Quality Control

Procedures and tools

Marco Cattaneo, 28-June-2000

Industry tests throughout
{668 software development cycle

http://www.aonix.com/Products/Testing/10xpart3.html

m Requirements testing

e Software should be tested against an understanding of what it is
supposed to do
e Tools:
» Requirements verification: check Syntax, Semantics, Testability
» Requirements modelling: generate use-cases to cover the requirements
» Requirements validation: generate test-cases from the use-cases

m Design testing

e Same tools as requirements testing, but at the component level rather
than system level

m Code testing
e Easiest phase if above done properly

e Tools:

» Metrics reporter to measure complexity in data flow, data structure,
control flow. Helps to identify which parts of code need most testing.

» Code checker to look for misplaced pointers, uninitialised variables,
deviations from standard etc.. To be used BEFORE code inspections (if any)

> Code instrumentor plus structure coverage analyser to measure structural
coverage of test-cases

http://hepunx.rl.ac.uk/BFROOT/www/Computing/Programming/QC/QCHome.html
http://hepunx.rl.ac.uk/BFROOT/www/Computing/Programming/QA/QAHome.html

m Quality Control
» Code+design rules and guidelines (CodeCheck)
» Release procedures
» Memory leaks (manually, Insure++)
» Profiling

e Not clear how much is enforced (info is rather old)

m Quality Assurance

e Software libraries to create and fill histograms
» Release QA: Broad check on physics plots

» Production QA: specialised checks by sub-detector, for simulation,
digitisation+pileup, reconstruction

e Documentation and tools to produce and compare histograms
against reference set

» c.f. Aleph online, Aleph RQ
»c.f. SICB quality checking....

e In production, results on the web
m Problem reporting and tracking
e Remedy, ARweb

% F.Carminati, http://alisoft/offline/development.html

¢ Enforced:

m Alice Coding Conventions
e Checked with RuleChecker (see CHEP2000 presentation)

m Packaging rules

e Makefile structure, subdirectory structure, rootification,
dependencies

m Each package must have a test macro
e To exercise large part of capabilities

¢ Planned:
m Code reviews

Marco Cattaneo, 28-June-2000

ATLAS

M.Stavrianakou, D.Burkhart
http://atddoc.cern.ch/Atlas/DagSoft/sde/Welcome.html
http://atlasinfo.cern.ch/Atlas/GROUPS/SOFTWARE/HELP/librarian/index.html

¢ Online (Back-end DAQ)

m Documents to be delivered at each step of software process
e Big emphasis on inspections of documents
e Successful, but very manpower intensive (can it scale?)

¢ ATLAS Software Process (ASP)

m Similar approach, failed in offline world (too heavy/strict)

¢ New approach under discussion

Marco Cattaneo, 28-June-2000 5

New Atlas approach
http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/qc/QC_Process_vl1.ps

m Onion model for strictness of rules
e Responsibility for QC with software developers
m Quality Criteria:
e Quality of design
» clear, modular, compliant with architecture. Quality of interfaces

e Documentation

» problem statement and algorithm description, design document, users”
guide, example (including testing procedure and reference results)

e Coding Conventions (CodeWizard)

e Robustness (Insure++, metrics)

e Maintainability (readability, portability, internal diagnostics)
e Performance (physics quantities, speed vs. precision)

= Implementation:

e Support developer with checking tools, code fragments, document
templates

e Validation via inspections, walkthroughs, reviews, tests
» Including testing plan

e Only packages that have passed QC can be released
» Strictness of validation criteria to evolve

CMS

H-P.Wellisch
CMS notes 1999/002, 19997030, IN 1999/033

¢ Software Process Improvement

m Bottom-up approach, avoids imposing procedures
» Make it easy to check rules, agree within each project on what to check

e Establish Process
» Document existing processes

e Process Improvement
» ldentify possible improvements, analyse costs, prioritise
» Procedures constantly optimised

e Process Assessment
» Measure effectiveness of process in achieving goals
= Implementation:
e 23 processes documented (many are trivial!)
e Tools identified, “partly deployed”
» Insure++, CodeWizard, McCabe (metrics), Remedy
m QA responsibility of developers
e Verification by librarian and SPI manager

% ?2?LHCD??

¢ Document and evolve existing processes
m Coding and documentation guidelines

Release procedures

m Testing

¢ Evaluate and commission popular tools
m CodeWizard, Insure++, Remedy, ...
m Put in production for core software

¢ Develop QA test environment
m Inspiration from Babar, Aleph online+RQ, ...

¢ Study Atlas and CMS processes

m Biggest hurdle is acceptance by developers. Can we learn from
what Atlas and CMS (and Babar) actually implement?

