
11/10/99 LHCb Computing 1

Architecture Review

26 November 1998
P. Mato, CERN

11/10/99 LHCb Computing 2

Project Scope, Context and Aims

11/10/99 LHCb Computing 3

Project Scope
u We want to develop a Framework to be used in ALL the

LHCb event data processing applications including all
stages: high level trigger, simulation, reconstruction,
analysis.

u The bulk of the LHCb data processing software will be
developed by physicists. The Framework should:
– Allow them to focus on solving the physics problem.
– Ensure low coupling between concurrent developments.
– Facilitate software re-use.

11/10/99 LHCb Computing 4

Overall software project planning
u We plan to have major milestones every 2 years. Major

project reviews (technologies, methods, quality, etc.)
u First big milestone: mid 2000.

– Migration to object-oriented completed.
– Retirement of the “old” software.

u We plan to go in short cycles (2-3 months) of incremental
implementation and release.
– Feedback from users at each stage.
– Set priorities for what the following release should contain.

11/10/99 LHCb Computing 5

Road map

1998 200420022000

Major project
reviews.
Possibility of
changing the
direction

Incremental
releases

Final system

11/10/99 LHCb Computing 6

Release 1.0
u Functionality release 1.0:

– Object Oriented environment that allows a user to:
» Define input and output data, job parameters (c.f. SICB.dat)
» Loop over events
» For each event, access MonteCarlo truth and digitised raw data
» Output results in the form of HBOOK histograms and/or ntuples
» Provide placeholders user initialisation and analysis code (c.f. suinit, suanal)

– Does NOT allow user to:
» Store back into ZEBRA store (can be discussed…)
» Access SICB reconstruction output
» Use an analysis library (c.f. AXLIB)

– Input is from ZEBRA files produced by SICB

11/10/99 LHCb Computing 7

System Design Issues

11/10/99 LHCb Computing 8

Major design criteria
u Clear separation between “data” and “algorithms”
u Three basic types of data:

– event data (data obtained from the particle collisions)
– detector data (structure, geometry, calibration, alignment,

environmental parameters,..)
– statistical data: (histograms, …)

u Clear separation between “persistent data” and “transient
data”.
– Isolation of user’s code.
– Different/incompatible optimization criteria.
– Transient as a bridge between various representations.

11/10/99 LHCb Computing 9

Major design criteria (2)
u Data centered architectural style.

– Algorithms as data producers and consumers.

u User code encapsulated in few specific places:
– “Algorithms”: Physics code
– “Converters”: Converting data objects into other reprentations

u All components with well defined “interfaces” and as
“generic” as possible.

