.(l)f k- LHCb Note 2005-016, OFFLINE
: LPHE Note 2005-012
EECSELFEAPL%LI\D(—E”EL/CA{[JSNAIIEI&NJE January 17, 2006

DaVinci for Busy People

Generic selection algorithms — a user guide

Version 2 (DAVINCI v12r15)

P Koppenburg!
CERN

L. Fernandez?
LPHE, EPFL

Abstract

This note describes generic selection algorithms and tools allowing to perform a complete
physics selection in DAVINCI only using options. Although this way is not optimal for
complicated analyses, it allows to get results quickly.

The tools described here have been used successfully in the exclusive part of the high-

level-trigger [1] and start to be used in pre-selections for the stripping.

Make sure you read the warning in Section 5 before you start typing any option file.

This version of the note refers to DAVINCI v12r15 and v14r5.

'patrick. Koppenburg@cern.ch
2Luis. Fernandez@epfl.ch

Contents

1

Introduction 1
1.1 HiStOry . . . o o o e 2
1.2 Newimplementation 2
A Complete Example: B — D 7+ 3
2.1 Particlemaking 4
2.2 Thedecay D™ — 7w KT e 4
2.3 Somecuts e e e e e e e e e e e e e 4
2.4 CutsontheDT 5
2.5 Makethe BO 6
2.6 Afewplots e e e e 6
Generic Selection Algorithms Reference 7
3.1 MakeResonancesreference. 7
3.2 FilterDesktopreference 8
3.3 ByPIDFilterCriterionreference. 8
3.4 Filtercriteria e e e e e 9
3.5 Plottingtools e 10
Generic N-tuple Algorithm: DecayChainNTuple 11
4.1 Variables. e e 12
42 MCuth. . oo oot ot e e e 13
4.3 Reference i i e e e e e 14
Warning 15
Conclusion 16
MakeResonances and Photons 16

A.1 Examples of decays involving photons 17

4 AIN LINV LUV O LLIVUILN 4

1 Introduction

Many typical analyses in DAVINCI can be steered only by options using generic algorithms.
For instance the exclusive high-level-trigger HLT [1] and some pre-selections in the Data
Challenge DC’04 Stripping are based on generic selection algorithms configured by op-
tions. This is an easy way of getting quickly results out of DAVINCI. It avoids duplication
of code and ensures that only well tested algorithms and tools are used. It also encourages
users who find a missing feature to write code to be released with DAVINCI rather than
developing their private over-specialised algorithm.

However we would like to make the distinction between selection and analysis. This
generic approach is meant to be for (pre-)selection purposes and may not be suited for a
fine-tuned analysis where the user will have to code anyway his own final algorithm, espe-
cially for monitoring or fitting purposes. The present approach is for instance particularly
well suited for analyses using maximume-likelihood fits (like sPlot [2]) where one would
not apply any hard cut in DAVINCI but extracts the signal from a fit to many variables.

There are several ways to quickly get a physics result:

Plain C++: DVAlgorithm inherits from GaudiAlgorithm (and GaudiTupleAlg ...): a lot
of typing is saved.

LoK1: “Loops and Kinematics” [3] is a metalanguage based on templated C++, with even
more typing saved.

BENDER: Interactive python using LOKI.
Generic algorithms: The subject of this note.

The common assumption is that physicists always do the same, hence any line of C++
you type is a duplication of what your office-mate has been typing yesterday.

Most of (B-) physics analyses are a sequence of A —+ B C (...), with some cuts in
between.

The minimal information a selection algorithm needs is:

1. Where to get the particles;
2. What decay to reconstruct;
3. What cuts to apply;

4. Where to put the data.

While items 1 and 4 are handled by options in all use-cases,® the decays and the cuts
are usually defined in the code. This is where generic algorithms propose a different
approach, the decays and cuts being also defined in options (see Section 5 for a warning
about “programming by options”).

For instance to reconstruct a Dy, one could write some C++ code in order to loop over
three vectors of particles, the K*, K~ and 7*:

3The input location is a property of the PhysDesktop. The output is enforced to be
/Event/Phys/<AlgoInstanceName>/.

4 AIN LINV LUV O LLIVUILN Lo

for(ParticleVector::const_iterator mK = KMinus.begin() ;
mK != KMinus.end() ; ++mK){
for(ParticleVector::const_iterator pK = KPlus.begin() ;
pK !'= KPlus.end() ; ++pK){
for(ParticleVector::const_iterator pi = Pions.begin() ;
pi != Pions.end() ; ++pi) {
[...13}1}3}

In LoKi, this is much shorter:

for(Loop Ds = loop("K K pi", "D_s+", FitVertex); Ds; ++Ds){ [...]1 }

However, once the (anyway mandatory) decay descriptor is given, all the information
is there:

DsForBs2DsPi.DecayDescriptor = "[D_s+ -> K+ K- pi+]cc";

This is the approach described in the present note.

1.1 History
The first generic selection algorithms have been written by Gerhard Raven. These are:

Select2ParticleDecay: Makes decays to two (and more) particles. Used in DC’03 for B

= J/¢é.
RefineSelection: Allows to “refine” a set of particles applying cuts.
CombineParticles: Replaces Select2ParticleDecay with a better syntax of options.
We decided to use them in the exclusive HLT. Then it appeared that:

e The option syntax is incompatible between RefineSelection and CombineParticles;
consequently a quick (“cut-and-paste”) reshuffling of options is not straightforward;

e CombineParticles is too slow, essentially because the vertex fitting is done before
the mass cut is applied.

