Detector Description in LHCb

Detector Description Workshop
22 May 2001
P. Mato / CERN

Contents

- Architecture
- Technical Choices
- Current Implementation Status
- Plans
Architecture

- Sub-Architecture of Gaudi
 - Same principles
 - Transient/Persistent representations
- Focus on the “Physics Algorithm”
- Coherent access to “all” detector data
 - Geometry, Calibration, Slow Control, etc.

Logical Structure

- The basic object is a Detector Element
 - Identification
 - Navigation (tree-like)
- DetElement as information center
 - Be able to answer any detector related question
 » E.g. global position of strip#, temperature of detector, absolute channel gain, etc.
 - Placeholder for specific code
 » The specific answers will be coded by “Physicists”
Algorithm Accessing Detector Data

Diagram:
- Algorithm
- DetectorData Service
- Persistance Service
- IGeometryInfo
- ICaldibration
- IReadOut
- Geometry
- Conditions DB
- Other DBs
- DetElement

Notes:
- Manages store
- Synchronization updates

Simplified Diagram (simplified)

Diagram:
- DataObject
- Hierarchy
- DetectorElement
- IGeometryInfo
- IReadOut
- ReadOut
- Calibration
- MuonStation

Notes:
- Specific detector description questions from algorithms

Related:
- DetElement
- IGeometryInfo
- ICalibration
- IReadOut
- Geometry
- Conditions DB
- Other DBs
Interfacing with Geant4

- We integrate Gaudi with Geant4 by providing a number of “Gaudi Services” (GiGa)
- The GiGaGeomCnvSvc is able to convert transient objects (DetElem, LVolume, Surfaces, etc.) into G4 geometry objects
 - The conversion do not require “user” code
 - Flexibility in mapping Gaudi model to Geant4 model
- Single source of Geometry information

Geometry Visualization

- Visualization is essential for developing the geometry
 - Applicable at the different data representations
- Generic geometry information conversion to 3D graphics data
- GaudiLab (Onx)
Conditions DB

- Accessing detector conditions data (calibration, slow control, alignment, etc.) should be the same as geometry data
 - Time validity period
 - Versioning
- Detector geometry may simply be a concrete type of conditions data
 - Store it using the same DB implementation

Persistency based on XML files

- XML is used as persistent representation of the Structure, Geometry and Materials (eventually also Conditions)
- Mapping each C++ class into an XML element
 - Inheritance emulation (Generic and Specific Detector Element)
 - Relationships using “Links” and symbolic names
- Allow math expressions with parameters and physical units
 - Using expression evaluator (available in CLHEP)
XML Converters

- Capable of converting (one way for the time being) XML into C++ objects
 - Originally using SAX interface, re-implemented with DOM (Xerces-C)
 - Specific converters for specific “DetElement”
- Available Converters
 - Structure: Catalog, DetElement
 - Geometry: LVolume, Surface, Solids (various shapes, boolean), PVolumes (parametric)
 - Materials: Isotope, Element, Mixture, TabulatedProperty

XML Files

- Separated XML files
 - By sub-detector and data type (structure, geometry, material)
 - Low coupling of developments
- Versioning done using CVS
- Possible migration to the “Conditions DB”
XML Detector Description Editor

- Developed an graphical editor to “hide” XML to the end-users (physicists)
 - It understands our model (DTD)
 - It understands “links” and allow us to edit a web of XML files
 - Generic (possible to use another DTD)
 - Implemented in Java (portable)
Status of LHCb Detector Description

- The DetDesc framework is functional (transient classes, XML DTD, XML converters, editor, etc)
- Several sub-detectors are already describing their structure and geometry using the provided framework
 - Calorimeters (HCAL, ECAL,...), RICH, ...
- Other sub-detectors (+Magnet) coming soon
- Visualization based on OnX (GaudiLab)
- Conversion to Geant4 exists
 - Ready to start tests with G4 in Gaudi

Example

- The complete LHCb detector geometry
Example (2)

- Detailed view of the VELO and RICH I

Plans

- Continue with the consolidation and deployment of the DetDesc framework
 - Most of sub-detector code still needs to be developed. We will discover new use-cases.
- Study the possibility of generating XML converters using data dictionary services
- Integration with Conditions DB
 - Uniform access from Algorithms
 - Wish to format conditions data in XML