
Schedule: Timing Topic

20 minutes Lecture

0 minutes Practice

20 minutes Total

Gaudi Framework Tutorial, 2004

9

LHCb Detector Description

Gaudi Tutorial: Detector Description 9-2

9-2 Gaudi Framework Tutorial, 2004

Goals

Overview of Detector Description in Gaudi

• What we understand as “Detector
Description”

• Understanding the Transient view

• Understanding the Persistent view

• Role of Conditions Database

Goals

The goals of this first lesson is to offer an overview to the detector description facilities existing in the
Gaudi framework before diving into the various parts that will be covered in the other lessons in this
tutorial.

Gaudi Tutorial: Detector Description 9-3

9-3 Gaudi Framework Tutorial, 2004

Detector Description
Architecture

Sub-Architecture of Gaudi

• Same principles

• Transient/Persistent
representations

Focus on the “Physics
Algorithm”

• Access to Detector
Transient Store

Coherent access to “all”
detector data

• Geometry, Calibration,
Slow Control, etc.

Converter

Algorithm

Event Data
Service

Persistency
Service

Data
Files

AlgorithmAlgorithm

Transient
Event
Store

Detec. Data
Service

Persistency
Service

Data
Files

Transient
Detector

Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram

Store

Application
Manager

ConverterConverterEvent
Selector

Gaudi Architecture

Gaudi Tutorial: Detector Description 9-4

9-4 Gaudi Framework Tutorial, 2004

Detector Description
Logical Structure

• Breakdown of detectors

• Identification

Geometry Structure

• Hierarchy of geometrical volumes

• LogicalVolumes (unplaced dimensioned shape)

• PhysicalVolumes (placed volume)

Other detector data

• Calibration, Alignment, Readout maps, Slow
control, etc.

Detector Description

The detector description database should include the physical and a logical description of the detector. The
physical description, in particular the geometry description covers dimensions, shape and material of the
different types of elements from which the detector is constructed.

The logical description provides two main functions. The first is a simplified access to particular parts of
a physical detector description. This could be a hierarchical description where a given detector setup is
composed of various sub-detectors, each of which is made up of a number stations, modules or layers, etc.
and there would be a simple way for a client to use this description to navigate to the information of
interest. The second function of the logical description is to provide a means of detector element
identification. This allows for different sets of information which are correlated to specific detector
elements to be correctly associated with each other

In a detector description, the definition of the detector elements and of the data associated to their physical
description may vary over time, for instance due to real or hypothetical changes to the detector. Each such
change should be recorded as a different version of the detector element. Additionally, it should be
possible to capture, for an entire description, a version of each of the elements and to associate a name to
that set. This is similar to the way CVS allows one to tag a set of files so that one does not need to know
the independent version numbers for each file in the set.

The current implementation of detector description includes only the logical description of the detector, its
geometry and the description of the required materials. We are actively working in incorporating the so
called Conditions Database, which will include the rest of the time varying detector information
(calibration, alignment, slow control, etc.).

Gaudi Tutorial: Detector Description 9-5

9-5 Gaudi Framework Tutorial, 2004

Two Hierarchies

DetElement

LHCb

Detector Description Geometry

DetElement

LHCb

DetElement

Tracking

DetElement

Calo

DetElement

HCAL

DetElement

ECAL

DetElement

Module2

DetElement

Module1

LVolume
Experiment

PVolume PVolume PVolume

LVolume
ECAL

LVolume
HCAL

LVolume
RICH

PVolume PVolume

LVolume
HCALModule

Logical structure Geometry structure

Gaudi Tutorial: Detector Description 9-6

9-6 Gaudi Framework Tutorial, 2004

Logical Structure
The basic object is a Detector Element

• Identification

• Navigation (tree-like)

DetectorElement as information center

• Be able to answer any detector related
question

– E.g. global position of strip#,
temperature of detector, absolute
channel gain, etc.

• Placeholder for specific code

– The specific answers can be coded
by “Physicists”

DetectorElement objects are shared by all
Algorithms

DetElement

*

MyDetector

Logical Structure

The central entity used to describe the logical structure is the DetectorElement. It represents any detector
element from the complete detector, sub-detector, station to a any module or chamber. It main role is two-
fold: identification and navigability, and as an information concentrator to any kind of detector
information (geometry, alignment, calibrarion, slow control, etc,).

