s . T ——— - -

Intrggiq__q;i_on to DaVinci

ik 3 T L

-~ essentially a reminder from Gaudi sessions
e ‘ﬁ%;lfirst DVAlgorithm
* we will loop over muons and plots some quantities

‘ June 2006 Bologna Software Course

r Patrick Koppenburg
Imperial College
London

P. Koppenburg Introduction to DaVinci — June 2006 Bologna Software Course — p.1/27

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html
http://www.koppenburg.org/address.html

® DaVinci web page:
http://Ihcb-comp.web.cern.ch/Ihcb-comp/Analysis/default.htm
From there you'll find :

* Some documentation
* A “getting started” guide
* A FAQ
* The Tutorial page
o | will add these slides next week.

® Any question can be asked at the DaVinci mailing list:
lhcb-davinci@cern.ch.

* That’s also the forum to propose improvements of DaVinci
® You need to be registered to use it. You can do that online.

[/

http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/default.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/GettingStarted.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/FAQ.htm
http://lhcb-comp.web.cern.ch/lhcb-comp/Analysis/DaVinci/Tutorial/v12r3/DaVinciTutorial.htm
mailto:lhcb-davinci@cern.ch

Gaudi-Applications

Gauss Boole Brunel DaVinci

(simulation) (digitization) (reconstruction)

EREWSS))

There are four applications based on Gaudi
They are actually all Gaudi-programs

The only difference are the packages (shared libraries)
included

One could easily build an application that does it all (like in
the old SICB days. . .)

Somewhere here Panoramix and Bender are missing

Gaudi-Applications

Gauss Boole Brunel DaVinci

(simulation) (digitization) (reconstruction) (analysis)

}, DCO04: 4 applications with many overlaps

Gauss Brunel DaVinci

r7c) DCO6: 4 applications with no overlaps
Y“(}XB P. Koppenburg

Gauss Boole Brunel DaVinci Moore

}, DCO6: 5 applications with no overlaps

THCD

A project is a set of pack-
ages containing the code
necessary to build a shared
library and the relevant op-
tions.

They all have the sub-
directories cmt, doc, src
and options (sometimes
python)

See the Gaudi tutorial for an
explanation of the package
structure.

® Packages in DaVinci:

Phys/DaVinci: The application
and the main options

Packages in Phys:

Phys/*: Physics algorithms and
tools (18 packages)

Tools/*: Stripping, utilities

PhysSel/*: Specific decay channel
selections

Tests/*: Some tests

Packages in LHCb:
Event/*: Event Model
Kernel/*: Common basic stuff

[/

Physics Packages (v3rl)

Basic components: Physics analysis:

Phys/DaVinciKernel/: Base classes Phys/CommonParticles/: Standard

Phys/DaVinciFilter/: Particle filters Particles

Phys/FlavourTagging/: Flavour tagging
(not yet back)

Phys/ParticleMaker/: Particle makers
Phys/VertexFit/: Vertex fitters
Phys/Tampering/: Tis Tos Tob (not yet back)
Phys/DaVinciTransporter/: Transporters
Phys/LoKi*/: LoKi
Phys/DaVinciTools/: Anything else

_ - Tools/Stripping/: Stripping tools
Tools/Utilities/: Simple utilities

MC-truth and test packages

Phys/DaVinciMCTools/: MC Tools
Phys/DaVinciAssociators/: Associators to MC truth (not yet)
Phys/DaVvinciE£f£f/: Efficiency algorithms (not yet)

Phys/DaVinciUser/: Tests

Disclaimer: Status of DC06

* We are presently rewriting everything ...and we are not yet
completley done.

¢ We show what we can show
¢ And try to hide what you don’t need to know. ..

If you're curious you can check what’s in
SANALYSISROOT/options/BolognaOptions.opts

* We could have shown you much more with DC04 software, but
what'’s the point?
It is obsolete.
It's going to disappear by the end of the year.

My first DVAlgorithm:

e Create it

o Get some Particles
e Loop over them

e Make some histograms

This part is based on the Tutorial/Analysis package. All can be
found there.

