 73/85

P. Koppenburg

Tools
• Have a look at the new Gaudi basics tutorial about writing

tools
• Very often a light-weight tool is the simple solution to a

complicated problem.
• Please use and write FilterCriterion tools
• And let me know when you have a new one to be

released in DaVinci.

Introduction to DaVinci— November 2004 Software week – p. 74/85

P. Koppenburg

MC truth:
• Efficiency algorithms

• DebugTool

• Decay Finder

• All this is based on the
DaVinciAssociators
→ see Philippe’s talk

Introduction to DaVinci— November 2004 Software week – p. 75/85

P. Koppenburg

Efficiency algorithms

DaVinci contains two algorithms that allow to calculate
selection efficiencies

MCEffBuilder: efficiency

EffSelCheck: selection efficiencies

As we will not be using these algorithms on background, it’s
recommended to put the options in a separate file, to be put
after the selection options.

#include "$ANALYSISROOT/options/Efficiency.opts"

Introduction to DaVinci— November 2004 Software week – p. 76/85

P. Koppenburg

Reconstruction efficiency

In $ANALYSISROOT/options/Efficiency.opts, write
ApplicationMgr.TopAlg += { "MCEffBuilder/EffMcTruth" };

EffMcTruth.MCDecay = "[B_s0 -> (phi(1020) -> ˆK+ ˆK-)

(J/psi(1S) -> ˆmu+ ˆmu- {, gamma})]cc";

• It should not be in the Tutorial sequencer (or the
efficiencies would all be 1 by construction)

• MCEffBuilder needs to know the decay descriptor of
the decay.

• Decay descriptors are described on the web. Particles
with a “ˆ” are the ones to be reconstructed.

• But it’s easier to steal them from the EvtGen decay file in
$LHCBRELEASES/DBASE/Gen/DecFiles/v6r3/dkfiles

Introduction to DaVinci— November 2004 Software week – p. 77/85

^
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DBASE/Gen/DecFiles/v6r3/dkfiles/

P. Koppenburg

Reconstruction efficiency
**

*************** Output from MCEffBuilder ***************

**

Decay analyzed (MC truth) [B_s0 -> (phi(1020) -> ˆK+ ˆK-) (J/psi(1S) -> ˆmu+ ˆmu- {, gamma})]cc

Events processed 500

Decay Of Interest Generated (/ Events) 497 0.994

DoIs Gen, Reconstructible (ALL) (/ Generated) 103 0.207243

DoIs Gen, Reconstructed (ALL) (/ Generated) 109 0.219316

DoIs Gen, Rec’ble & Rec’ted (ALL) 92

Rec. efficiency: (Rec’tible & Rec’ted)/Rec’tible (ALL): 0.893204 +- 0.0304323

• A long track is “reconstructible” if it has 3r, 3φ in the Velo,
and 1x, 1 stereo clusters in each of the seeding stations.

• A track can be reconstructed although it is not
reconstructible

• The full definitions are here
Introduction to DaVinci— November 2004 Software week – p. 78/85

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/v8/recrecdefinition.htm

P. Koppenburg

Selection efficiency

In "$ANALYSISROOT/options/Efficiency.opts", write
ApplicationMgr.TopAlg += { "EffSelCheck/EffBs2JpsiPhi" };

EffBs2JpsiPhi.Histograms = true;

EffBs2JpsiPhi.MCDecay = "[B_s0 -> (phi(1020) -> ˆK+ ˆK-)

(J/psi(1S) -> ˆmu+ ˆmu- {, gamma})]cc";

EffBs2JpsiPhi.SelDecay = "[B_s0 -> (phi(1020) -> K+ K-)

(J/psi(1S) -> mu+ mu-)]cc";

• The MC decay descriptor is the same as before.
• The selection decay is what we actually reconstruct.

There are no “ˆ” needed.
• EffSelCheck produces a histograms of m, P , PT , z, r,
zPV, rPV, decay distance and flight time for all initial and
intermediate particles and for MC truth, selected and
associated.

