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Outline

q LHCb Introduction
q Network Processor Introduction
q Application to Data Multiplexing/Merging
q Performance for Data Multiplexing/Event-Building
q Board-Level Integration – first ideas
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q Conclusion
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LHCb Introduction – Architecture
LHCb DAQ Architecture
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Data-Flow Requirements:
•L1-Rate: 40-100 kHz
•Event Size: ~150 kB
•Data Rate: 6-15 GB/s
Multiplexing factors
In FEM/RU: ~4-~16:1
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LHCb Introduction - Protocol

The protocol for the data flow of LHCb is a pure push-
through protocol, i.e. every source of data sends them on as 
soon as available. 
Motivation:

ã Major simplification of the individual components (important for
large numbers)

Complete events are transferred to CPU farm for software 
triggering
Motivation:

ã Full flexibility and efficiency of the software triggers, without 
prejudice on the readout protocol, at the cost of higher 
bandwidth needed
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Introduction to Network Processors

q Network Processors are a new technology gaining very much in 
momentum in the switch industry. All major chip manufacturers are 
working on them (IBM, Intel, Motorola, …)

q Target market are switch manufacturers using them as input stage
of high-speed switches.

q Consist of a set of RISC core processors (usually multithreaded in 
hardware) with specialized co-processors for functions like tree-
lookup or checksum calculations, all on one chip

q RISC processors are specialized at frame manipulations

q We somehow abuse them for doing event-building (assembly of 
several data frames to one bigger one) in networked DAQ systems

q We focus for the time being on the IBM NP4GS3(B) Network 
Processor
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NP4GS3 - General Architecture

4x1Gb or 40x100Mb
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NP4GS3 - Embedded Processor Complex

1 Dyadic Protocol Processor Unit
= 4 Threads sharing one set of 

Coprocessors
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NP4GS3 - Data Flow

Main Data
Flow

Access for
Data Processing
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Development Environment and Experience

q There is a very elaborate development environment 
available, consisting of
ã Assembler
ã Simulator/Debugger
ã Profiler for performance studies
ã Reference hardware kit (equivalent in functionality to what we 

want to have on a board)
q Our experience is very positive

ã Without the simulator it is impossible to develop and test code
(specially if there are problems with synchronization)

ã The performance measurements need to be confirmed with real 
hardware

ã There are still a few undesired features that will hopefully be 
ironed out eventually.
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Performance for 4:1 Event-Building

Two versions of the code written, debugged and simulated (cycle precise) 
taking into account contentions for shared resources

àFor all practical purposes we achieve wire-speed event-building 
performance

Optimized for larger incoming 
fragments (~500 Bytes)

Optimized for very small incoming 
fragments (30-60 Bytes)

Performance Dependance on Fragment Size
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Scaling…
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Profiler Information
Cycles per Dispatch Thread 10
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First Ideas on Board-Level Integration
Carrier Board with all the infrastructure (Power, Clock) and the link to 
the controls system plus mezzanine cards holding the NPs
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Mezzanine Card Architecture

Benefits:
•Most complex 
parts confined

•Much less I/O 
pins (~300 
compared to 
>1000
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Applications in LHCb (potential)

q The module envisaged is very 
generic. It could be used for
ã Front-End 

Multiplexing/Readout Unit
ã Building block for the readout 

network (8-port switch)
ã Final event-building element 

downstream of the readout 
network as a replacement of 
“smart NICs”

q Uniform Hardware. The 
software loaded determines 
the functionality

q Of course there is a bias to 
GbE in the approach -> need 
Slink implementation over GbE
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Plans

q Acquired a reference kit to verify measurements on real 
hardware. Remember that the reference kit is 
functionally equivalent to the hardware outlines before.

q We are negotiating the design of the mezzanine card with 
several companies (COST!!!)

q Internal review of the LHCb FEM/RU complex on July 24
ã Alternative proposals for RU (FPGA-based, NP-based)
ã Criteria will be performance, flexibility, maintainability, cost

q Decision on base-line option before September 2001
q TDR submission end 2001 with baseline option.
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Overall LHCb Planning concerning NPs
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Conclusion

q Network Processors are a promising technology to be applied to 
network-based DAQ systems

q A very elaborate development environment is available
q We have outlined a generic module that could serve all 

functions throughout the LHCb DAQ System
q The performance achieved with the first version of the code is 

shown by simulation to be largely sufficient for LHCb and we 
achieve more than wire-speed performance for all practical 
purposes

q Technically NPs are far superior to anything else for the 
application they are meant for (not completely unbiased…). THE 
basic ‘problem’ is to get the cost under control

q Of course we are ready to collaborate on the use of NPs with 
everybody at all levels (software, hardware, experience,…)
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Possible Application in Atlas
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