In addition, this is the class the sub-detector developers will have to extern to add specific code to answer
specific questions. For examples are: what is the position of a detector channel given its strip number,
what is the corrected gain of a calorimeter cell, etc.

Gaudi Tutorial: Detector Description 9-7

9-7 Gaudi Framework Tutorial, 2004

Transient
Detector Store

Algorithm Accessing Detector Data

Geometry

DetectorData
Service

Algorithm

• Manages store
• Synchronization updates

DetElement

Geometry
Info

IGeometryInfo

Calibration

ReadOut
IReadOut

ICalibration

IDetElement

MuonStation

request

request: get, update

reference

beginEvent

Conditions
DB

Other DBs

Persistency
Service

Conversion
Service

Conversion
Service

Conversion
Service

Accessing Detector Data

An algorithm that needs to access a given detector part uses the detector data service to locate the relevant
DetectorElement. This operation can be generally done during the initialization phase of the algorithm.
Contrary to the Event Data, the Detector Data store is not cleared for each event and the references to
detector elements remain valid and are updated automatically during the execution of the program.

Main Features

•The persistent representation of the detector data, in particular the detector description (logical structure
and geometry) is different than the transient representation. This is XML files in our current solution.

•The DetectorElement will be (not yet implemented) updated with up to date information when the event
being processed will have a time stamp outside the validity range.

Gaudi Tutorial: Detector Description 9-8

9-8 Gaudi Framework Tutorial, 2004

Detector Tools

Detector Tool to
encapsulate the “code” to
answer detector questions

• Keeping brainless
detector elements

• Shared by all algorithms

• Caching answers

Problems

• Update answers when
detector data invalidated

Transient
Detector Store

Detector
Tool

Algorithm

MuonStation

questions

MuonSystem

Algorithm

reference

Gaudi Tutorial: Detector Description 9-9

9-9 Gaudi Framework Tutorial, 2004

Detector Element Class

Three basic functionalities:

• IDetectorElement: Access to other Detector
information

• IValidity: Time validity interval management

• IParamSet: User parameters (key-value pairs)

Gaudi Tutorial: Detector Description 9-10

9-10 Gaudi Framework Tutorial, 2004

IDetectorElement

virtual const std::string & name () const=0
virtual const IGeometryInfo * geometry ()const =0
virtual const IAlignment * alignment () const =0
virtual const ICalibration * calibration ()const = 0
virtual const IReadOut * readOut () const =0
virtual const ISlowControl * slowControl () const =0
virtual const IFastControl * fastControl () const =0

virtual IDetectorElement * parentIDetectorElement () const=0
virtual IDetectorElement::IDEContainer & childIDetectorElements ()
const=0
virtual IDetectorElement::IDEContainer::iterator childBegin ()=0
virtual IDetectorElement::IDEContainer::iterator childEnd ()=0

virtual std::ostream & printOut (std::ostream &) const=0
virtual IDetectorElement * reset ()=0
virtual StatusCode initialize ()=0

Gaudi Tutorial: Detector Description 9-11

9-11 Gaudi Framework Tutorial, 2004

IValidity

virtual bool isValid ()=0
virtual bool isValid (const ITime &)=0
virtual const ITime & validSince ()=0
virtual const ITime & validTill ()=0
virtual void setValidity (const ITime &, const ITime
&)=0
virtual void setValiditySince (const ITime &)=0
virtual void setValidityTill (const ITime &)=0
virtual StatusCode updateValidity ()=0

Gaudi Tutorial: Detector Description 9-12

9-12 Gaudi Framework Tutorial, 2004

IParamSet
virtual IParamSet::Kind paramKind (std::string name)=0
virtual std::string paramType (std::string name)=0
virtual std::string paramComment (std::string name)=0
virtual std::string paramAsString (std::string name)=0
virtual int paramAsInt (std::string name)=0
virtual double paramAsDouble (std::string name)=0
virtual double param (std::string name)=0
virtual IParamSet::Kind paramVectorKind (std::string name)=0
virtual std::string paramVectorType (std::string name)=0
virtual std::string paramVectorComment (std::string name)=0
virtual std::vector<std::string> paramVectorAsString (std::string name)
virtual std::vector<int> paramVectorAsInt (std::string name)=0
virtual std::vector<double> paramVectorAsDouble (std::string name)=0
virtual std::vector<double> paramVector (std::string name)=0
virtual std::vector<std::string> params ()=0
virtual std::vector<std::string> paramVectors ()=0
virtual std::string printParams ()=0
virtual std::string printParamVectors ()=0

Gaudi Tutorial: Detector Description 9-13

9-13 Gaudi Framework Tutorial, 2004

Algorithm Accessing Detector Data

// Algorithm code fragment (initialize() or execute())

MyDetElement* mydet = getDet("Structure/LHCb/MyDet");

...