u Re-use components where possible
u Integration technology standards

11/10/99 LHCb Computing 10

Architecture: Object Diagram

TObj
TObj

Obj2

AppManager

PersistencySvc

Algorithm1
Algorithm1

Algorithm1

JobOptionsSvc

TObj

TObjContainer
TObjContainer

ObjContainer

Obj3

MessageSvc

TObj1
Obj1

DetDataSrv

TDetElem1
TDetElem1

TDetElem1

PObject
PObject
PDetElem

EventDataSvc

AlgFactory

AnotherPercySvc

Transient Event Store

PObj
PObj

PObj

PObj
PObj

PObj

DetPerstySvc

Alg
Properties

T Detector Store

T Histogram Store

HistogramSvc

Hist1
Hist1

Hist1

HistPerstySvc PHist
PHist

Converter
Converter

Converter Converter
Converter

Converter

EventSelector

Converter

TObj
Obj1

uses

creates

navigability

11/10/99 LHCb Computing 11

What was not shown

TObj
TObj

Obj2

AppManager

PersistencySvc

Algorithm1
Algorithm1

Algorithm1

JobOptionsSvc

TObj

TObjContainer
TObjContainer

ObjContainer

Obj3

MessageSvc

TObj1
Obj1

DetDataSrv

TDetElem1
TDetElem1

TDetElem1

PObject
PObject
PDetElem

EventDataSvc

AlgFactory

AnotherPercySvc

Transient Event Store

PObj
PObj

PObj

PObj
PObj

PObj

DetPerstySvc

Alg
Properties

T Detector Store

T Histogram Store

HistogramSvc

Hist1
Hist1

Hist1

HistPerstySvc PHist
PHist

Converter
Converter

Converter Converter
Converter

Converter

EventSelector

Converter

TObj
Obj1

uses

creates

navigability

Property
editorsEvent data

browsers

Detector
database
editors

Histogram
displays

User
Interface

Event
displays

Detector
database

tools

11/10/99 LHCb Computing 12

Architecture:Classification of Classes

Application Managers One per application. The "chef d'orchestra".

Services Offering specific services with well-defined
interfaces. Different concrete implementations
depending of specific functionality.

Algorithms Physics code. Nested algorithms. Simple and
well defined interface.

Converters In charge of converting specific event or detector
data into other representations.

Selectors Components to process a selection criteria for
events, parts of events or detector data.

Event/Detector data The data types that the algorithms and converters
are using. No complex behavoir.

Utility classes All sort of utility classes (math & others) to help
on the implementation of the algorithms.

11/10/99 LHCb Computing 13

Architecture (class diagrams)

Service

JobOptionSvc

PersistencySvc

<<interface>>
IService

<<interface>>
IPersistencySvc

<<interface>>
IQueryOptions

<<interface>>
IDataManager

ObtyPersSvc

ZebraPersSvc

MessageSvc <<interface>>
IMessage

<<interface>>
IInterface

<<interface>>
IDataProvider

EvtDataSvc

<<interface>>
IConversionSvc

Services

11/10/99 LHCb Computing 14

Architecture (class diagrams)
Algorithms

Algorithm <<interface>>
IProperty

TrackFinder

ClusterFinder

<<interface>>
IAlgorithm

GenericAlgorithm <<interface>>
IGenAlgorithm

<<interface>>
IInterface

KalmanFilter

AnotherTrkFinder SelectionAlg <<interface>>
ISelect

11/10/99 LHCb Computing 15

Transient Event Store

Transient Event Store

Event Data
Service

Persistency
Service

Algorithm

Find(“EcalDigits”, 4)

Register(“key”, #)

Direct
reference

Fetch()
Store()

creates

11/10/99 LHCb Computing 16

Transient Data Model
Identifiable

Directory

<<interface>>
IClassInfo

DataObject

ObjectSet

T2

T2

ObjectSet

T1

T1

Transient data
objects of type

T1 & T2

Data object
hierarchy

0..*

0..1

DataObject

Event

RecEvent

EventTag

EcalHits EcalClusts

Hit Cluster

11/10/99 LHCb Computing 17

Algorithms & Transient Data Store

Algorithm
A

Algorithm
B

Algorithm
C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T3, T4

Data T4

Data T5

Data T1Data T1

Data T5

Real dataflow Apparent dataflow • Each Algorithm only knows
what data (type and name) is
expecting as input and
creating as output.

• The only coupling is through
the data.

• Scheduling of sub-algorithms
is responsibility of the parent
algorithm.

A

C
B

Parent

11/10/99 LHCb Computing 18

Algorithm code example
StatusCode TrackFitter::execute() {
 // Get the vertex hits from the EventDataSvc
 StatusCode sc;
 DataObject *pDO = 0;
 sc = eventDataSvc->findObject(“/Event/RawEvent/Vdet/Station[1]/Clusters”, pDO);
 // Check that the data was found
 if(SUCCESS != sc) {
 messageSvc->logFatalError(“Cluster data not found in store”);
 return sc;
 }
 // Data was found, cast to correct type
 ObjectSet<Cluster*> *clusters = dynamic_cast< ObjectSet<Cluster*>* >(pDO);
 // Create a track container object
 ObjectSet<Track*> *tracks = 0;
 tracks = new ObjectSet<Track*>(“Tracks”);
 // Use the clusters to produce Tracks
 // and place the tracks in a container
 tracks->push_back(..);