[/
TRCD

Introduction to DaVinci — June 2006 Bologna Software Course — p.8/27

Get the Tutorial package

Get the latest version of the Tutorial/Analysis package. You
should already have done that with Marco:

> cd SHOME/cmtuser/

> DaVincikEnv vlérl

> getpack Tutorial/Analysis v6r0

> getpack Phys/DaVinci vlerl

> cd Phys/DaVinci/v16rl/cmt

> emacs requirements

add: use Analysis vbr(0 Tutorial

> cmt config

> cmt br make

> source setup.csh

> echo SANALYSISROOT
/afs/cern.ch/.../cmtuser/Tutorial/Analysis/vor0

>

cd SANALYSISROOT

It's a good idea to start with the options:

#include "SDAVINCIROOT/options/DaVinciCommon.opts"

#include "SANALYSISROOT/options/BolognaOptions.opts"
ApplicationMgr.DLLs += { "Analysis" };// Don’t forget the DLL
ApplicationMgr.TopAlg += { "GaudiSequencer/TutorialSeq" };
TutorialSeg.Members += { "TutorialAlgorithm" };

® DaVinciCommon.opts makes (should make) the Particles
using the ProtoParticles available on the DST.

® BolognaOptions.opts: Since DaVinci iS under construction we
need some “special”’ options to ensure that everything works
smoothly.

* Then let’s start a sequence of algorithms with one algorithm
inside.

http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_proto_particle.html

ProtoParticles
* are the end of the reconstruction stage
* are the starting point of the physics analysis

* have all the links about how they have been reconstructed
* Track?
* Calo cluster?

* have a list of PID hypothesis with a probability
® contain the kinematic information

You need to assign them a mass and a
PID to get the full 4-vector.

= Particles

[/

http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_proto_particle.html

® Particle = ProtoParticle+ one PID choice
— one defined mass

® Physics analyses deal with Particles
* You need to know the 4-vectors to compute the mass of a
resonance
* The PID is your choice
® The same ProtoParticle canbe madeasaw andas a u

o .This makes sense. Think of a pion from B — =& decaying
in flight. Does it stop being a signal pion because it
decayed before the Muon detector?

®* Some ProtoParticles can be ignored
* All this is done by configuring a ParticleMaker

http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_proto_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_proto_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_proto_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_i_particle_maker.html

The particles are actually already done for you. To ensure
that everybody agrees on what is a K™, a = or a K2, we have a
set of standard particles predefined.

They are defined in DavinciCommon. opts

This is not yet ready for DCO06, but you can have a look at the
DCO04 options here. In the meantime we make Particles from
MCParticles.

All you need to know are the names of the locations:

Phys/StdLooseKaons, StdTightProtons ...

StdNoPIDsXxxx: All tracks are made to Xxxx

StdLooseXxxx: Loose PID cuts for hypothesis xxxx (no cuts for
pions)

StdTightXxxx: Tight PID cuts for hypothesis xxxx

[/

http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/DAVINCI_v12r18/doc/html/_standard_options_8opts.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_m_c_particle.html

Algorithms are objects executed at each event.

What DaVinci does is defined by the algorithms that are called. An
algorithm is any class inheriting from Algorithm, which contains

® aninitialize () method called at begin of job
® an execute () method called at each event
® afinalize () method called at end of job

To make life easier DaVinci contains a base-class DvAlgorithm that
provides many useful features.

® DVAlgorithm inherits from the base-class GaudiTupleAlg,
® That inherits from GaudiHistoAlg,

® That inherits from GaudiAlgorithm

® That inherits from Algorithm

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/v18r4/doxygen/class_gaudi_tuple_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/v18r4/doxygen/class_gaudi_histo_alg.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/v18r4/doxygen/class_gaudi_algorithm.html
http://proj-gaudi.web.cern.ch/proj-gaudi/releases/v18r4/doxygen/class_algorithm.html

In SANALYSISROOT type
> emacs src/TutorialAlgorithm. {cpp, h}

Emacs will ask you what you want to create. Answer (D) for
DVAlgorithm (twice) and you will get a template for a new algorithm
that compiles nicely but does nothing at all. (you actually need to
modify the file to force Emacs to save it)

You can as well re-use Marco’s example

Before you forget it, add the following line to
src/Analysis_load.cpp:
DECLARE_ALGORITHM (TutorialAlgorithm)

Now go to cmt / and recompile the package.