These algorithms are now considered as obsolete and will disappear from DAVINCI in the

next backward-incompatible versions.

1.2 New implementation

These first generic algorithms have been replaced recently by the following ones:

The MakeResonances algorithm: Yet another CombineParticles.

The FilterDesktop algorithm: A RefineSelectionwith a similar syntax than MakeResonances.

The ByPIDFilterCriterion tool is used by MakeResonances and FilterDesktop to apply
all cuts, ensuring a coherent syntax.

The IPlotTool: The algorithms described above use tools interfacing IPlotTool for a
quick plotting of some variables. There are two implementations:

- L3 OWUJIVAL Lo L LAALYAL e L 7 UJ N d

The SimplePlotTool: Makes plots of any given set of variables for any particle;

The RecursivePlotTool: Calls SimplePlotTool for each particle and its daughters
recursively.

This new code is used since December 2004 in the HLT, together with a series of filter
criteria. It is also used in the Bd2DPi, Bs2PhiEtac, Bs2JpsiEta, Bu2LLK and Bu2JpsikK
selections. selection. It is described in Section 3.

Additionally a new algorithm DecayChainNTuple allows to fill a quite complete N-tuple
for the selected decay chain (and the Monte-Carlo MC truth). It is described in Section 4.

2 A Complete Example: B — D7+

Algorithms Transient Event Store (TES)

,‘ ProtoParticles ‘

Create Particles: e
CombinedForPreselBd2DPi | |

j Charged Particles ‘

Make D |
DForPreselBd2DPi]
Make BO: |
PreselBd2DPi]

A

Figure 1: Design of the Algorithmic Sequence

The usage of these algorithms and tools is illustrated by Vladimir Gligorov’s pre-
selection package Bd2DPi for the decay B — D~z and its corresponding charge con-
jugate (cc). We suggest to clearly separate the distinct operations, rather than writing a
single monolithic algorithm for the whole decay chain. This is illustrated in Figure 1. The
three steps are:

1. Create Particles from the ProtoParticles (i.e. assign a PID);
2. Build the D~ — -7~ K™ decay and cc;
3. Build the B — D~ «* decay and cc.

For each of these steps we use a different algorithm instance, embedded in a Gaudi-
Sequencer:

ApplicationMgr.TopAlg+={"GaudiSequencer/SeqPreselBd2DPi"};

SeqPreselBd2DPi .Members += {"PrelLoadParticles/CombinedForPreselBd2DPi",
"MakeResonances/DForPreselBd2DPi",
"MakeResonances/PreselBd2DPi",
"PrintHeader/PrintPreselBd2DPi"};

There are actually two algorithms involved here:

- L3 OUJLVAL Lo L LAATALVAL L. U 7 g N L

e One PrelLoadParticles that calls the CombinedParticleMaker;
e Two instances of MakeResonances: one to form the D~ and one to make the BP.

The somewhat longish instance names CombinedForPreselBd2DPi, DForPreselBd2DP1,
PreselBd2DPi and PrintPresel1Bd2DPi* are required by the DC’04 Stripping guidelines [4]
to avoid confusion.®

2.1 Particle making

CombinedForPreselBd2DPi.PhysDesktop.ParticleMakerType =
"CombinedParticleMaker";
CombinedForPreselBd2DPi.PhysDesktop.CombinedParticleMaker.Particles =
{"kaon", "pion" };

// [...] some more cuts

MakeResonances is a DVAlgorithm and hence can make particles, but it is recommended
to make particles in a separate algorithm and to re-use them when needed.
These particles are given as input of DForPreselBd2DPi:

DForPreselBd2DPi.PhysDesktop.InputLocations =
{ "Phys/CombinedForPreselBd2DPi" };

2.2 Thedecay D~ — 7 7 K*

DForPreselBd2DPi.DecayDescriptor = "[D- -> pi- pi- K+]cc"
DForPreselBd2DPi.Window = 50.*MeV ;

These two lines of options (together with the declaration of the DForPrese1Bd2DPi algo-
rithm in the sequencer above) are enough to make all #~7~K* combinations in a mass
window of £50 MeV around the nominal mass of the D~:

e The DecayDescriptor option tells the algorithm what decay to reconstruct;

e The mass window is applied on the sum of 4-vectors before vertex fitting;

e The vertex fitter applied is the UnconstrVertexFitter. So far this cannot be changed.

2.3 Some cuts

MakeResonances owns two private instances of the ByPIDFilterCriterion tool, one for
the daughters (DaughterFilter), and one for the mother (MotherFilter). Here are the
cuts for the daughters:

“The PrintHeader algorithm only prints a nice message for selected events when
PrintPreselBd2DPi.0OutputLevel = 2.

>That would inevitably happen in a stripping environment if we had called the algorithms MakeD and
MakeB.

®Until we revise the vertex fitters interface.

