Detector Description in LHCb (Extended Version)

Detector Description Workshop

4 July 2002

S. Ponce - CERN

Contents

- ◆ Gaudi Architecture Overview
- Transient Store Mechanism
- Detector Description
- XML Persistency
- User extensions of the schema
- Visualization
- Simulation: Interfacing Geant4
- Condition Database

Definition of Terms

- Algorithm

- » Atomic data processing unit (visible & controlled by the framework)
- » Written by physicists, Called once per physics event
- Service
 - » Globally available software component providing some functionality
- Data Object
 - » Atomic data unit (visible and managed by transient data store)
- Transient Store
 - » Central service and repository for objects (load on demand)

Gaudi Object Diagram

Interfaces

Interfaces in Practice

IMyInterface.h

```
class IMyInterface {
  virtual void doSomething( int a, double b ) = 0;
}
```

ClientAlgorithm.cpp

```
#include "IMyInterface.h"

ClientAlgorithm::myMethod() {
    // Declare the interface
    IMyInterface* myinterface;
    // Get the interface from somewhere
    service("MyServiceProvider", myinterface);
    // Use the interface
    myinterface->doSomething( 10, 100.5);
}
```


Gaudi Services

- JobOptions Service
- Message Service
- Particle PropertiesService
- Event Data Service
- Histogram Service
- N-tuple Service
- Detector Data Service
- Magnetic Field Service

- Tracking MaterialService
- Random NumberGenerator
- Chrono Service
- (Persistency Services)
- (User Interface & Visualization Services)
- (Geant4 Services)

Algorithm & Transient Store

Data Reside In Data Store

- Tree similar to file system
- Identification by path "/Event/MCEvent/MCEcalHit" "/dd/Geometry/Ecal/Station1"
- Objects loaded on demand

Understanding Transient Store Loading

Detector Description

Detector Description

- Logical Structure
 - Breakdown of detectors
 - Identification
- ◆ Geometry Structure
 - Hierarchy of geometrical volumes
 - Logical Volumes (unplaced dimensioned shape)
 - PhysicalVolumes (placed volume)
- Other detector data
 - Calibration, Alignment, Readout maps, Slow control, etc.

Logical Structure

- The basic object is a Detector Element
 - Identification
 - Navigation (tree-like)
- DetElement as information center
 - Be able to answer any detector related question
 - » E.g. global position of strip#, temperature of detector, absolute channel gain, etc.
 - Placeholder for specific code
 - » The specific answers will be coded by physicists

Algorithm Accessing Detector Data

Algorithm Accessing Detector Data

```
Algorithm code fragment (initialize() or execute())
SmartDataPtr<MyDetElement> mydet(detSvc(),
                                  "Structure/LHCb/MyDet");
if( !mydet ) {
  log << MSG::ERROR << "Can't retrieve MyDet" << endmsg;</pre>
  return StatusCode::FAILURE;
// get the number of sub-DetectorElements
ndet = mydet->childIDetectorElements().size()
// get the material
material = mydet->geometry()->lvolume()->materialName();
```

Geometry Information

- Constructed using Logical and Physical Volumes (Geant 4)
 - Logical Volume: Unplaced detector described as a solid of a given material (optional) and a set of daughters (physical volumes).
 - Physical Volume: Placement of a logical volume (rotation & translation).

Solids

- A number of basic shapes (boxes, tubes, cones, trds, spheres,...) with dimensions
- Boolean solids (unions, intersections and subtractions)

Algorithm Accessing Geometry Info

```
IGeometryInfo* geom = mydetelem->geometry();
```

IGeometryInfo

Two Hierarchies

Class Diagram (Simplified)

Transient Store Organization

- Standard Gaudi
 Transient Store
 - "Catalogs" of Logical
 Volumes and Materials
 - "Structure" as a tree
 - All elements identified with names of the form: /xxx/yyy/zzzz

Persistency Based on XML Files

- XML is used as persistent representation of the Structure, Geometry and Materials
- Why XML?
 - Instead of inventing our own format use a standard one (extendible)
 - Many available Parsers and Tools
 - Strategic technology

The LHCb Detector DTD

- Divided into 3 main parts
 - » structure
 - » geometry
 - » material
- External DTDs, to be referenced in every LHCb
 XML files

Some Specificities

Expressions evaluator – units & functions known

```
12.2*mm + .17*m / tan (34*degree)
```

parameter : a kind of macro

```
<parameter name="InCell" value="40.6667*mm"/>
```

<parameter name="MidCell" value="1.5*InCell"/>

• References : element + "ref"

