GAUDI - A Software Architecture and Framework for Building HEP data processing Applications

Developed in the context of the LHCb Experiment

Pere Mato, CERN August 1999

Outline

Introduction

- The LHCb experiment
- Computing organization strategy
- Software development strategy
- GAUDI architecture
 - Goals and scope
 - Design choices
 - Selected topics

Implementation

- Technology choices, Tools, ...
- Schedule so far

LHCb: Physics Goals

- LHCb is a dedicated experiment at LHC collider for precision measurements of CP-violation and rare decays
 - CP violation currently observed in kaon decays is consistent with Standard Model, but cannot exclude that CP violation is partly or even entirely due to new physics.
 - Cosmology (baryon genesis) suggests that an additional source of CP violation other than the Standard Model is needed.
- LHC is an ideal place to produce lots of Bd and Bs
- ◆ All interesting decay channels have 10⁻⁵ visible branching fractions.

LHCb: The Detector

4

LHCb: The Detector

- Single-arm spectrometer with forward angular coverage from ~10 mrad to ~300(250) mrad.
 - Vertex detector
 - » Si r- ϕ strip detector, single-sided 150 μ m
 - Tracking system
 - » Outer: drift chamber honeycomb. Inner: MSGC with GEM or MCSC
 - RICH system
 - » RICH1: Aerogel + C_4F_{10} . RICH2: CF_4
 - Calorimeter system
 - » Preshower: single layer Pb/Si. ECAL: Shashilik. HCAL: Atlas Tile Cal.
 - Muon system
 - » Multi-gap RPC and CPC

LHCb in numbers

- Collaboration: ~45 Institutes, ~350 participants
- Cost of the experiment: 86 MCHF
- ◆ Electronics: ~10⁶ readout channels
- ♦ Trigger System: 4 Levels. 40 MHz→1 MHz →40 kHz → 5 kHz
 →200 Hz
- ♦ Data Acquisition: 100 kB/event. 2-4 GB/s \rightarrow 20 MB/s. 1.5 10⁶ MIPs
- Status of the Experiment:
 - Technical proposal submitted in February 1998
 - Approved in September 1998
 - R&D phase for ~2 years

LHCb Computing: Goals

- Need to focus on quality but at the same time be efficient in use of resources
- ◆ Identify all the roles and their responsibilities
 - system architect, project leaders, librarian, framework developers, client developers, ...

Good communication to arrive at common aims and understanding

- need to know at all times what everybody is doing (regular meetings)
- Procedures for taking decisions must be agreed and followed
- Common language supported through documentation and training
 - Web
 - Handbooks (user, engineering, management)
 - Formal training

Organizing software development activities

Project Organization

9

Strategy for development of new software

- Start with a small design team 6-8 people
 - architect, librarian, domain specialists with design/programming experience
- Collect URs and scenarios, use to validate design
- Establish the basic criteria for overall design
- Make technology choices for implementations of first prototypes
- Incremental approach to development. Releases every ~4 months.
- Development cycle is user-driven. Priorities, feedback, etc.
- Strategic decisions taken following thorough review (~1/year)
- Releases accompanied by complete documentation
- Expand development team to cover new domains

LHCb Offline software road map

GAUDI Architecture

Antoni Gaudí Barcelona (1852-1926) Modernist style architect

GAUDI: Scope

- We want to develop an **Architecture** and **Framework** to be used in ALL the **LHCb event data processing applications** in all stages:
 - High level trigger, simulation, reconstruction, analysis.
 - Control applications are not included (slow control, run control)
- Physicists will develop applications by customizing the framework by subclassing, composing and configuring.
- Components will be developed in general using other specialized frameworks (GUI, object persistency, simulation, ...)

GAUDI: Expected Benefits

- ◆ Allow physicists to focus on solving the physics problem.
 - Must be easy to use
 - Non physics-related functionality implemented by the framework
- Common vocabulary, better specifications of what needs to be done.
- Ensure low coupling between concurrent developments.
- Guarantee a later smooth integration of developments.
- Facilitate software re-use

Software Structure

Major design criteria

- Separation between "data" and "algorithms"
- Three basic types of data:
 - event data (data obtained from the particle collisions)
 - detector data (structure, geometry, calibration, alignment, environmental parameters,..)
 - statistical data: (histograms, ...)
- Separation between "persistent data" and "transient data".
 - Isolation of user's code.
 - Different/incompatible optimization criteria.
 - Transient as a bridge between various representations.

Major design criteria (2)

- Data store centered architectural style.
 - "Algorithms" as data producers and consumers.
- ◆ *User code* encapsulated in few specific places:
 - "Algorithms": Physics code
 - "Converters": Converting data objects into other representations
- All components with well defined "interfaces" and as "generic" as possible.
- Design principles
 - Low coupling, inheritance, static storage, ...

Object diagram

August, 1999

GAUDI

Interfaces

- Each component implements a number of interfaces
- Each component uses

 a number of
 interfaces from
 other components
- An Algorithm uses many Services

Algorithms

Services

- Services are provided to *Algorithms*
- Examples:
 - Job Options service (card files)
 - Message reporting service
 - Event/Detector/Histogram data service
 - Event Selector
 - Persistency and Conversion services
 - User Interface (GUI)
 - Particle property service

- ...

Event Data Store

Event Persistency

Detector Description

August, 1999

GAUDI

Data Visualization

Application Configuration

What are the knobs at our disposal?

- JobOptions. Simple usage. It allows the end-user to overwrite any property of any algorithm or service.
- Algorithm/Service properties database. A more sophisticated way to modify the properties of the algorithms and services.
- Detector database edition to create new versions or releases.
- Write specific code. Configure your application by setting properties at runtime.
- User interface component. Graphical (a la Visual Basic), command line (scripting language), etc.

Packages

- Physical design (packaging) is an architectural issue.
- Big consequences on:
 - compilation time
 - link dependencies
 - configuration management
 - executable size
 - ...
- Package interdependencies require approval of architect.
- Avoid cyclic dependencies

Implementation

Platforms:

- WNT, Linux, IBM AIX, HP-UX
- ◆ Tools and Libraries:

Design tools	Visual Thought, Rational Rose
Coding rules	Interim LHCb coding conventions, SPIDER
Code Management	Visual Source Safe, CVS
Configuration Management	CMT
Problem tracking	Planned to use Remedy
Compilers/Debuggers	Visual C++, GNU EGCS
Libraries	STL, CLHEP, NAG C, HTL, RIO
Documentation	FrameMaker
Source code documentation	Object Outline, DOC++

Schedule so far

- Sept 98 architect appointed, design team 6 people assembled
- Nov 25 '98 1 day architecture review
 - goals, architecture design document, URD, scenarios
- Feb 8 '99 GAUDI first release
 - first software week with presentations and tutorial sessions
 - plan second release
 - expand GAUDI team
- May 30 '99 GAUDI second release
 - second software week ...
 - plan third release
 - expand GAUDI team (GEANT4 simulation toolkit)
- Nov '99 next GAUDI release and software week planned

Conclusions

- ◆ Almost completed the first year of the journey towards O-O
 - Architecture being defined (interfaces, functional components)
 - Two releases of the framework with basic functionality to test the ideas.
- Currently working on:
 - Integration of GEANT4
 - Data visualization, event display
 - Detector description
 - Algorithms and tools for data analysis
 - Java evaluation
- We would like to get advice from experienced people
 - Organization, physical design, development tools, libraries, foundation libraries, etc.
 - Strategic design decisions, existing frameworks and solutions, etc.