6

- L3 OWUJIVAL Lo L LAALYAL e L 7 UJ N J

DForPreselBd2DPi.DaughterFilter.Selections = {

"K+ : KinFilterCriterion, PVIPFilterCriterion",

"pi+ : KinFilterCriterion, PVIPFilterCriterion"};
DForPreselBd2DPi.DaughterFilter.KinFilterCriterion.MinPt = 300.*MeV ;
DForPreselBd2DPi.DaughterFilter .PVIPFilterCriterion.MinIPsignif = 1. ;

These options apply a 300 MeV transverse momentum pr and a 1o impact parameter
IP cuts to the kaons and pions before making the D~. If one wants to apply different cuts
for the K and the =, one simply needs to give different instance names to the appropriate
filter tools, as in:

DForPreselBd2DPi.DaughterFilter.Selections =
{ "K+ : KinFilterCriterion/KKin,
PVIPFilterCriterion/KPVIP",
"pi+ : KinFilterCriterion/PiKin,
PVIPFilterCriterion/PiPVIP"};
DForPreselBd2DPi.DaughterFilter .KKin.MinPt = 300.*MeV ;
DForPreselBd2DPi.DaughterFilter .KPVIP.MinIPsignif = 1. ;
DForPreselBd2DPi.DaughterFilter.PiKin.MinPt = 500.*MeV ;
DForPreselBd2DPi.DaughterFilter .PiPVIP.MinIPsignif = 2. ;

2.4 Cuts on the D*

Then one uses the MotherFilter to apply cuts on the D*:

DForPreselBd2DPi.MinPt = 2000.*MeV ;
DForPreselBd2DPi.MotherFilter.Selections =

{ "D+ : VtxFilterCriterion, PVIPFilterCriterion,

FlightDistanceFilterCriterion/FDCut" };

DForPreselBd2DPi.MotherFilter.VtxFilterCriterion.MaxChi2 = 20. ;
DForPreselBd2DPi.MotherFilter .PVIPFilterCriterion.MinIPSignif = 2. ;
DForPreselBd2DPi.MotherFilter.FDCut.CutBestPV = true;
DForPreselBd2DPi.MotherFilter.FDCut.MinFSPV = 4.5 ;

These options select D* with a pr > 2 GeV, a vertex x? < 20, a 20 IP on any primary
vertex PV and a 4.5¢ flight separation from the PV to which it “points the best”.”

Like the mass Window, the MinPt cut is a property of MakeResonances and is applied
before the vertex fit. It’s quite helpful for the HLT. It does the same as:

DForPreselBd2DPi.MotherFilter.Selections = { "D+ : KinFilterCriterion,
DForPreselBd2DPi.MotherFilter.KinFilterCriterion.MinPt = 2000.*MeV ;

but much faster!

"The PV is defined as the primary to which the particle being filtered has the smallest IP significance.

-

L3 OWUJIVAL Lo L LAALYAL e L 7 UJ N

2.5 Make the B°

Selecting the B? is the same game. Here we show all options in one box:

PreselBd2DPi.

PreselBd2DPi
PreselBd2DPi

PreselBd2DPi
PreselBd2DPi
PreselBd2DPi
PreselBd2DPi

PreselBd2DPi
PreselBd2DPi
PreselBd2DPi

.DecayDescriptor =
.DaughterFilter.Selections =

.DaughterFilter.KinFilterCriterion.MinPt =
.DaughterFilter .PVIPFilterCriterion.MinIPsignif = 2.5 ;
.Window =
.MotherFilter.Selections =

PhysDesktop.InputLocations = {"Phys/DForPreselBd2DPi",
"Phys/CombinedForPreselBd2DPi"};

"[BO -> D- pi+lcc" ;

{ "pi+ : KinFilterCriterion,
PVIPFilterCriterion" };

500.*MeV ;

500.;
{ "BO : VtxFilterCriterion,
PVIPFilterCriterion,

Momentum2FlightAngleFilterCriterion/Mom2Flight" };

.MotherFilter.VtxFilterCriterion.MaxChi2 = 20. ;
.MotherFilter.PVIPFilterCriterion.MaxIPsignif = 6.;
.MotherFilter.Mom2Flight.CosAngle =

0.999;

0.999 < cos a.
This ends the whole pre-selection: only 38 lines of options!

We require the bachelor 7 to have a pr in excess of 500 MeV, an IP of 2¢ and build a B® in
a mass window of £500 MeV. The B? candidate has to have a vertex x? < 20, an IP larger
than 6 times its error and the angle « of its flight direction to the momentum must satisfy

2.6 A few plots

Finally one can switch on histogramming in any algorithm with, for instance for the final

B? and all its descendants:

PreselBd2DPi
PreselBd2DPi

PreselBd2DPi

PreselBd2DPi

PreselBd2DPi

.HistoProduce = true ;
.DaughterPlots.Variables =
{ HMH’ HChiQH’ "VZ", HPH’ HPtH’ HIPSH} ;

.MotherPlots.Variables = { "wM", "M", "Chi2", "Vz", "P",
"Pt", "IPS", nan } ;

.DaughterPlotsPath = "BdIn" ;

.MotherPlotsPath = "BdOut";

J NLINLAIVOY LLLU L LIUVIN JAMUODCUO VIV L1 LIVIVD WL LaavadNu L s

3 Generic Selection Algorithms Reference

3.1 MakeResonances reference

| MakeResonances

DVAlgorithm
In Phys/DaVinciTools

Options:

std: :string DecayDescriptor

double Window

double LowerWindow
double UpperWindow

double MinMomentum
double MinPt
bool MotherToNGammas = false

bool KillOverlap = true

bool HistoProduce = false
std: :string DaughterPlotTool

std: :string MotherPlotTool

Author: Patrick Koppenburg

Algorithm that reconstructs a decay according to a given decay descriptor.