<detelemref href="LHCb/structure.xml#LHCb"/>

protocol://hostname/path/file.xml#ObjectID

Structure Elements

- DDDB: the root
- catalog : a list
- detelem : a detector element
- geometryInfo : connection to the geometry
- userParameter(Vector) : hookfor adding parameters
- specific : hook for extending the DTD

```
<DDDB>
<catalog name="...">
  <detelem name="...">
   <geometryinfo
        lvname="..."
       npath="..."
        support="..."/>
   <userParameter</pre>
       comment="..."
       name="..."
       type="string">
   </userParameter>
   <specific>
   </specific>
  </detelem>
</catalog>
</DDDB>
```

Geometry Elements (1)

- DDDB : the root
- catalog : a list
- logvol : logical volume
- physvol : physicalvolume
- paramphysvol(2D)(3D):replication of physicalvolumes
- tabproperty : tabulatedproperties

```
<DDDB>
 <catalog name="...">
  <logvol material="..."</pre>
           name=" ">
   <physvol logvol="..."</pre>
             name="..."/>
  </logvol>
  <loqvol name="...">
   <paramphysvol number="5">
    <physvol logvol="..."</pre>
               name="..."/>
    <posXYZ z="20*cm"/>
   </paramphysvol>
  </logvol>
 </catalog>
</DDDB>
```

Geometry Elements(2)

- posXYZ, posRPhiZ, posRThPhi:translations
- rotXYZ, rotAxis : rotations
- transformation: composition of transformations
- box, trd, trap, cons, tub, sphere,polycon
- union, intersection, subtraction:boolean solids
- surface

Material Elements

- materials : the root
- catalog : a list
- tabproperty : tabulatedproperties
- atom
- isotope
- element : a mixture of isotopes
- material: mixtures of elements or materials

```
<isotope A="11*q/mole"</pre>
          name="Bor 11" .../>
<element name="Boron"</pre>
          symbol="B" ...>
  <isotoperef href="#Bor 10"</pre>
         fractionmass="0.20"/>
  <isotoperef href="#Bor 11"</pre>
         fractionmass="0.80"/>
</element>
<element name="Oxygen"</pre>
          symbol="O" ...>
  <atom A="16*q/mole"
         Zeff="8.0000"/>
</element>
<material name="CO2" ...>
  <component name="Carbon"</pre>
               natoms="1"/>
  <component name="Oxygen"</pre>
               natoms="2"/>
</material>
```

XmlEditor

- Explorer-like XML viewer
- No need to know XML syntax
- Checks the DTD when opening a file
- Allows copy, paste and drag and drop of nodes
- Allows view of several files at the same time
- Hide references across files

\$LHCBSOFT/Det/XmlEditor/v*/scripts/xmlEditor(.bat)

http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/XmlEditor.pdf

XMLEditor

Conversion From XML to C++

- Converters used to build C++ objets from XML
- One converter per object type
 - » XmlDetectorElementCnv
 - » XmlLVolumeCnv
 - » XmlMixtureCnv
 - » XmlMuonStationCnv
 - **>>** ...
 - » XmlMySubDetCnv
- almost 1 to 1 mapping between XML elements
 and C⁺⁺ objects
- Uses the xerces-C parser Could use any DOM parser

First Summary

- We are able to reach the geometry description from the C⁺⁺ transient world
- Everything is transparent for the C⁺⁺ user,
 there is no need to know it comes from XML
- At this point, we have no way to extend the schema and especially to add specific parameters to a detector element

Specializing Detector Elements

- 1. adding userParameter(vector)s to default DetectorElements
- 2. extending and specializing the Detector Element object in C++, using user Parameters in XML
- 3. extending XML DTD and writing a dedicated converter

Specializing by using UserParameter[Vector]

- Two elements:
 <userParameter> and <userParameterVector>
- ◆ 3 string attributes: name, type and comment
- ◆ One value given as text

```
<userParameter
comment="blablabla"
name="description"
type="string">
Calibration channels
</userParameter>
```

```
<userParameterVector
name="NbChannels"
type="int"
comment="blabla">
530 230
570 270
</userParameterVector>
```

C⁺⁺ API for userParameters

Methods on DetectorElement for userParameters:

- string userParameterAsString (string name)
- double userParameterAsDouble (string name)
- int userParameterAsInt (string name)

The equivalent exist for userParameterVectors

```
std::string description = elem->userParameterAsString ("description");
std::vector<int> channelNbs = elem->userParameterVectorAsInt ("NbChannels");

log << MSG::INFO << description << " : ";
for (std::vector<int>::iterator it = channelNbs.begin();
    it != channelNb.end();
    it++)
    log << *it;
log << endreq;</pre>
```


Extending Detector Elements

- Free extension of the Detector Element class
- Specific initialization using initialize()
 - called after conversion
 - access to userParameters
- A converter is needed but very simple (4 lines)

Full Customization

- extension of the DTD to define new XML elements
- parsing of the new XML code using the xerces parser
- "real" converters to initialize C⁺⁺ objects according to XML