[/

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html

A look at the header file

#include "DaVinciTools/DVAlgorithm.h"
class TutorialAlgorithm : public DVAlgorithm {

public:

/// Standard constructor

TutorialAlgorithm(const std::string& name, ISvcLocator* pSvcLocator);

virtual "TutorialAlgorithm(); ///< Destructor
virtual StatusCode initialize(); ///< Algorithm initialization
virtual StatusCode execute () ///< Algorithm execution
virtual StatusCode finalize (); ///< Algorithm finalization
protected:
private:

}i
® |t inherits from DVAlgorithm, which provides the most frequently used tasks in a
convenient way.

* The constructor allows to initialise global variables (mandatory!) and to declare
options.

® The three methods initialize (), execute(), finalize () control your algo-
rithm. Feel free to add more!

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html

Execute

Let’s start with something easy

1. Take muons from the TES location where the particle maker
algorithm has put them

Loop on them

Plot their momentum and t

Get the Primary vertices

Plot the muons IP and IP significance

o & N

To get data from the TES we have a nice tool called the
PhysDesktop

[/
RGP

Introduction to DaVinci — June 2006 Bologna Software Course — p.17/27

The PhysDesktop IS a tool that controls the loading and saving of
the particles that are currently used.

* |t collects previously made particles

* |t produces particles and saves them to the TES when needed

It hides the interaction with the TES
To get the particles and vertices, just do

® const ParticleVector& parts =
desktop () —>particles () ;

® const VertexVector& verts =
desktop () —>primaryVertices () ;

® const VertexVectoré& pvs =
desktop () —>secondaryVertices () ;

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_phys_desktop.html

Our Execute method

{

StatusCode TutorialAlgorithm: :execute()

debug () << "==> Execute" << endmsg;
StatusCode sc = StatusCode: :SUCCESS ;

// code goes here

LHCb: :Particle: :ConstVector muons = desktop()->particles();
sc = loopOnMuons (muons) ;

if (!sc) return sc;

setFilterPassed (true) ; // Set to true if event is accepted.

return StatusCode: :SUCCESS;

* We get the particles from the PhysDesktop tool
®* Then we pass them to a method that we have to write

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_phys_desktop.html

Our new method

In the header file add:

private:

StatusCode loopOnMuons (const LHCb::Particle::ConstVectoré&)const ;

In the cpp file add:

StatusCode TutorialAlgorithm::loopOnMuons (

const LHCb::Particle: :ConstVector& muons)const {

StatusCode sc = StatusCode: :SUCCESS ;

// code goes here

return sc ;

In the method add:

Our new method

for (LHCb::Particle::ConstVector::const_iterator im = muons.begin() ;
im !'= muons.end () ; ++im) {
plot ((*im)->p(), "Muon P", 0., 50.*Gaudi::Units::GeV); // momentum
plot ((*im)->pt (), "Muon Pt", 0., 5.*Gaudi::Units::GeV); // Pt
debug () << "Mu Momentum: " << (*¥im)->momentum() << endmsg ;
}

® LHCb: :Particle: :ConstVector IS a typedef
std: :vector<LHCb: :Particle*>

— Hence the non-intuitive (*im)->momentum () syntax

®* The plot method allows to book histograms on demand.

* |t returns a pointer to the histogram that you could also use
directly

®* There are many units defined in Gaudi: :Units
Look at the Particle class doxygen

http://lhcb-release-area.web.cern.ch/LHCb-release-area/LHCB/LHCB_v21r0/doc/html/class_l_h_cb_1_1_particle.html

Let’s get the primaries

In the method, before the loop, add:

LHCb: :PrimVertex::ConstVector pvs =

desktop () —>primaryVertices () ;

In the loop add another loop

*(*ipv),

for (LHCb::PrimVertex::ConstVector::const_iterator ipv =
pvs.begin() ; 1ipv != pvs.end() ; ++ipv) {
double IP, IPE;
debug () << (*ipv)->position() << endmsg ;
sc = geomDispCalculator ()->calcImpactPar (*(*im),
if (sc){
plot (IP, "Muon IP", 0., 10.*Gaudi::Units::mm);
if (IPE>0.) plot (IP/IPE, "Muon IP/error", 0., 10.);
}
}

1P,

IPE) ;

that allows to make geometry calculations.