Defines the decay to reconstruct. Actually a
property inherited from DVAlgorithm.

std::vector<std::string> DecayDescriptors Array of decay descriptors,

overrules DecayDescriptor.
Mass half-window applied on the sum of
4-vectors, before vertexing.
Lower mass half-windows for asymmetric mass
cuts.
Upper mass half-windows for asymmetric mass
cuts.
Momentum cut applied on the sum of 4-vectors,
before vertexing
pr cut applied on the sum of 4-vectors, before
vertexing
Creates a composite particle at the origin only
using photons.
Discard combinations with the same
ProtoParticle used more than once (uses the
CheckOverlap tool).

std::string DaughterFilterName = Name of the filter applied to

"DaughterFilter" daughters.

std::string MotherFilterName = "MotherFilter" Name of the filter applied to
mothers.

Make plots. Actually a property
inherited from GaudiHistoAlg.
Name of the plot tool applied to the

= "RecursivePlotTool/DaughterPlots" daughters.

Name of the plot tool applied to the

= "RecursivePlotTool/MotherPlots" mother.
std::string DaughterPlotsPath = "" Path for daughter plots.
std::string MotherPlotsPath = "" Path for mother plots.

The syntax understood by the DecayDescriptor is very simple:

HLTSharedPhi.DecayDescriptor = "phi(1020) -> K+ K-"
HLTSharedKstar.DecayDescriptor = "[K*(892)0 -> K+ pi-Jcc" ;

where [<Decay>]cc means that both the given decay and its charge conjugate will be

J NLUNLAUOG DL OU L AUVAN [3ALNT VAW L L LIVIVD AL LAvadNvou L o

reconstructed. The DecayDescriptor property does not follow the much more elaborated
decay descriptor syntax of the (MC)DecayFinder tool. For instance don’t try

[B_sO -> (J/psi(1S) -> mu+ mu- {,gamma} {,gamma})
(eta -> pi+ pi- (pi0 -> gamma gamma)]cc

The option DecayDescriptors allows to use the same algorithm to reconstruct several
similar decays. For instance:

// Actual reconstructed decays:
DileptonForPreselBu2LLK.DecayDescriptors = {"J/psi(1S8) -> mu+ mu-" ,
"J/psi(18) -> e+ e-"};
// Only used in SelResult container:
DiLeptonForPreselBu2LLK.DecayDescriptor = "J/psi(1S) -> 1+ 1-"

If you are planning to use MakeResonances in decays involving photons, please read
Appendix A.

3.2 FilterDesktop reference

FilterDesktop allows to select particles from a given location in the TES and clones the
particles before saving them to another location in the TES.

Practically this algorithm is seldom used since all selection cuts can be applied in
MakeResonances. It has yet some use-cases in the HLT. It can for instance be useful for se-
lections with large combinatorics, for instance to apply a pre-selection on particles before
starting to combine them.

Warning: The cloning of particles implies that a different object is created and hence
the MC association of original particles cannot be re-used for the cloned particles. The
association has to be re-run on the cloned particles.

FilterDesktop

DVAlgorithm Author: Patrick Koppenburg
In Phys/DaVinciFilter

Algorithm that selects particles from a given location according to some cuts.

Options:

bool HistoProduce = false Make plots. Actually a property
inherited from GaudiHistoAlg.

std: :string InputPlotTool Name of the plot tool applied to

= "RecursivePlotTool/InputPlots" daughters.

std: :string OutputPlotTool Name of the plot tool applied to

= "RecursivePlotTool/OutputPlots" mothers.

std: :string InputPlotsPath = "" Path for daughter plots.

std: :string OutputPlotsPath = "" Path for mother plots.

3.3 ByPIDFilterCriterion reference

The ByPIDFilterCriterion handles all cuts in MakeResonances and FilterDesktop. It
applies a list of FilterCriterion on the input particles, depending on their PID.

J NLUNLAUOG DL OU L AUVAN [3ALNT VAW L L LIVIVD AL LAvadNvou L 7

ByPIDFilterCriterion

GaudiTool, Interface: IFilterCriterion Author: P Koppenburg
In Phys/DaVinciFilter

Returns a yes/no depending on a list of criteria for each PID.
Allows to filter composite particles according to criteria applied to its descendants.

Options:

std::vector<std::string> Selections List of Selections.

bool ApplyCC = true Use same selection for particle and
anti-particle.

bool ExclusiveSelection = false Filter out particles not explicitly given
in Selections.

bool FilterByDescendents = false Use descendants to filter composite
particles.

Note that ExclusiveSelection and FilterByDescendents cannot be true both at the
same time.

The syntax of Selections is

...Selections = { " P1 : AAAFilterCriterion/Instancel,
BBBFilterCriterion/Instance2, [...] ",
" P2 : CCCFilterCriterion/Instance3,
DDDFilterCriterion/Instance4, [...] ",
[...13};

Where P1, P2 are particle names (mu+, J/psi(1S) ...),® and XXXFilterCriterion are
IFilterCriterion tools. The instance names are optional. The same tool instance can be
applied to particles with different PID if one wants the same cut to be applied. There is no
limitation in the number of IFilterCriterion or particle names.