// get the number of sub-DetectorElements
ndet = mydet->childIDetectorElements().size()
// get the material
material = mydet->geometry()->lvolume()->materialName();

Accessing detector description

Similarly to the event data, accessing detector data is done using the DetectorDataSvc (detSvc()) and with
the help of a SmartDataPtr(). What is obtained is a pointer to a DetectorElement element, which is then
used for obtained the required information.

Gaudi Tutorial: Detector Description 9-14

9-14 Gaudi Framework Tutorial, 2004

Geometry Information
Constructed using Logical Volumes and Physical
Volumes (Geant4-like)

• Logical Volume: Unplaced detector described
as a solid of a given material and a set of
daughters (physical volumes).

• Physical Volume: Placement of a logical
volume (rotation & translation).

Solids

• A number of basic shapes (boxes, tubes,
cones, trds, spheres,…) with dimensions

• Boolean solids (unions, intersections and
subtractions)

Geometry Information

The geometry information is build using a Logical and Physical Volumes. The names of these objects
comes from the Geant4 nomenclature.

•Logical Volume: It is an unplaced dimensioned volume of a given shape and a given material. It is also
the system of reference where the sub-detector elements (daughters) will be placed.

•Physical Volume: It is the placement of a daughter logical volume into the mother logical volume. It is
constituted of a reference to a logical volume and its transformation (rotation and translation) with respect
to the mother logical volume.

The shape of a logical volume can be constructed using basic shapes or Boolean combination of these
with transformations.

Gaudi Tutorial: Detector Description 9-15

9-15 Gaudi Framework Tutorial, 2004

Geometry Information (2)

HepTransform3D& matrix() // To Local

HepTransform3D& matrixInv() // To Global

HepPoint3D toLocal(HepPoint3D&)

HepPoint3D toGlobal(HepPoint3D&)

bool isInside(HepPoint3D&)

string belongsToPath(HepPoint3D&)

IGeometryInfo* belongsTo(HepPoint3D&)

...

fullGeoInfoForPoint(HepPoint3D&, ...)

string lVolumeName()

ILVolume* lvolume() ...

IGeometryInfo

IGeometryInfo* geom = mydetelem->geometry();

Geometry Information

The abstract interface IGeometryInfo returned by the method geometry() provides the basic geometry
information for a given DetectorElement. The basic functionality are transformations from the local
system of reference to the global one and vice versa. There are also useful functions to indicate if a given
3D point belongs to a given detector element or to find the complete list of volume hierarchy for a given
3D point.

In this slide is shown a incompete list of the available methods. Please refer to the reference guide for a
complete one: http://cern.ch/LHCbSoft/LHCb/v8/doc/html/class_igeometryinfo.html

Gaudi Tutorial: Detector Description 9-16

9-16 Gaudi Framework Tutorial, 2004

Transient Store Organization

Standard Gaudi
Transient Store

• “Catalogs” of Logical
Volumes and Materials

• “Structure” as a tree

• All elements identified
with names of the
form: /xxx/yyy/zzzz

Transient Store Organization

The detector description DataObjects have a name and are organized in the transient store as a Unix file-
system.

•DetectorElement. The name structure of the detector elements follow the logical structure of the
detector (detector, sub-detector, subsub-detectors, …)

•LVolumes. The logical volumes has a unique name and are organized in “catalogs” for convenience. The
organization of these catalogs do not need to reflect the geometry tree (it cannot in general) but it is
convenience that we organize the logical volumes by sub-detector. Physical volumes are not directly
identifiable. Their identification is done through the logical volume that contains the physical volumes
(placements).

•Material. The Materials (Isotopes, Element, Mixtures) are also organized in catalogs. The main catalog
is used for “standard” materials. Other catalogs can be used for specific materials required by sub-
detectors.

Gaudi Tutorial: Detector Description 9-17

9-17 Gaudi Framework Tutorial, 2004

Persistency based on XML files

XML is used as persistent representation
of the Structure, Geometry and Materials

Why XML?

