

2 Getting Started

DaVinci Packge

- DaVinci is a "shell" of Gaudi like, for example, Brunel.
 - All package and directory structure is familiar.
 - The "end-user" just programs Algorithms and Tools.
 - All "familiar" services are available
 - Job options.
 - Histograming.
 - Messaging.
 -
- DaVinci takes care of data reading and package initializations that are of common use.
- DaVinci contains a library of tools that are of common need
 - See next talks....

Interface with Brunel

- Brunel writes a OO-DST (currently a ROOT file).
- DaVinci reads the OOT-DST.
 - It is programmed fully in C++
 - It is based on the new Physics Event Model
 - Generic tools (vertexer, Kinematic Filter, etc...) are in C++
 - "Everybody" should learn C++ (or at least a little)

ProtoParticles

- ProtoParticles are the starting point of the Physics Analysis
- ProtoParticles are the end product of the reconstruction
 - They cannot be changed by the physics analysis
- ProtoParticles have all the links to the reconstruction information used to produce them
 - They are LHCb specific and via this link can know about all detector related information
 - They are heavy and most likely a moving class
- ProtoParticles have a list of valid particleID hypothesis with their probability.
 - . No particle ID is chosen at this point
 - · different analysis will want to do it differently
- ProtoParticles have charge and measured kinematic information
 - A specific particleID is necessary to have all the four momentum components.

2.3 DaVinci Tutorial

Particles and ProtoParticles

- A physics analysis does not interact "directly" with a ProtoParticle but with a Particle
 - It is possible to navigate back to the originating ProtoParticle
- A Particle has ONE chosen particle ID
- A physics analysis starting from DST files have a pre-processing stage to make Particles from ProtoParticles according to some "picking" criteria.
 - Different particles can originate from the same ProtoParticle

For ex: all pions with CL > 40% and all muons where muonID has the highest CL

2.4

DaVinci Tutorial

Particles

- Particles originate either from ProtoParticles or from other Particles
 - They contain detector independent information only

ParticleID particleID according to PDG convention

double charge

HepLorentzVector momentum HepSymMatrix covariance

HepPoint3D pointOnTrack at which the momentum is given

- GenParticles and MCParticles are uncorrelated classes.
 - In order to use Particle Tools, an interface will be provided to populate Particle classes with GenParticles or MCParticles

DaVinci Tutorial

2.5

Tools Needed

- A creator of Particles from ProtoParticles: PhysDesktop
- A Particle Filter Interface and several implemntations:
 - PIDFilter
 - KinematicalFilter

-

- Vertexing algorithms, included constrained and unconstrained fit and the possibility to use the daughters in the vertexing.
- Tools to compute Geometrical variables
 - Impact parameter
 - Distance between vertexes and particles.

- ...

- Particle transporter: Transports a particle to a given z
- Particle stuffer: create "consistent" particles from daughters
- Decay finders and Channel Selection Algorithms.
- MCDecay finder
- Debugging tool
- Associators
- Tagging

2.6 DaVinci Tutorial

Phys packages

FlavourTagging

DaVinciTest

DaVinciAssociators

DaVinciMCTools (Che

(Check with MC truth...)

DaVinciTools

(vertexing, PhysDesktop, etc...)

DaVinciUser (User development...)

PhysSelections

2.7 DaVinci Tutorial

First Try

- Get the Gaudi Package getpack Phys/DaVinci v4r2
- Go to the cmt directory
- Execute

source setup.csh

• Execute gmake

- Go to the job directory
- Execute (xxx the dbs verstion to use)
 DaVinci.job vxxx

(the current version will run the J/Psi K0s selection algorithm)

A.

Main

2.8 DaVinci Tutorial

Options File

- Important lines in DaVinci
 - EventSelector.Input= ..., which selects the input file
 - $-\,$ NTupleSvc.Output= $\,\dots,\,$ which selects the output ntuple file
 - HistogramPersistencySvc.OutputFile= ..., which select the output hitogram file
 - ApplicationMgr.TopAlg+= ... lines, which configure the algorithms to run.
- Selection cuts and other variables are steered in the corresponding algorithms

2.9

Developing an Algorithm

 An "end user" will usually develop algorithms that will user DaVinci Tools

```
Algorithm::Algorithm{
    declareProperty{"CutName",cutVariable=defaultvalue);
}
Algorithm::initialize{
    Initialize all needed tools and services;
    Histograms;
}
Algorithm::execute{
    Next slide
}
Algorithm::finalize{
    Final statistics
}
```

2.10 DaVinci Tutorial

The Execute Member Function

4

2.11 DaVinci Tutorial

A "Possible" Example

- Two options:
 - A selection algorithm that makes vertexes of 4 particles with some cuts in the invariant mass of the lepton and Kaon Pairs
- Three algorithms called in sequence

4

2.12 DaVinci Tutorial

A "Possible" Example (cont'd)

All are particle pairs with "roughly" the same algorithmic sequence

- Select two particles with some PiD
- Make a vertex
- Cut in some mass window and some "Geometrical variables
- Use a swich for additional cuts in "decaying vertex point distance of daughters"
- Use the daughters for the B vertex

Can program a
Select2ParticleDecay
algorithm with carefully
selected option

2.13 DaVinci Tutorial

The Options Files

• In DaVinci.opts file

```
ApplicationMgr.TopAlg+={Slect2ParticleDecay/SelectJPsi};
ApplicationMgr.TopAlg+={Slect2ParticleDecay/SelectPhi};
ApplicationMgr.TopAlg+={Slect2ParticleDecay/SelectBOJPsiPhi};
```

SelectJPsi.opts, SelectPhi.opts and SelectB0JPsiPhi.opts

 \implies The same algorithm could be configured for $B \longrightarrow \pi^+\pi^-...$

2.14

DaVinci Tutorial

Status and "Homework"

- DaVinci version v4r2 is available
 - Try it and "learn"
- Plan that next version of DaVinci does not support Sicb anymore
 - Nevertheless, the software you have written will not change
 - Only the ProtoParticles will change. From then on everything remains the same
- As soon as different Physics Selection become "official", they will be included in the PhysSelection package

2.15 DaVinci Tutorial