Introduction to DaVinci— November 2004 Software week – p. 79/85

^

P. Koppenburg

Selection efficiency
******************* Sub-tree head ... B_s0 *******************

Mass window for this sub-tree head ... 5.3696 +- 0.05 (GeV/c2)

**

DoIs Selected (/ Reconstructed) 44 0.40367

DoIs Selected, in Mass Window 44 0.40367

--

DoIs Sel, Associated (Comp.OR.Chi2) (/ Selected) 44 1

DoIs Sel, Assoc (Comp.OR.Chi2), in Mass Window 44 1

--

Efficiency: (Sel and Assoc(.OR.))/Reconstructed 0.40367 +- 0.0469941

Efficiency: (Sel and Assoc(.OR.) and Mass)/Reconstructed 0.40367 +- 0.0469941

Purity: (Selected and Associated(.OR.))/Selected 1 +- 0

• Looking at the Bs, we have 44 selected
• all being associated to truth
• There are similar tables for J/ψ

Introduction to DaVinci— November 2004 Software week – p. 80/85

P. Koppenburg

The DebugTool

• The debug tool provides a human-readable dump of the
event

• It works both with MC truth and with reconstructed
particles

• It looks like this:

<--- Particle --->

Name E M P Px Py Pz Pt phi Vz

GeV GeV GeV GeV GeV GeV GeV mrad cm

B_s0 255.062 8.686 254.915 -20.824 -0.062 254.063 20.824 -3138.630 -0.891

+-->J/psi(1S) 202.675 3.127 202.651 -19.344 -1.318 201.721 19.389 -3073.579 0.653

|+-->mu+ 91.705 0.106 91.705 -7.480 -1.478 91.388 7.624 -2946.498 -1.077

|+-->mu- 110.970 0.106 110.970 -11.865 0.160 110.334 11.866 3128.083 -0.684

+-->phi(1020) 52.387 1.030 52.377 -1.479 1.256 52.341 1.941 2437.643 -0.941

+-->K- 21.810 0.494 21.804 -0.498 0.523 21.792 0.723 2331.488 -0.806

+-->K+ 30.577 0.494 30.573 -0.981 0.733 30.549 1.225 2500.202 -0.839

Introduction to DaVinci— November 2004 Software week – p. 81/85

P. Koppenburg

Debug algorithms

There are provided algorithms that call the debug tool:

DumpEvent: No options. Dumps the whole MC event.
PrintTree: Prints the reconstructed tree

Tutorial.Members += { "PrintTree/PrintFoundBs" };

PrintFoundBs.DebugTool.Informations = "Name E M P Px Py Pz Pt phi Vz" ;

PrintFoundBs.PhysDesktop.InputLocations = { "Phys/Bs2JpsiPhi" } ;

PrintFoundBs.OutputLevel = 3 ;

PrintMCTree: Prints the MC decay tree of particles of a given
ID
Tutorial.Members += { "PrintMCTree/PrintTrueBs" };

PrintTrueBs.DebugTool.Informations = "Name E M P Px Py Pz Pt phi Vz" ;

PrintTrueB.ParticleNames = { "B_s0", "B_s˜0" } ;

PrintTrueBs.OutputLevel = 3 ;

PrintTrueB.Depth = 2; // down to the K and mu

Introduction to DaVinci— November 2004 Software week – p. 82/85

P. Koppenburg

Using the debug tool

The DebugTool can be used directly from an algorithm, for
instance to print only when something goes wrong. It is not
already present in DVAlgorithm .
• Declare it:

#include "DaVinciMCTools/IDebugTool.h"

• Use it:
IDebugTool* m_debug = tool<IDebugTool>("DebugTool");

m_debug->printTree(part [, depth]);

m_debug->printAncestor(mcpart);

• Configure it:
Jpsi2MuMu.DebugTool.Informations = "Name E M P Px Py Pz Pt phi Vz" ;

Jpsi2MuMu.DebugTool.PrintDepth = 3 ;

• There are other methods and options. Have a look at
DoxyGen.

Introduction to DaVinci— November 2004 Software week – p. 83/85

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_debug_tool.html

P. Koppenburg

Decay Finder
• The decay finder allows to find any decay in the event
• It works both on MC and reconstructed particles
• It uses a decay descriptor string. Look at the DOC.