The <Specific> Element

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "extendedDtd.dtd">
<DDDB>
  <detelem classID="7294" name="Head">
    <qeometryinfo .../>
    <specific>
      <channelSet description="..." name="Controls">
        <channels description="Inputs" nb="20"/>
        <channels description="Outputs" nb="150"/>
      </channelSet>
      <channelSet description="..." name="Data">
        <channels description="head" nb="2000"/>
      </channelSet>
    </specific>
  </detelem>
</DDDB>
```

Writing a Converter

One needs:

- to get a C⁺⁺ representation of the XML
 (DOM tree)
- to deal with expressions and parameters
- to reuse existing code (only convert specific XML elements !!!)

Implementing the Converter

- Real converter =
- extension of XmlUserDetElemCnv<DeType>
- implementation of method
 StatusCode i_fillSpecificObj (DOM_Element, DeType*)
- i_fillSpecificObj is called once per direct child of tag
 <specific>
- the DOM_Element is given, the DeType object was created and must be populated
- all other elements (not inside <specific>) are automatically converted

Converter Example (1)

```
class XmlMyDetElemCnv :
  public XmlUserDetElemCnv<MyDetElem> {
public:
  XmlMyDetElemCnv (ISvcLocator* svc);
  ~XmlMyDetElemCnv() {}
protected:
  virtual StatusCode i fillSpecificObj
    (DOM Element childElement,
     MyDetElem* dataObj);
};
static CnvFactory<XmlMyDetElemCnv> s Factory;
const ICnvFactory& XmlMyDetElemCnvFactory = s Factory;
XmlMyDetElemCnv::XmlMyDetElemCnv(ISvcLocator* svc) :
  XmlUserDetElemCnv<MyDetElem> (svc) {}
```


Converter Example (2)

```
StatusCode XmlMyDetElemCnv::i fillSpecificObj
  (DOM Element childElement, MyDetElem* dataObj) {
  std::string elementName =
     dom2Std (childElement.getNodeName());
  if ("channelSet" == elementName) {
    const std::string name = dom2Std
      (childElement.getAttribute ("name"));
    const std::string description = dom2Std
      (childElement.getAttribute ("description"));
    dataObj->addChannelSet(name, description);
  } else {
```


Panoramix

Geometry Visualization

- Visualization is essential for developing the geometry
 - Applicable at the different data representations
- Generic geometry information conversion to 3D graphics data
- Panoramix (OnX)

Panoramix

- Events and Geometry viewer
- Takes LHCb specificities into account
 - » references
 - » logical volumes hierarchy
 - » subDetectors
- Interactive move inside the geometry

\$LHCBSOFT/Vis/Panoramix/v*/scripts/panoramix(.bat) http://www.lal.in2p3.fr/SI/Panoramix/tutorial/tutorial.html

Panoramix GUI

Event Visualization

Zoom on Ecal

The VisualizationSvc

- A Gaudi service
- Used by Panoramix/Geant4 converters
- Allows independent customisation of visualization, shared by all visualization softwares
- Takes into account :
 - colors (with alpha channel)
 - visibility
 - open status
 - display mode (wire Frame, Plain)

Geant4

Interfacing With Geant4

- We integrate Gaudi with Geant4 by providing a number of "Gaudi Services" (GiGa)
- The GiGaGeomCnvSvc is able to convert transient objects (DetElem, LVolume, Surfaces, etc.) into G4 geometry objects
 - The conversion does not require "user" code
 - Flexibility in mapping Gaudi model to Geant4 model
- Single source of Geometry information

GiGa Geometry Conversion

- Unidirectional
- Conversion of transient detector description (common) into Geant4 representation
- ◆ Gaudi Conversion Service and Converters
 - Volumes & Surfaces
 - Materials
- ◆ Instantiation of Sensitive Detector and Magnetic Field objects through Abstract Factory pattern

Condition Database

Conditions DB

- Detector conditions data (calibration, slow control, alignment, etc.) are characterized by:
 - » Time validity period
 - » Version
- The conditions data objects will also appear in the Detector Transient Store
- The persistency of conditions data is done with the Conditions DB (IT product)

Condition Data Object

- Block" of data belonging to some detector element
- coded in XML
- seen as a BLOB by the database
- ◆Time (CondDBKey) validity range
- [since, till]
- CondDBKey is a 64 bit integer number. Sufficient flexibility (absolute time in ns, run number, etc.)
- Version
- Sequence version number
- Extra information
- Textual description, insertion time, etc.

Conditions DB: Integration in Gaudi

Conditions Conversion Service

Conditions DB Implementation

- The databse used is ORACLE through the IT implementation of the interface already used for objectivity.
- XML references are used to select between plain XML and condition DB:
 - <conditionref href="../Ecal/condition.xml#caEcal"/> → XML
 - <conditionref
 href="cond://dd/Calibration/Ecal/caEcal"/>
 → DataBase