• Instead of inventing our own format use
a standard one (extendible)

• Many available Parsers and Tools

• Strategic technology

Persistency

The current persistency for the logical and geometrical information is based on text files formatted as
XML. In the long term we envisage to use the Conditions database also to store the geometry and logical
structure taking advantage of the time dependency and versioning available. In any case, the formatting of
the geometry in the conditions DB can be continued to be XML formatted strings.

XML

XML (eXtendable Markup Language) is a standard language which allows the definition of custom tags,
unlike the fixed set of tags of HTML used for WWW. XML files are understandable by humans as well as
computers. Data in XML are self-descriptive so that by looking at the XML data one can easily guess
what the data mean. Unlike the HTML tags, tags in XML do not define how to render or visualize the
data. This is left to an application which understands the data and can visualize them if wanted. An
advantage of XML is that there exists plenty of software which can be used for parsing and analysing, as
it is an industry standard.

Gaudi Tutorial: Detector Description 9-18

The LHCb DTDs

There are actually three main DTDs in LHCb, each of them allowing to describe a particular type of
information :

• structure.dtd : allows to describe the structure of the detector. This is mainly a way of describing a
tree of detector elements.

• geometry.dtd : this is were the actual geometry is described. Each detector element of the structure
part references one of the geometries described here.

• material.dtd : this is the definition of the materials used in LHCb. They can then be referenced from
the geometry.

9-18 Gaudi Framework Tutorial, 2004

The LHCb Detector XML/DTD

Divided into 3 main parts

• structure

• geometry

• material

External DTDs, to be referenced in every
LHCb XML files

Gaudi Tutorial: Detector Description 9-19

The LHCb DTD specificities

There are some specificities in the LHCb DTD, mainly three of them.

Every numerical value required by an attribute or an element in any of the DTDs of LHCb is an expression.
This means that the value will be evaluated by the numerical expression parser. Thus, most of the current units
and constants are already known. You can safely use degree, rad or pi for instance. On top of that, many
mathematical functions are also known, such as sin, or exp but also arctan and many others.

A special element called parameter is defined in all DTDs from LHCb. This element allows the user to define
his own parameters that can be then reused in any expression or value in the rest of the XML code. It has a
name, a type, a value and a comment. The parameter element is actually a kind of macro since it will be
replaced by its value everywhere it appears at parsing time. As for macros, the scope of a parameter is really
uneasy to define. It is define everywhere “after” its definition. The problem is that this “after” highly depends
on the way you read the XML. The basic rule is that you should always define a parameter in a place that is
above every node that will use it.

Some nodes have names finishing by "ref". Each time there is a corresponding node without the ref. The "ref"
nodes are actually kinds of hyperlinks on the "without ref" ones. The hyperlink is in general specified using
the format : protocol://hostname/path/to/the/file.xml#ObjectID. The protocol and hostname parts can be
omitted if the file resides on the local host. It is possible to write a hyperlink without the full path name in case
one needs to refer to an XML object residing inside another file. In this case the relative path will be appended
to the location of the currently parsed XML file. For example having the current file location
/full/path/to/current.xml and inside this file a hyperlink as href="next/file.xml#NextOID" the hyperlink will be
resolved as /full/path/to/next/file.xml#NextOID. If the hyperlink has the form #ObjectID this means that the
referred object is located in the same file. Note that relative paths are strongly encouraged for every file except
the top most one, since the whole sets of file may be copied in several different locations one day.

9-19 Gaudi Framework Tutorial, 2004

Some specificities

Expressions evaluator – units & functions known

12.2*mm + .17*m / tan (34*degree)

parameter : a kind of macro

<parameter name="InCell" value="40.6667*mm"/>

<parameter name="MidCell" value="1.5*InCell"/>

protocol://hostname/path/file.xml#ObjectID

References : element + “ref”

<detelemref href="LHCb/structure.xml#LHCb"/>

Gaudi Tutorial: Detector Description 9-20

The LHCb DTD for structure

Here is a list of the main elements defined in the LHCb DTD for describing the structure of the detector :

• DDDB : this is to fulfill the XML basic rule that each XML document must have only one root XML
element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify detector elements.

• detelem : detector elements are the essential part of the structure of the detector description. They fully
describe a given part of the detector by holding data on the geometry of this part as well as on the subparts
constituting it.