Practical example:
#include "DaVinciMCTools/I(MC)DecayFinder.h"

I(MC)DecayFinder* m_finder = tool<I(MC)DecayFinder>("(MC)DecayFinder") ;

const (MC)Particle *result = NULL;

while (m_finder->findDecay((mc)parts.result()){

// the decay has been found

m_debug->printTree(result) ;

}

Or just test if a decay is here:
bool found = m_debug->hasDecay((mc)parts) ;

Introduction to DaVinci— November 2004 Software week – p. 84/85

P. Koppenburg

Conclusion

• During the last year DaVinci evolved from a
framework for writing selection code in C++ to a
set of algorithms and tools that allow to perform
many tasks with very little private code.

• If you feel something is missing. Please write
something generic and add it to DaVinci!

• The evolution of DaVinci is now driven by the HLT.
• Encourages the development of generic code
• Forces common components to handle both

on- and offline particles
• Sets up a framework that can also be used for

the stripping

Introduction to DaVinci— November 2004 Software week – p. 85/85

	Introduction to DaVinci
	~
	Assumptions
	Assumptions

	Conventions
	DaVinci Links
	Applications
	Applications

	Packages
	Structure (a bit old)
	Physics Packages (code {v12r3})
	~
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}
	First tryhypertarget {FirstTry}{}

	Even simpler
	Even simpler

	code {DaVinci.opts}
	code {ProtoParticles}?hypertarget {ProtoParticle}{}
	code {Particles}?hypertarget {Particle}{}
	~
	Reminder: Algorithmshypertarget {Algorithms}{}
	Recent changes
	Design it
	Design it
	Design it

	Locations in the TES
	Get the code {Tutorial} packagehypertarget {Tutorial}{}
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options
	Start to write the options

	Let's write the algorithm
	A look at the header file
	Edit the header file
	Constructorhypertarget {Constructor}{}
	Initialisationhypertarget {Initialization}{}
	Initialisation
	code {DVAlgorithm} base-classhypertarget {DVAlgorithm}{}
	Executehypertarget {Execute}{}
	Zoology of DaVinci toolshypertarget {Tools}{}
	The code {PhysDesktop}hypertarget {PhysDesktop}{}
	Get the particles
	Combine the muons
	Vertex fit
	Create the candidate
	Save the new particles
	code {Particles} and code {Vertices}hypertarget {Vertex}{}
	Finalize
	End of code {C++} part
	Options
	Particle Filtering
	Particle Filteringhypertarget {FilterCriterion}{}hypertarget {ParticleFilter}{}
	Run it
	Let's add histograms
	Histogramshypertarget {GaudiHistoAlg}{}
	Histogramshypertarget {GaudiHistoAlg}{}
	Histogramshypertarget {GaudiHistoAlg}{}

	What we have learned so far
	~
	The code {ParticleMaker} toolshypertarget {ParticleMaker}{}
	code {PreLoadParticles}
	The code {CombinedParticleMaker}hypertarget {CombinedParticleMaker}{}
	The code {CombinedParticleMaker}hypertarget {CombinedParticleMaker}{}

	Back to our example options
	Build the Pphi
	Build the Pphi
	Syntax of code {CombineParticles}hypertarget {ConbineParticles}{}
	Build the PsB
	The end!
	code {RefineSelection}hypertarget {RefineSelection}{}
	code {RefineSelection} example
	Cut on daughters
	code {CombineParticles} versus code {RefineSelection}
	code {PIDFilter}hypertarget {PIDFilter}{}
	Listing continued
	Common particles
	code {SelResult}hypertarget {SelResult}{}
	The code {SelResult} objecthypertarget {CheckSelResult}{}
	Ready-to-use option files
	~
	Vertex Fitters
	Geometrical Tool
	Primary vertex
	Reminder about Tools
	Practical example
	Tools
	~
	Efficiency algorithms
	Reconstruction efficiency
	Reconstruction efficiency
	Selection efficiency
	Selection efficiency
	The code {DebugTool}hypertarget {DebugTool}{}
	Debug algorithms
	Using the debug tool
	Decay Finder
	Conclusion