 // Register the Tracks with the EventDataSvc
 sc = eventDataSvc->registerObject(“/Event/RecEvent/Vdet”, tracks);
 // If the registration fails some cleanup must be done
 if(SUCCESS != sc) {
 messageSvc->logFatalError(“Failed to register tracks”);
 delete tracks;
 return sc;
 }
 return SUCCESS;
}

11/10/99 LHCb Computing 19

Transient/Persistent Data representations

Transient Event/
Detector Store

Persistency
Service

ConverterConverterConverterConverter

Selector

T
T

T

Data
Service

Storage
MS

PP
P P

11/10/99 LHCb Computing 20

Detector Data representations

Transient
Detector Store

Detector Data
Service

Persistency
ServiceDetElementDetElement

DetElement

DetElementDetElement
DetElement

Persistency
Detector

Store
ConverterConverterConverterConverter

ToGeant4
Service

ConverterConverterConverterConverter

Geant4
Detector

description
•Detector
Elements need
to be
“identified”

•Strong
hierarchical
structure

•Versioning

11/10/99 LHCb Computing 21

Detector description: Visualization

Transient Event/
Detector Store

Rep.
Service Representations

Store
(graphical,

textual)
ConverterConverterConverterConverter

Selector
User

Interface
•Selects objects
in store

11/10/99 LHCb Computing 22

Detector Description
u It includes:

– Detector structure (final detector, test beam, etc.)
– Geometry & Positions (Ideal, Real, Simulation). Versioning

based on time, run #, etc. Material.
– Mapping electronic channels to detector cells. Dead channels.
– Detector control data needed for reconstruction (time based).
– Calibration and alignment data.

u The transient detector store contains a “snapshot” of the
detector data valid for the event currently being process
and a labeled version.

11/10/99 LHCb Computing 23

Detector Database

time

Version A
Version BCalibration

Version B
Version A

Alignment
Version C

Version B
Version A

Geometry
Version C

version B at time T

11/10/99 LHCb Computing 24

Links between Event/Detector

Event Data Store

hit

ECAL
hits

 Detector Data Store

Ecal
descr. Ecal

descr.

Direct links
in the transient

world. Established
by the converters

Links by “logical”
identifiers in the
persistent world

– A priori different “persistent stores”. Logical identification
needed.

11/10/99 LHCb Computing 25

Analysis of Scenarios

11/10/99 LHCb Computing 26

Classification of Scenarios
u Physicists-Users

– Job configuration
– Algorithm configuration
– User interactivity
– Use of data

u Physicists-Developers
u Data production managers
u Framework developers

– Software changes
– Environment changes

u System maintainers

Many scenarios from the end-
users are about application
configuration.

11/10/99 LHCb Computing 27

Input from the reviewers
u New scenario by Thomas:

“A physicists would like to access only a part of the data of an event, e.g. only the VX
clusters cluster information. The architecture should allow to access this information as
fast as if it would be stored in a separate file. There should be no need to create/define
ntuples” (THOMAS-1)

u Some of the questions from Vincenzo:
“What exactly differentiates “top-level” Algorithms from “nested” ones?”
“Is a jet-finder a top level and track- and cluster-finder nested?”
“Can two top-level algorithms share the same nested algorithms?”
“How, in this case, the cascading notification will work?”

u Ordering of interest by RD:
S-PD-9, S-PD-10, S-PD-1, S-DPM-2, S-DPM-1, S-PU-11, S-PU-14, S-PU-15

u Question about “validity of relationships” in the transient data by RD.

11/10/99 LHCb Computing 28

THOMAS-1 scenario
u Difficult to assess performance at the

architecture level.
u In this case we can say that the

performance will be worst than
reading from a separate file containing
the selected information. It should be
better than reading the whole event
each time since the architecture do not
require it.

u How this is done?
– The user requests:

“/event/rawevent/vdet/clusters”
– Only the absolutely needed objects

will be loaded from persistent storage.
– Event, RawEvent, … are small

objects.