The " P1 : AAAFilterCriterion/Instancel, [...] " strings currently support
spaces, line breaking and other special characters like tabulations (they are all ignored).
They don’t support comments:

...Selections = { " mu+ : KinFilterCriterion, // apply PT cut
PVIPFilterCriterion" };

would result in an error. Generally all syntax errors cause an interruption at initialisation.

3.4 Filter criteria

There are several filter criteria available. Please refer to the Doxygen documentation for
the various options. The latest list of available filters can be obtained by looking at the
IFilterCriterion documentation.

ConstrainedChi2FilterCriterion: Performs a mass-constrained vertex fit and cuts on the
X2 of this new vertex. The vertex is not saved (Besma M’charek).

DLLFilterCriterion: Cuts on the delta-log-likelihood of the particle ID (Jan Amoraal).

8The list of ascii names of the different particles used by the ParticlePropertySvc can be found in the
package ParamFiles, file ParticleTable.txt.

J NLUNLAUOG DL OU L AUVAN [3ALNT VAW L L LIVIVD AL LAvadNvou L

FlightDistanceFilterCriterion: Cuts on the flight distance of a composite from the “best”
primary vertex (Luis Ferndndez).

KinFilterCriterion: Momentum and pr cuts (Paul Colrain).

LifetimeSignificanceFilterCriterion: Cuts on the flight distance to PV in units of proper
time (Gerhard Raven).

MassDifferenceFilterCriterion: Mass difference cuts (Gerhard Raven).
MassFilterCriterion: Mass cuts (Gerhard Raven).

Momentum2FlightAngleFilterCriterion: Cuts on the alignment of momentum with di-
rection of flight, assuming the particle comes from the PV (Luis Ferndndez).

MomentumMotherDirectionFilterCriterion: Cuts on the angle of the particle’s direction
with respect to the momentum of its mother (Federica Legger).

OverlapFilterCriterion: Applies CheckOverlap tool (Patrick Koppenburg).

PIDFilterCriterion: Selects particles of a given PID of a particle. It also allows to cut on
the confidence level of the assigned particle ID. For more sophisticated PID cuts use
the DLLFilterCriterion (Paul Colrain).

PVIPFilterCriterion: Impact parameter cuts (Patrick Koppenburg).
TrackTypeFilterCriterion: Track type requirements (Patrick Koppenburg).
VtxFilterCriterion: Vertex X2 and position cuts (Gerhard Raven).

VtxIsolationFilterCriterion: Checks that the decay vertex is isolated from any number of
tracks, according to x? difference or IP requirements (Luis Ferndndez).

BooleanFilterCriterion: Allows any logical combination of IFilterCriterion tools (Ger-
hard Raven).

ByPIDFilterCriterion: A PID-dependent logical combination of IFilterCriterion tools.
Don’t forget about the possibility to re-use it inside a ByPIDFilterCriterion (Patrick
Koppenburg).

TrueMCFilterCriterion: Keeps particles associated to a given true MC decay (Patrick Kop-
penburg).

Generally filter criteria using primary vertices will apply separation cuts with respect
to any primary vertex, or pick up the PV to which the particle point most likely for all other
cuts.

3.5 Plotting tools

The generic plotting tools are in a very preliminary stage, but useful enough for the HLT.
They are based on the interface IPlotTool.

L NLIANLAIVUO N L VI LMLVl L 1Ldvie. Vobval viin LNV 1 Ve Lo

3.5.1 The SimplePlotTool

SimplePlotTool

GaudiHistoTool, Interface: IPlotTool Author: Patrick Koppenburg
In Phys/DaVinciTools

Produces plots according to the given variables.

Options:

std::vector<std::string> Variables Variables to plot.
std: :vector<double> Minima Lower limits of histograms

std: :vector<double> Maxima Upper limits of histograms

For the Variables, the following are defined: M (Mass), WM (Wide Mass), DM (Mass
Difference), P, Pt, Chi2, IP, IPs (IP significance), DPV (Distance to PV), FS (Flight distance
Significance), Vz , Vr , Vx , Vy (Vertex coordinates).’

A different plot is produced for each particle of different PID, in the order the particles
appear. There is thus no way to have the histograms “ordered”.

The boundaries are set automatically (depending on the PID). One can set them using
the Minima and Maxima options, but unfortunately it is mandatory to give ranges to either
none or all variables.

3.5.2 The RecursivePlotTool

The RecursivePlotTool loops over all descendants of the particles it has to plot and
calls the SimplePlotTool recursively. It has the same options as the SimplePlotTool (it
actually overwrites the options of the latter).

3.5.3 The SimplePlots algorithm

There is an algorithm SimplePlots that does nothing else than calling an IPlotTool:

SimplePlots.PhysDesktop.InputLocations = {"Phys/SomeLocation"};
SimplePlots.PlotTool = "RecursivePlotTool/Plots" ;
SimplePlots.Plots.Variables = { "M", "Chi2" } ;

By default the PlotTool option is set to SimplePlotTool/Plots.

4 Generic N-tuple Algorithm: DecayChainNTuple

In this section we describe the DecayChainNTuple algorithm, which saves all kind of in-
formation (with optional MC truth) to a N-tuple for a given selected decay chain.'® This
generic algorithm can be configured by options, allowing to get quickly most of the inter-
esting variables stored to a N-tuple.

°It is planned to change these variable names to conform with the LOKI shortcuts for consistency.
1915 is recommended to use ROOT.