• userParameter and userParameterVector : this allows the user to add a parameter or a vector of
parameters for a given detector element. This is intended to be used for specific parameters appearing in
the subdetectors' descriptions. Their usage is described deeper in the next talk.

• geometryInfo : this element describes the geometry of a given detector element (logical volume, support
and path from the support to the geometry).

• specific : this is the place where a user can extend the default detector description language and
introduce new elements for his own needs. It's foreseen that the new XML elements be defined in a local
DTD section of the XML data file or in a specific DTD file. Its usage is described deeper in the next next
talk.

9-20 Gaudi Framework Tutorial, 2004

Structure Elements
DDDB : the root

catalog : a list

detelem : a detector
element

geometryInfo : connection
to the geometry

userParameter(Vector) :
hook for adding
parameters

specific : hook for
extending the DTD

<DDDB>
<catalog name=“…">
<detelem name=“…">
<geometryinfo

lvname=“…”
npath=“…”
support=“…”/>

<userParameter
comment=“…”
name=“…”
type="string">

…
</userParameter>
<specific>
…

</specific>
</detelem>

</catalog>
</DDDB>

Gaudi Tutorial: Detector Description 9-21

The LHCb DTD for geometry

Here is a first list of the main elements defined in the LHCb DTD for describing the geometry of the
detector :

• DDDB : this is to fulfill the XML basic rule that each XML document must have only one root XML
element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify the logical
volumes.

• logvol : this defines a logical volume. See lesson 1.

• physvol : this defines a logical volume. See lesson 1.

• paramphysvol, paramphysvol2D, paramphysvol3D : these are ways to define many physical
volumes in one shot, by replicating a given volume and applying a given transformation between each
replica.

• tabproperty : this defines a tabulated property. This is used to describe optical properties of materials
and surfaces. See "Optical properties & Surfaces" available at http://lhcb-comp.web.cern.ch/lhcb-
comp/Frameworks/DetDesc/Documents/Optical.pdf.

9-21 Gaudi Framework Tutorial, 2004

Geometry Elements (1)

DDDB : the root

catalog : a list

logvol : logical volume

physvol : physical volume

paramphysvol(2D)(3D) :
replication of physical
volumes

tabproperty : tabulated
properties

<DDDB>
<catalog name=“…”>
<logvol material=“…”

name=“…”>
<physvol logvol=“…”

name=“…”/>
</logvol>
<logvol name=“…”>
<paramphysvol number="5">
<physvol logvol=“…”

name=“…”/>
<posXYZ z="20*cm"/>

</paramphysvol>
</logvol>

</catalog>
</DDDB>

Gaudi Tutorial: Detector Description 9-22

The LHCb DTD for geometry

Here is a second list of the main elements defined in the LHCb DTD for describing the geometry of the
detector :

• posXYZ , posRPhiZ , posRThPhi : these are 3 ways of defining a translation : cartesian,
cylindrical and spherical coordinate systems.

• rotXYZ , rotAxis : these are two ways of defining a rotation. Either along X, Y or Z axis, or along a
user-defined axis.

• transformation : this defines a new transformation, by composition of several others

• box, trd, trap, cons, tub, sphere : these are all kinds of solids, namely boxes, simple trapezoids,
general trapezoids, conic sections, tube sections and sphere. Please report to “The LHCb Detector
Description DTD" available at http://lhcb-comp.web.cern.ch/lhcb-
comp/Frameworks/DetDesc/Documents/lhcbdtd.pdf for further details.

• union, subtraction, intersection : these are boolean operations on solids.

• surface : this defines a surface.

9-22 Gaudi Framework Tutorial, 2004

Geometry Elements(2)

posXYZ, posRPhiZ, posRThPhi :
translations

rotXYZ, rotAxis : rotations

transformation : composition of
transformations

box, trd, trap, cons, tub, sphere

union, intersection, subtraction :
boolean solids

surface

<subtraction name="sub2">
<box name="box3“

sizeX="1*m“
sizeY="1*m“
sizeZ="15*cm"/>

<tubs name="tub2“
outerRadius="15*cm“
sizeZ="25*cm"/>

</subtraction>
<posXYZ z="-40*cm"/>
<rotXYZ rotX=“90*degree”/>

Gaudi Tutorial: Detector Description 9-23

The LHCb DTD for material

Here is a list of the main elements defined in the LHCb DTD for describing the materials of the detector :

• materials : this is to fulfill the XML basic rule that each XML document must have only the one root
XML element This is the root element.