® The geomDispCalculator () IS atool owned by DVAlgorithm

http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html

A look at the DoxyGen web page shows that DVAlgorithm provides
a lot of functionality (not all listed here):

ITPhysDesktop* desktop () const;

IVertexFit* vertexFitter () const;
IGeomDispCalculator* geomDispCalculator () const;
TParticleFilter* particleFilter () const;
ITParticlePropertySvc* ppSvc() const;
ICheckOverlap* checkOverlap() const;
IParticleDescendants* descendants () const;
IBTaggingTool* flavourTagging() const;
StatusCode setFilterPassed (bool);

std: :string getDecayDescriptor () ;

We will use some of them.

http://lhcb-release-area.web.cern.ch/LHCb-release-area/DAVINCI/doc/html/class_d_v_algorithm.html
http://lhcb-release-area.web.cern.ch/LHCb-release-area/PHYS/PHYS_v3r1/doc/html/class_d_v_algorithm.html

* We have our algorithm
* Don't forget to compile it

* We have our options

¢ We can run!
* But we need some data. ..
* We can get it from the Bookkeeping database

[/

Access it at http://lhcbdata.home.cern.ch/lhcbdata/bkk/
In this case we want the most recent DC06 data.
1. Click “Dataset Search”
Select “Configuration = "DCO06 - v1-lumi2"”
Select “Event type = Incl_b”
Select “Datasets replicated at CERN”
Select “Datatype = SIM 1”7
Select “Step 1 = Gauss v24r6” (the latest)
Submit
You get a new page. Click on the Gaudi logo

o Be BB s Y Y

You get a new window. Paste the contents in your options

[/

http://lhcbdata.home.cern.ch/lhcbdata/bkk/
http://lhcbdata.home.cern.ch/lhcbdata/bkk/

Before you run, add to your options the line

HistogramPersistencySvc.OutputFile = "DVHistos.root";

| I R A
0 5000 000050090009500800005000000050080000

2

[_Muon

[

EEEEEEEEEE 46

1 [MuonPt |

eeeeeeeeeeee
Mean 3946

MS 10* F=

10°

10 L

10

N\'\'| M

Yy
*H*ﬂﬂ

i ﬂ"l || il |

il

| N R N s B i
0 50010001 5002000250030003500400045005000

102

You can now run your job with the command

3
=

ies 102368

Muon IP/error

10

100

> DaVinci $ANAYSISROOT/options/MyOptions.opts

This will produce a file DvHistos.root that you can inspect with
root. It contains the four histograms we have created in the algorithm.

Entries 102368

Exercises!

® | et’s go for the exercises
Ex. 1 asks you to try by yourself what we just showed

Introduction to DaVinci — June 2006 Bologna Software Course — p.27/27

		hetitle
	DaVinci Links
	Applications
	Applications

	Projects
	Projects
	Projects

	Packages
	Physics Packages (code {v3r1})
	{lightcommon Disclaimer: Status of DC06}
	~
	Get the code {Tutorial} packagehypertarget {Tutorial}{}
	Start to write the options
	code {ProtoParticles}?hypertarget {ProtoParticle}{}
	code {Particles}?hypertarget {Particle}{}
	Standard Particles
	DVAlgorithm
	Let's write a new algorithm
	A look at the header file
	{lightcommon Executehypertarget {Execute}{}}
	The code {PhysDesktop}hypertarget {PhysDesktop}{}
	Our Execute method
	Our new method
	Our new method
	Let's get the primaries
	Tools!
	Done!
	Bookkeeping!
	Run!
	lightcommon Exercises!