L NLIANLAIVUO N L VI LMLVl L 1Ldvie. Vobval viin LNV 1 Ve Lo

We illustrate the use of DecayChainNTuple with a simple example, leaving the algo-
rithm reference for later. We consider in our example the selection of the Bs — J /4 (utu)¢
(K~K™) decay channel done in the following sequence:

ApplicationMgr.TopAlg += {"GaudiSequencer/SeqProcessBs2JpsiPhi"};

SegProcessBs2JpsiPhi.Members += {"PrelLoadParticles/CombinedForBs2JpsiPhi",
"MakeResonances/Jpsi2MuMuForBs2JpsiPhi",
"MakeResonances/Phi2KKForBs2JpsiPhi",
"MakeResonances/Bs2JpsiPhi",
"DecayChainNTuple/0ffBs2JpsiPhiTree"};

where 0ffBs2JpsiPhiTree is an instance of DecayChainNTuple.
The default configuration is that of an offline selection such that the user just needs a
few lines to get the N-tuple. What DecayChainNTuple needs to know is:

e Where to look for the particles:

0ffBs2JpsiPhiTree.PhysDesktop.InputLocations = {"Phys/Bs2JpsiPhi"};

e What decay to reconstruct:

0ffBs2JpsiPhiTree.Decay =
"B_sO -> ("J/psi(18) -> “mu+ “mu-) ("phi(1020) -> "K+ "K-)";

This will look for all the selected By candidates according to the required decay chain,
which is set using the Decay property, and save a N-tuple with the default name being
FILE1/MySelection. The user can specify a different N-tuple name with

| 0££Bs2JpsiPhiTree . NtupleName = "FILE1/0ffBs2JpsiPhi"; |

The syntax used for the decay chain is that of the DecayFinder with a hat flag (*) in front
of the particles for which one wishes to have information. Note that the mother of the
decay (here the Byg) is always booked.

4.1 Variables

For any standard GAUDI algorithm, and hence for a DVAlgorithm, one needs to declare
all the N-tuple’s items in the header file and then book the N-tuple with the previously
declared items. In order to overcome this feature and as in DecayChainNTuple the number
of particles depends on the decay under study, some labelling of the N-tuple’s variables is
made:

e _1ab0 is appended to the names of the variables related to the mother of the decay;

e labl, _lab2, ... isappended to the names of the variables related to the (flagged)
daughters.

In this way all the items are declared only once and the N-tuple is booked when the first
decay of interest is found.
The labelling relies on the DecayFinder grammar and syntax which read the decay

string from right to left, starting at the sub-head. In our example we will have the following
labels:

L NLIANLAIVUO N L VI LMLVl L 1Ldvie. Vobval viin LNV 1 Ve Lo

B_sO -> (~J/psi(18) -> “mu+ “mu-) (“phi(1020) -> “K+ "K-)
labels: O 4 6 5 1 3 2

For simplicity, the labels are also printed once in the log file when the N-tuple is booked:

Booking ParticleName (mother) B_sO

Booking Subdaughter number = 1 , ParticleName phi(1020)
Booking Subdaughter number = 2 , ParticleName K-
Booking Subdaughter number = 3 , ParticleName K+
Booking Subdaughter number = ParticleName J/psi(1S)
Booking Subdaughter number = , ParticleName mu-
Booking Subdaughter number = 6 , ParticleName mu+

O wWwN -

There is a large number of N-tuple variables automatically saved: have a look at the source
file to know what variables are defined and their type.!! A few examples are:

e mass_lab0: mass of the reconstructed Bg;

e vchitwo_labi: x? of ¢ vertex;

e pt_lab6: transverse momentum of one of J/¢ daughters;
e nRecoPV: number of reconstructed primary vertices.

Note that all the variables related to the particles (i.e. with a _1ab) are arrays indexed by
the number of selected mother candidates. DecayChainNTuple also has the possibility to
look for different decays at the same time:

0ffTreeB2HH.Decay = "{BO -> “K+ “pi-, B0 -> “K- "pi+}";

by explicitly writing out all the decays using braces and respecting the order of the particles
such that the particles get the correct labels. The number of flags must be identical in each
decay mode.

4.2 MC truth

DecayChainNTuple can retrieve the true generated decay and fill in MC truth information.
This is done by setting the MCDecay and FillMCDecay properties:

0ffBs2JpsiPhiTree.MCDecay = "{

B_s0O -> (~J/psi(1S) -> "mu+ "mu- {, gamma} {, gammal})
("phi(1020) -> “K+ “K-),

B_s"0 -> ("J/psi(1S) -> "mu+ “mu- {, gamma} {, gammal})
("phi(1020) -> “K+ “K-)}";

0ffBs2JpsiPhiTree.FillMCDecay = true;

This will look for all the generated true By decays. The syntax used for the decay chain is
that of the MCDecayFinder. One should keep the same order as in the Decay property and
the number of particles flagged must be identical to that of the reconstructed decay. The

"This is the only thing that cannot be set through options: there would be too many variables to type in.
The names of the variables that in some cases are not very explicit may also change.

L NLIANLAIVUO N L VI LMLVl L 1Ldvie. Vobval viin LNV 1 Ve Lo

labelling is the same as for the reconstructed part. Note that the true generated 4-vectors
are retrieved from the HepMC format.