• catalog : this is simply a list of elements, with a given name. This is a way to classify materials.

• tabproperty : this defines a tabulated property. This is used to describe optical properties of materials
and surfaces. See "Optical properties & Surfaces" available at http://lhcb-comp.web.cern.ch/lhcb-
comp/Frameworks/DetDesc/Documents/Optical.pdf.

• atom : this is used to define an element when it is not a mixture of isotopes.

• isotope : this is the definition of a given isotope of a given atom.

• element : this is a real life element, that is in general a mixture of several isotopes with given
proportions.

• component : this is used to define mixtures. It associates a material and a proportion.

• material : this defines a mixture of several elements or even several other mixtures with given
proportions.

9-23 Gaudi Framework Tutorial, 2004

Material Elements

materials : the root

catalog : a list

tabproperty : tabulated
properties

atom

isotope

element : a mixture of
isotopes

material : mixtures of
elements or materials

<isotope A="11*g/mole“
name="Bor_11“ …/>

<element name="Boron“
symbol="B“ …>

<isotoperef href="#Bor_10“
fractionmass="0.20"/>

<isotoperef href="#Bor_11“
fractionmass="0.80"/>

</element>
<element name="Oxygen“

symbol="O“ …>
<atom A="16*g/mole“

Zeff="8.0000"/>
</element>
<material name="CO2“ …>

<component name="Carbon“
natoms="1"/>

<component name="Oxygen“
natoms="2"/>

</material>

Gaudi Tutorial: Detector Description 9-24

Specializing Detector Elements

There are mainly three ways of specializing detector elements.

• the first and less complicated one is to add userParameters to the detector element in the XML code.
This will be detailed in the end of this lesson.

• the second is to extend and specialize the DetectorElement object in C++. This allows to add new
members and methods. The initialization of this new object uses then the userParameters defined
previously. This will be detailed in the next lesson.

• the last and most complicated way is to extend the XML DTD to allow specific XML elements and
store complex information. This will need to write a dedicated converter and will be detailed in the
next lesson.

9-24 Gaudi Framework Tutorial, 2004

Specializing Detector Elements

1. Adding userParameter(vector)s to default
DetectorElements

2. Extending and specializing the
DetectorElement class in C++, using
userParameters in XML

3. Extending XML DTD and writing a
dedicated converter

Gaudi Tutorial: Detector Description 9-25

9-25 Gaudi Framework Tutorial, 2004

Two elements :
<userParameter> and
<userParameterVector>

3 string attributes : name, type and comment
One value given as text

<userParameter
comment=“blablabla”
name=“description”
type=“string”>

Calibration channels
</userParameter>

<userParameterVector
name=“NbChannels”
type=“int”
comment=“blabla”>

530 230
570 270

</userParameterVector>

Specializing by using UserParameter

Specializing by using userParameter and userParameterVector

These are two elements of the LHCb structure DTD that allow the user to add his own parameters to a given
detector element. These elements have three attributes defining the parameter :

•name : this will be the only way to retrieve the parameter in C++

•type : this has no restriction but only int, double and string are recognized. All other types are treated as
strings.

•comment : you are free to put here a small explanation of the meaning and usage of the parameter

The value of the parameter is the value of the element itself, which is the text appearing between the
opening and the closing tag. In the case of a vector, the different values should be separated by spaces
and/or carriage return only. If the type of a parameter is int or double, the value will be computed using the
expression evaluator of the XmlCnvSvc. Thus parameters (I mean the one defined via the element
<parameter>, not user parameters), units and mathematical functions can be safely used.

Gaudi Tutorial: Detector Description 9-26

9-26 Gaudi Framework Tutorial, 2004

Free extension of the DetectorElement class

Specific initialization using initialize()

• called after conversion

• access to userParameters

A converter is needed but very simple (4 lines)

#include “DetDesc/XmlUserDetElemCnv.h”
#include “MyDetElem.h”

static CnvFactory
<XmlUserDetElemCnv<MyDetElem> > s_factory;

const ICnvFactory& XmlMyDetElemCnvFactory = s_factory;

Extending Detector Elements

Gaudi Tutorial: Detector Description 9-27

Full Customization

Up to know, we learnt how to use userParameters and how to extend the DetectorElement object. This
already allows some customization but does not allow a real extension of the default schema in the sense
that you have no way to add data to the XML by using new XML elements that were not defined in the
LHCb DTD.

