Optimising the search for *CP* violation in $D_S^+ \to K^+ \pi^+ \pi^-$ decays at LHCb

Using forward-backward asymmetry as a probe for CPV

Summer Project 2021 Olaf Massen

Supervisors: Dr. Nathan Philip Jurik Dr. Laurent Dufour

Removing background: BDTG

- $D_{\rm S}^+$ Impact parameter of primary vertex
- Secondary vertex χ^2
- $D_{\rm S}^+$ Pseudorapidity
- $D_{\rm S}^+$ transverse and total momentum
- $D_{\rm S}^+$ decay length and lifetime
- $D_{\rm S}^+$ flight distance to primary vertex
- Daughter track isolation variables

Cut a signal efficiency of 75% \rightarrow Background rejection 82%

FOCUS collaboration

Resonances: *K**(892) $\rho(770)$ NR *K**(1410) $K_0^*(1430)$ $\rho(1450)$

Summer Project 2021, Olaf Massen

LHCb collaboration

Improved Model

Resonances:

*K**(892) $\rho(770)$ NR *K**(1410) $K_0^*(1430)$ $\rho(1450)$ $f_0(980)$ $f_0(1370)$ $K_{2}^{*}(1430)$ $\omega(782)$ $f_2(1270)$

Summer Project 2021, Olaf Massen

Based on $3.5 \cdot 10^6$ events

Improvement, yet still incomplete. Still useful for sensitivity study!

LHCb collaboration

Regional charge asymmetry

$$A_{CP} = \frac{\#D_s^+ - \#D_s^-}{\#D_s^+ + \#D_s^-}$$

Summer Project 2021, Olaf Massen

Forward-Backward charge asymmetry in helicity angle

Z.-H. Zhang, Phys.Lett.B 820 (2021) \rightarrow Twice as much statistics

LHCb collaboration

Simulating CP violation

$\begin{aligned} A_{\rho} &= |A| e^{i\phi} \\ \rightarrow \Delta |A| \in \{-0.2\%, -0.1\%, 0\%, 0.1\%, 0.2\%\} \\ \rightarrow \Delta \phi \in \{-0.2^{\circ}, -0.1^{\circ}, 0^{\circ}, 0.1^{\circ}, 0.2^{\circ}\} \end{aligned}$

Summer Project 2021, Olaf Massen

LHCb collaboration

Sensitivity results (1 toy example)

Significance of ACP

Summer Project 2021, Olaf Massen

$1.5 \cdot 10^7 D_S^+ \& 1.5 \cdot 10^7 D_S^-$

LHCb collaboration

Sensitivity results (1 toy example)

ΔA	$\Delta \phi$	Global A _{CP-FB}	σ	Angle	Best Bin	A_{CP}	σ	Best Bin	A_{CP-FB}	σ	Ang
0.0 %	$ -0.1^{\circ} +0.1^{\circ}$	$ \begin{vmatrix} (-0.013 \pm 0.018)\% \\ (-0.018 \pm 0.018)\% \end{vmatrix} $	$\left \begin{array}{c} 0.7\\ 1.0\end{array}\right $	$egin{array}{c} heta_{13} \ heta_{12} \end{array}$	11 12	$(0.158 \pm 0.074)\%$ $(0.614 \pm 0.268)\%$	$\begin{vmatrix} 2.1 \\ 2.3 \end{vmatrix}$	10 12	$ \begin{array}{l} (-0.388 \pm 0.136)\% \\ (0.630 \pm 0.268)\% \end{array} $	$\begin{array}{c c} 2.9\\ 2.4 \end{array}$	$egin{array}{c} heta_1 \ heta_1 \ heta_1 \ heta_1 \end{array}$
-0.1%	$ \begin{array}{c} -0.1^{\circ} \\ 0.0 \\ +0.1^{\circ} \end{array} $	$ \begin{vmatrix} (0.030 \pm 0.018)\% \\ (-0.038 \pm 0.018)\% \\ (-0.043 \pm 0.018)\% \end{vmatrix} $	$ \begin{array}{ c c c } 1.7 \\ 2.1 \\ 2.4 \\ \end{array} $	$\begin{array}{c} \theta_{13} \\ \theta_{12} \\ \theta_{23} \end{array}$	21 26 11	$\begin{array}{l}(0.242\pm0.109)\%\\(-0.353\pm0.119)\%\\(-0.152\pm0.074)\%\end{array}$	$ \begin{array}{c c} 2.2 \\ 3.0 \\ 2.0 \end{array} $	21 26 11	$ \begin{array}{ } (-0.253 \pm 0.109)\% \\ (-0.353 \pm 0.119)\% \\ (-0.152 \pm 0.074)\% \end{array} $	$ \begin{array}{c c} 2.3 \\ 3.0 \\ 2.0 \end{array} $	$\begin{array}{c c} \theta_1 \\ \theta_1 \\ \text{All t} \\ \theta_{12} \text{ an} \end{array}$
+0.1%	$ \begin{array}{c} -0.1^{\circ} \\ 0.0 \\ +0.1^{\circ} \end{array} $	$ \begin{vmatrix} (0.028 \pm 0.018)\% \\ (-0.026 \pm 0.018)\% \\ (-0.045 \pm 0.018)\% \end{vmatrix} $	$ \begin{array}{ c c c } 1.6 \\ 1.4 \\ 2.5 \\ \end{array} $	$\begin{array}{c} \theta_{23} \\ \theta_{13} \\ \theta_{12} \end{array}$	9 9 13	$(-0.288 \pm 0.103)\%$ $(-0.215 \pm 0.103)\%$ $(-0.190 \pm 0.068)\%$	$ \begin{array}{ c c c } 2.8 \\ 2.1 \\ 2.8 \\ \end{array} $	21 21 13	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 2.8 \\ 2.2 \\ 2.8 \end{array} $	$egin{array}{c} heta_1 \ heta_1 $