The association to the MC truth in DecayChainNTuple is obtained by retrieving a pri-
vate version of the interface of a DaVinciAssociator tool. The type of associator tool
used is Particle2MCLinksAsct with a private name being LinkAsct.'? The association
is done directly on the final states using the Particle2MCLinks algorithm to build the
relation table and then by requiring the associated MC particle to correspond to one of the
true generated signal particles. The configuration for our example is then:

0ffBs2JpsiPhiTree.LinkAsct.Location =
"Phys/Relations/Particle2MCLinks0ffBs2JpsiPhi";
0ffBs2JpsiPhiTree.LinkAsct.AlgorithmType = "Particle2MCLinks";
0ffBs2JpsiPhiTree.LinkAsct.AlgorithmName =
"Particle2MCLinks0ffBs2JpsiPhi";
Particle2MCLinks0ffBs2JpsiPhi.InputData =
{"Phys/CombinedForBs2JpsiPhi/Particles"};

This allows to run several instances of DecayChainNTuple in the same job. The N-tuple
variable indicating if a particle is associated to a true signal MC particle is Sig, with the
correspond particle’s label.

Note that the association is not done for composite particles as the code only looks for
direct association: Sig 1ab0 will always be zero. However, asking for the selected By to
be associated to the MC truth is equivalent to requiring all its final states to be associated.

Warning: The correct InputData must be provided to the associator algorithm. This
becomes important when using algorithms cloning particles (e.g. FilterDesktop) where
the MC association of the original particles can no longer be used.

4.3 Reference

Warning: When setting the different boolean properties to true, make sure you run the
necessary code not to run into an exception.

2The code uses internally the AssociatorWeighted interface.

J VVILAMUNLINSG

DecayChainNTuple

DVAlgorithm Author: Luis Ferndndez
In Phys/DaVinciMCTools

Algorithm that fills a N-tuple according to a given decay string (default values are for
offline use).

Options:
std::stringDecay = "BO -> “pi+ “pi-" The reconstructed decay.
std: :string NtupleName The name of the N-tuple.
= "FILE1/MySelection"
std::string MCDecay = "BO -> “pi+ ~“pi-" The MC decay.
bool FillMCDecay = false Write the MC part of the N-tuple.
std: :string GeomTool Name of the
= "GeomDispCalculator" IGeomDispCalculator.
bool RequireTrigger = false Write trigger information.
bool RequireTagging = false Write tagging information.

A few more options are available for online use:

bool UseRichOnlinePID = false Use of online Rich PID.
bool UseOnlineCalo = false Use of online calorimeter.

Note that DecayChainNTuple may also be used in an online HLT environment: using
as geometrical tool the TrgDispCalculator and by telling the PVLocator tool where to
look for the reconstructed primaries.

5 Warning

Please note the following warning: GAUDI has not been designed to be “programmed by
options”. There is no sanity check for options (yet). For instance the following typos would
lead to a stop of execution because a tool or algorithm is not found, or because an option
is not found:

// Typo in MakeResonances:

SeqPreselBd2DPi .Members += {"MakeResonnances/DForPreselBd2DPi" };

// Typo in KinFilterCriterion:

DForPreselBd2DPi.DaughterFilter.Selections = { "K+ : KinfilterCriterion" };
// Typo in MinIPsignif:

DForPreselBd2DPi.DaughterFilter .PVIPFilterCriterion.Minipsignif = 1. ;

On the other hand the following typos in instance names will simply be ignored and not
produce any warning:

L2 dralolvuovuiiaiNvoLw [N L 11V IVINY

SeqPreselBd2DPi.Members += {"MakeResonances/DForPreselBd2DPi" }; // OK.
// Typo in DForPreselBd2DPi -> this line will be ignored.
DForPreselBd2Dpi.DaughterFilter.Selections = {"K+ : KinFilterCriterion"};
// This line is correct:
DForPreselBd2DPi.DaughterFilter.Selections

+= {"pi+ : KinFilterCriterion/PiKin"};
// Typo in PiKin -> the cut will be ignored.
DForPreselBd2DPi.DaughterFilter.piKin.Minipsignif = 1. ;

We are well aware that this is not a very user-friendly situation, but we consider it tem-
porary. For the mid-term an ”option spell-checker” is under study. For the longer term
we expect that the HLT will be steered either by an additional layer of python that would
generate the options, or directly by a GaudiPython script.

6 Conclusion

The development of the HLT has triggered the writing of new generic selection algorithms
and tools that can be used both on- and offline. The use of these tools (may it be by config-
uring everything by options or just by using the filter criteria from a DVAlgorithm) ensures
a maximal use of similar tools—and hence correlation—of all stages of the selection: HLT,
stripping and final selection.

This is a way of maximising total efficiencies by minimising cross-inefficiencies. It also
reduces the systematic errors related to the measurements of these cross-inefficiencies.

The present design has been optimised for a quick development of the HLT and we
are well aware of its limitations, mainly related to the absence of any sanity check. These
tools are bound to evolve with time, as well as the present note.

Appendix

A MakeResonances and Photons

The photon being a neutral particle its origin cannot be determined and hence its direction
is poorly defined. Photons are therefore arbitrarily created at the origin of LHCb’s refer-
ence frame and pointing to the corresponding electromagnetic calorimeter ECAL clusters
allowing in this way to reconstruct the momentum 4-vectors based on the energy of ECAL
clusters.'®

The UnconstrVertexFitter has been revisited to prevent the use of photons'# directly
in the vertex fit. Using the PhotonParams tool, the photons’ parameters are re-evaluated at
a reference vertex previously obtained by fitting charged tracks or composite particles.