This possibility exists but it requires some work :

• one should first extend the LHCb DTD to define correctly the new elements

• then this extended DTD should be parsed to retrieved the data. This is done by using a free XML
parser called xerces

• at last, specialized converters are needed to deal with the new data and store them into dedicated
DetectorElements

We will now detail every step.

9-27 Gaudi Framework Tutorial, 2004

Full Customization

extension of the DTD to define new
XML elements

parsing of the new XML code using the
xerces parser

“real” converters to initialize C++

objects according to XML

Not recommended

Gaudi Tutorial: Detector Description 9-28

9-28 Gaudi Framework Tutorial, 2004

Adding More Information

The Detector Data Store
may contain any other
detector information

• Any DataObject can be
registered on the store

• Useful to not repeat
many times the same
parameters to
DetectorElements

Other Information

As the detector transient store is a normal Gaudi store, any DataObject can be registered on it and made
available to any algorithm or detector element. Today, the information available is quite limited (structure,
geometry and materials) but it is foreseen that other information will added (for example conditions data).

Is is quite usual that many parameters are same among different detector elements. In this case makes
sense to define new objects of the type “detector element pattern” that can be referenced by detector
elements. These new objects can also be made persistent using the same mechanisms (XML files) or can
be generated at run-time based from a set of primordial parameters.

Gaudi Tutorial: Detector Description 9-29

9-29 Gaudi Framework Tutorial, 2004

Det/XmlDDDB Package

Package containing all the detector
description XML files (structure, geometry
and materials)

• Organized in one directory per sub-
detector

• CVS module (versioned)

• Released as any other software package

• Managed by M. Cattaneo

Gaudi Tutorial: Detector Description 9-30

XmlEditor

The XML editor is a tool provided to edit the XML files of the detector description database without
having to learn the XML syntax.

To start XmlEditor, just type $LHCBSOFT/Det/XmlEditor/v*/scripts/xmlEditor in a UNIX shell or
%LHCBSOFT%\Det\XmlEditor\v*\scripts\xmlEditor.bat at the dos prompt. v* is the number of the
version you want to use (v4r1 is the latest one at this time).

A documentation dedicated to the editor is available at http://lhcb-comp.web.cern.ch/lhcb-
comp/Frameworks/DetDesc/Documents/XmlEditor.pdf.

9-30 Gaudi Framework Tutorial, 2004

XmlEditor

Explorer-like XML viewer

No need to know XML syntax

Checks the DTD when opening a file

Allows copy, paste and drag and drop of nodes

Allows view of several files at the same time

Hide references across files

Easy XML edition

$LHCBSOFT/Det/XmlEditor/v*/scripts/xmlEditor(.bat)
http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/DetDesc/Documents/XmlEditor.pdf

Gaudi Tutorial: Detector Description 9-31

XmlEditor screenshot

You can see on this picture the different elements of the XmlEditor GUI. A typical window is divided into
two parts. On the left hand side, the tree of elements is displayed. Each element has an icon, the ones with
a big arrow are references, the one with a small arrow are open references. You can right click on an
element to get a contextual popup menu and perform some actions (create/remove elements/attributes,
edit/close reference, view XML source…). On the right hand side are displayed the attributes of the
selected node.

Several window can be open at the same time, even if they reuse the same file. Drag and drop or cut and
paste across windows is allowed.

9-31 Gaudi Framework Tutorial, 2004

XmlEditor screenshot

Gaudi Tutorial: Detector Description 9-32

Panoramix

Panoramix is the new package for visualization of both the detector geometry and the events. In our case,
the event display is not available to avoid waiting too much at launch time (due to Sicb).

To start panoramix, just type :

$LHCBSOFT/Vis/Panoramix/v*/scripts/panoramix where V* is the version number under Linux

%LHCBSOFT%\Vis\Panoramix\v*\scripts\panoramix.bat where V* is the version number under Windows

or double click on the icon if you run a file manager.

Note that these scripts make take –noevent as argument. In this case, panoramix starts faster but your are
not able to display events.

A documentation dedicated to panoramix is available at
http://www.lal.in2p3.fr/SI/Panoramix/tutorial/tutorial.html.