Event

RawEvent AnaEventRecEvent

ECAL
VDetECALECAL

Clusters

ECALECAL ECALECAL

11/10/99 LHCb Computing 29

Questions from Vincenzo
u “What exactly differentiates “top-level” Algorithms from “nested” ones?”

– Nothing. The top-level is one that is called directly by the ApplicationMgr
u “Is a jet-finder a top level and track- and cluster-finder nested?”

– Yes and no.
u “Can two top-level algorithms share the same nested algorithms?”

– Not the same instance. Since it would produce the output. Different instances yes.

u “How, in this case, the cascading notification will work?”
– We can instantiate one than one copy of an Algorithm. The default set of properties are

obtained from the property database. Each instance is identified by a name.
All the algorithms form a true tree, therefore there is no problem in cascading the
notifications.

11/10/99 LHCb Computing 30

S-PD-9 scenario
“The definition of an object must be changed. The developer would like to be able to
read data containing old versions of the object and data containing new versions of
the object together”.

There are several cases for this scenario:
– (a) If the new version do not add more information (change of format,

precision, etc,). Then the converter can take the responsibility of producing
identical transient representations for both versions. The Algorithm will be
affected at all.

– (b) If the old version is lacking information (items being added). Then the
converter can not invent the missing information and some data fields will be
left blank. The Algorithm will need to be coded to take this eventuality into
account.

11/10/99 LHCb Computing 31

S-PD-10 scenario
“In order to optimize the geometry of a sub detector a physicist wishes to run the
event simulation on two different geometries and compare the results. For some
aspects an event by event comparison would be useful.”

There are several possibilities. One of them is:
– Two jobs are setup (configured) to use two versions of the geometry database.
– The simulation output is put into two different “directories” for each event.
– A third job is run to compare the two simulations event by event

Another option is:
– Create two instances of the transient detector store configured to take a

different geometry version each one.
– Also create two algorithms which simulate the detector and put the results in

two different “directories”.
– Finally, a third algorithm to compare the results.

11/10/99 LHCb Computing 32

S-PD-1 scenario
“There is a central database of generated data. Two independent reconstruction
developers read this data and generate their own data types. Both wish to save their
objects along with references to the objects in the original database.”
For new privately event data we foresee to have a mechanism that allows the user to
have access to his data and links to the constituent data without modifying it.

Event

RawEvent AnaEventRecEvent

ECAL
VDetECAL

ECAL

ECALECAL ECALECAL

Event’

MyRec1 MyRec2

ECALECAL

Official repository Private repository

11/10/99 LHCb Computing 33

S-PU-9 scenario
“Two independent detector alignments are available. A physicist wishes to compare
them by measuring the difference in the fitted momentum of individual tracks.”

– Assuming that the transient detector store has only one version of the detector
data (corresponding to a version name and the time of the current event)

– We need to create two transient detector stores with the corresponding
services. Should be possible.

– There should be one algorithm which creates to copies of the fitting algorithm:
» each one attached to a different DetectorDataSvc
» each one outputting the fitted tracks in a different “directory” in the unique

transient event store.

– After the tracks are fitted, the algorithm can compare them and produce its
results.

11/10/99 LHCb Computing 34

S-PU-10 scenario
“A track-fit algorithm is executed on a set of hits and a track produced. The
algorithm is then re-run with parameters modified according to the momentum of the
fitted track and a new track produced.”

– This is just a single algorithm which requires two passes.
– The first track which is produced is temporary and it only servers to obtain the

momentum. It is deleted afterwards.
– The second pass is called with the updated information.
– The results are registered in the transient event store.
– It could be implemented as one parent algorithm which calls in two passes its

track-fit algorithm

11/10/99 LHCb Computing 35

Application Configuration
u What are the knobs at our disposal?

– JobOptions. Simple usage. It allows the end-user to overwrite
any property of any algorithm or service.

– Algorithm/Service properties database. A more sophisticated
way to modify the properties of the algorithms and services.

– Detector database edition to create new versions or releases.
– Write specific code. Configure your application by setting it at

runtime.
– User interface component. Graphical (a la Visual Basic),

command line (scripting language), etc.