13A direct consequence of this definition is that photons should not be used in a vertex fitter: they should
not contribute to the determination of the position of a vertex. However, offline selections used to abuse the
fitter by considering the photon as a particle with well-defined direction: the photon is first transported to a
given vertex and then fitting all the particles originating from this vertex a composite particle is created. This
way of creating composite particles involving photons originates from the fact that the only way of associating
particles to a composite is through its vertex.

4From now on, what we call photons are Particles of the type ContainedObject, i.e. they were created
from a particle maker. Conversion photons are treated as composite particles.

5Note that the original photons are modified by the tool, hence their parameters may differ when retrieved
later in the code.

L2 dralolvuovuiiaiNvoLw [N L 11V IVINY L/

The updated photons are then simply added to the vertex’s decay products in order to get
the correct invariant mass for the newly formed composite particle.

As a result of this new implementation, the UnconstrVertexFitter can no longer be
called only with photons (as it used to be the case in previous versions) to create particles
only decaying to photons, such as 7 — vy or 7% — 7. The UnconstrVertexFitter now
has the following features:

e When fitting only one composite particle with photons (e.g. Bs — ¢7), the vertex is
not re-fitted but instead the existing vertex is used to attach the additional photons; 1°

e This fitter is no longer limited to one level of recursiveness but looks for all the
descendants to be used for the fit (long-lived particles, resonances’ decay products)
and updates all the photons’ parameters to the resulting vertex;

e New option bool UseDaughters = true: by setting this option of the Unconstr-
VertexFitter to false, the fitter will ignore all the descendants of the particles to
fit.

With these modifications, MakeResonances can ignore if the required decay involves
photons. However for the special case of particles only decaying to photons, Make-
Resonances can create such particles through the option MotherToNGammas.

We give typical examples of decay channels involving photons below.

A.1 Examples of decays involving photons

The simplest example is that of Bg — ¢y. The configuration of MakeResonances is identical
to the case without photons. If Bs2PhiGamma is an instance of MakeResonances, then to
get all the ¢y combinations one just needs the following option:

‘BsQPhiGa.mma.DecayDescriptor = "B_sO -> phi(1020) gamma";

MakeResonances can also create composite particles only decaying to photons, such as
n — 7. This is done using the MotherToNGammas property. The code will combine the
required number of photons, create the resulting composite particle whose vertex is set at
the origin of the reference frame. The photons parameters are not re-evaluated since the
mother particle is created at the origin, but they are just added to the mother’s vertex.

An example of use is illustrated in the selection of By — J/4n(y7y). The n is created
with:

ApplicationMgr.TopAlg += {"MakeResonances/Eta2GGForBs2JpsiEta2GammaGamma"};
Eta2GGForBs2JpsiEta2GammaGamma.PhysDesktop.InputLocations =
{"Phys/PhotonsForBs2JpsiEta2GG"};
Eta2GGForBs2JpsiEta2GammaGamma.DecayDescriptor = "eta -> gamma gamma";
Eta2GGForBs2JpsiEta2GammaGamma.Window = 60.0 * MeV;
Eta2GGForBs2JpsiEta2GammaGamma.MotherToNGammas = true;

with a mass cut of +£60 MeV applied around the n» nominal mass. One gets the final
Bg candidates by combining these n with existing J/+ in a different instance Bs2Jpsi-
Eta2GammaGamma of MakeResonances:

16This is also an abuse of the vertex fitter that should disappear, but needs a modification of the physics
event model.

AVLL LAvudNGuLIY

Bs2JpsiEta2GammaGamma.DecayDescriptor = "B_sO -> J/psi(1S) eta";

where the vertex of the By is actually the J/4 one, vertex at which the photons from the 7,
are re-evaluated in order to get the correct B momentum-vector. Note that MakeResonances
does not re-compute the momentum components and covariance matrix with the dis-
placed photons and its vertex remains at the origin. It is up to the user in a private
analysis algorithm to retrieve the selected candidates and take corrections properly into
account. In this example, the decay tree will look like:

Name E M P Vz

MeV MeV MeV mm
B_sO 56199.36 5373.15 55941.91 2.79
+-->J/psi(1S) 37596.04 3095.27 37468.41 2.79
| +—=>mu+ 14235.50 105.66 14235.11 3.50
| +==>mu- 23360.54 105.66 23360.30 2.05
+-->eta 18603.32 543.36 18595.39 0.00
+-->gamma 11731.91 0.00 11731.91 2.79
+-->gamma 6871.42 -0.00 6871.42 2.79

References

[1] P KOPPENBURG AND L. FERNANDEZ. HLT Exclusive Selections. LHCb-2005-015, LPHE-
2005-011, upcoming, 2005.

[2] MURIEL P1vk AND FrRANCOIS R. LE DIBERDER. sPlot: a statistical tool to unfold data
distributions. Nucl. Instrum. Meth., A555:356-369, 2005.

[3] IVAN BELYAEV. LoKi: Smart & Friendly C+ + Physics Analysis Toolkit. LHCb-2004-023,
2004.

[4] HuGo Ruiz. Guidelines for selection algorithms. LHCb-2004-031, 2004.