9-32 Gaudi Framework Tutorial, 2004

Panoramix: Geometry Viewer

Events and Geometry viewer

Takes the LHCb specificities into account

• references

• logical volumes hierarchy

• subDetectors

Interactive navigation inside the geometry
hierarchy

Do not develop geometry without it

Gaudi Tutorial: Detector Description 9-33

Panoramix screenshot

You can see on this picture the different elements of the XmlEditor GUI. A tool bar on the right is
missing and we won’t use here the tree structure on the left. The center window displays the geometry, with
different colors for different sub detectors.

9-33 Gaudi Framework Tutorial, 2004

Panoramix screenshot

Gaudi Tutorial: Detector Description 9-34

9-34 Gaudi Framework Tutorial, 2004

Conditions DB
Detector conditions data (calibration, slow
control, alignment, etc.) are characterized
by:

– Time validity period

– Version

The conditions data objects will also appear
in the Detector Transient Store

The persistency of conditions data is done
with the Conditions DB (LCG project)

Conditions DB

The Conditions DB will be used to store “detector conditions” that are time dependent and versioned.
Examples of detector conditions are: calibration constants, alignment constants, slow control parameters,
etc.

The Conditions database is implemented using a DBMS (the current implementation is based on
Objectivity) with a standard interface. The conditions objects will appear in the transient detector store as
any other object. The sub-detector teams will define the contents and structure of the conditions data. The
Gaudi framework will take care of of the synchronization of the conditions data with the time of the event
being processed off-loading the sub-detector algorithm code of that task.

Gaudi Tutorial: Detector Description 9-35

9-35 Gaudi Framework Tutorial, 2004

Condition Database Requirements

Storage/Retrieval of
time depend data
items

Versioning

Tagging

Ability to extract slices
of data

Not intrusive and as
much as possible
transparent for the
algorithms

Tag1 definition

Time
Version

Data Item

Version

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

VDET alignment
HCAL calibration

RICH pressure
ECAL temperature

Time = T

Gaudi Tutorial: Detector Description 9-36

9-36 Gaudi Framework Tutorial, 2004

Remote Site

Remote Site

The Big Picture

Calibration
Application

Worker Node Cond
DB

Algorithm

Rec/Anal Application

Algorithm

Cond
DB

Cond
DB

master copy
Online

DB

Mgr
Tools
Mgmt
Tools

Calibration
Application

replica

slice

Gaudi Tutorial: Detector Description 9-37

9-37 Gaudi Framework Tutorial, 2004

Gaudi Interface to Conditions Db
Emphasis on the data retrieval functionality

One new service was defined : ConditionSvc

Independent from data content, only deals with data
retrieval depending on time, version and/or tag

Fully transparent for the user

Geometry

LvolumeLvolumeLvolumeLvolume

Detector
Data Service

Persistency
Service

Algorithm

Ask for
Object

Retrieve
pointer

Check
presence Ask creation

Cnv

Condition
Db

Condition
Service

Ask for data Retrieve them
from Database

Abstract interface

Gaudi Tutorial: Detector Description 9-38

9-38 Gaudi Framework Tutorial, 2004

Condition Data Object

“Block” of data belonging to some detector element

• E.g. channel thresholds for module 7 of ECAL

Time (CondDBKey) validity range

• [since, till)

• CondDBKey is a 64 bit integer number. Sufficient
flexibility (absolute time in ns, run number, etc.)

Version

• Sequence version number

Extra information

• Textual description, insertion time, etc.

Condition Data Objects

Each condition data item is identified by the name of the detector element it is associated to (e.g.
“/LHCb/Calo/Ecal/Module1”) and to the type or nature of the data (e.g. “calib”, “temperatures”, etc.). The
combination of both names uniquely identifies each data item.

Each condition data item has a time validity range, with a start time and an end time. Time can be
expressed as real time (preferred), or run/event/beam crossing number.

In general, data items can have several versions valid at a given time (exceptions could perhaps be slow
control monitoring data). Each version be identified by a version number or local tag. The default version
is not necessarily the most recently added version. The most recent version could be identified by a logical
tag like “head version” or similar.

It must be possible to tag a given configuration of the whole database. With this “global tag” we should be
able to select the correct version of each data item valid at each time.

Gaudi Tutorial: Detector Description 9-39

9-39 Gaudi Framework Tutorial, 2004

Summary

Today Detector Information consists of

• Logical Structure (DetectorElements)

• Geometry (LVolume, Solids, etc.)

• Materials (Isotope, Mixtures, etc.)

On the way of adding Detector Conditions

• Conditions Data (Sub-detector specific)

Other Information could be added if
required