Forward-backward charge asymmetry not twice as sensitive, but in some regions more sensitive than "regular" charge asymmetry

Summer Project 2021, Olaf Massen

Outlook

With an increased number of MC events \rightarrow Improve BDTG

 \rightarrow Improve detector efficiency map

In general

 \rightarrow Introduce CPV in multiple resonances

 \rightarrow Use K-matrix formalism

 \rightarrow Performing the CPV analysis on data

Back Up

Summer Project 2021, Olaf Massen

LHCb collaboration

MC Efficiency for BDTG cut at 0.4

Summer Project 2021, Olaf Massen

Detector efficiency estimation

Summer Project 2021, Olaf Massen

Example of residual background subtraction

Summer Project 2021, Olaf Massen

Summer Project 2021, Olaf Massen

LHCb collaboration

Dalitz plot of Improved model

Summer Project 2021, Olaf Massen

LHCb collaboration

Uniform binning of DP

Summer Project 2021, Olaf Massen

Phase over DP: Physical Binning

Summer Project 2021, Olaf Massen

LHCb collaboration

Phase over DP: Uniform binning

Summer Project 2021, Olaf Massen

LHCb collaboration

Uniform Binning results

ΔA	$\Delta \phi$ Global A_{CP-FB}	σ	Angle	Best Bin	A_{CP}	σ	Best Bin	A_{CP-FB}	σ	Ang
0.0 %		0.7 1.0	$ heta_{13} \\ heta_{12}$	11 12	$\begin{array}{l} (0.158 \pm 0.074)\% \\ (0.614 \pm 0.268)\% \end{array}$	$\begin{vmatrix} 2.1 \\ 2.3 \end{vmatrix}$	10 12	$\begin{array}{l}(-0.388\pm 0.136)\%\\(0.630\pm 0.268)\%\end{array}$	$2.9 \\ 2.4$	$\left \begin{array}{c} heta_{12} \\ heta_{13} \end{array} \right $
-0.1%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c} 1.7 \\ 2.1 \\ 2.4 \end{array} $	$\begin{array}{c} \theta_{13} \\ \theta_{12} \\ \theta_{23} \end{array}$	21 26 11	$(0.242 \pm 0.109)\%$ $(-0.353 \pm 0.119)\%$ $(-0.152 \pm 0.074)\%$	$ \begin{array}{c c} 2.2 \\ 3.0 \\ 2.0 \end{array} $	21 26 11	$\begin{array}{l}(-0.253 \pm 0.109)\% \\(-0.353 \pm 0.119)\% \\(-0.152 \pm 0.074)\%\end{array}$	$\begin{array}{c c} 2.3 \\ 3.0 \\ 2.0 \end{array}$	$\begin{array}{c c} \theta_{13} \\ \text{All th} \\ \theta_{12} \text{ and} \end{array}$
+0.1%	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1.6 \\ 1.4 \\ 2.5$	$\theta_{23}\\\theta_{13}\\\theta_{12}$	9 9 13	$(-0.288 \pm 0.103)\%$ $(-0.215 \pm 0.103)\%$ $(-0.190 \pm 0.068)\%$	2.8 2.1 2.8	21 21 13	$\begin{array}{c} (-0.308 \pm 0.109)\% \\ (-0.237 \pm 0.109)\% \\ (-0.190 \pm 0.068)\% \end{array}$	2.8 2.2 2.8	$\left \begin{array}{c} \theta_{13} \\ \theta_{13} \\ \theta_{12} \end{array} \right _{\theta_{12}}$

Summer Project 2021, Olaf Massen

