AHES

Network Processors in the LHCb DAQ System

Presentation given at the

Atlas Tr'ig% r/DAQ Week's
Readout Sub-System Session
July 2001

Beat Jost & Niko Neufeld
Cern / EP



%Ouﬂine

A LHCb Introduction

3 Network Processor Introduction

A Application to Data Multiplexing/Merging

d Performance for Data Multiplexing/Event-Building
d Board-Level Integration - first ideas

3 Plans

A Conclusion

Beat Jost, Cern



%LHCb Introduction - Architecture
LHCb DAQ Architecture
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%LHCb Introduction - Protocol

The protocol for the data flow of LHCb is a pure push-
through protocol, i.e. every source of data sends them on as
soon as available.

Motivation:

> Major simplification of the individual components (important for
large numbers)

Complete events are transferred to CPU farm for software
triggering
Motivation:

> Full flexibility and efficiency of the software triggers, without
prejudice on the readout protocol, at the cost of higher
bandwidth needed
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%Im‘roduc’rion to Network Processors

a

Network Processors are a new technology gaining very much in
momentum in the switch industry. All major chip manufacturers are
working on them (IBM, Intel, Motorola, ..)

Target market are switch manufacturers using them as input stage
of high-speed switches.

Consist of a set of RISC core processors (usually multithreaded in
hardware) with specialized co-processors for functions like tree-
lookup or checksum calculations, all on one chip

RISC processors are specialized at frame manipulations

We somehow abuse them for doing event-building (assembly of
several data frames to one bigger one) in networked DAQ systems

We focus for the time being on the IBM NP4GS3(B) Network
Processor
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NP4GS3 - General Architecture
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NP4GS3 - Data Flow
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%Developmen’r Environment and Experience

d There is a very elaborate development environment
available, consisting of
> Assembler
> Simulator/Debugger
> Profiler for performance studies
> Reference hardware kit (equivalent in functionality Yo what we
want to have on a board)
d Our experience is very positive

> Without the simulator it is impossible to develop and test code
(specially if there are problems with synchronization)

> The performance measurements need to be confirmed with real
hardware

> There are still a few undesired features that will hopefully be
ironed out eventually.
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%Pem‘ormance for 4:1 Event-Building

Optimized for very small incoming
fragments (30-60 Bytes)

Optimized for larger incoming
fragments (~500 Bytes)

Two versions of the code written, debugged and simulated (cycle precise)
taking into account contentions for shared resources
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%Profi ler Information

Cycles (7.5 ns)
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%Firs’r Ideas on Board-Level Integration

Carrier Board with all the infrastructure (Power, Clock) and the link to

the controls system plus mezzanine cards holding the NPs
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%Mezzanine Card Architecture
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%Applica’rions in LHCb (potential)

Q The module envisaged is very
generic. It could be used for
> Front-End
Multiplexing/Readout Unit
> Building block for the readout
network (8-port switch)

> Final event-building element
downstream of the readout
network as a replacement of
“smart NICs"

Q Uniform Hardware. The
software loaded determines
the functionality

Q Of course there is a bias to

GbE in the approach -> need
Slink implementation over GbE
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%Plans

 Acquired a reference kit to verify measurements on real
hardware. Remember that the reference kit is
functionally equivalent to the hardware outlines before.

d We are negotiating the design of the mezzanine card with
several companies (COSTI)

A Internal review of the LHCb FEM/RU complex on July 24
> Alternative proposals for RU (FPGA-based, NP-based)
> Criteria will be performance, flexibility, maintainability, cost

1 Decision on base-line option before September 2001
1 TDR submission end 2001 with baseline option.
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%Ovemll LHCb Planning concerning NPs
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%Conclusion

d Network Processors are a promising technology to be applied to
network-based DAQ systems

d A very elaborate development environment is available

1 We have outlined a generic module that could serve all
functions throughout the LHCb DAQ System

Q The performance achieved with the first version of the code is
shown by simulation to be largely sufficient for LHCb and we
achieve more than wire-speed performance for all practical
purposes

A Technically NPs are far superior to anything else for the
application they are meant for (not completely unbiased...). THE
basic ‘problem’ is o get the cost under control

A Of course we are ready to collaborate on the use of NPs with
everybody at all levels (software, hardware, experience,...)
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%Possible Application in Atlas
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