Status of GAUDI

P. Mato / CERN
Computing meeting, LHCb Week
23 February 2000

Outline

- Recent History
- Work going on
- Current problems
- CHEP contributions
- ◆ ATLAS collaboration

Recent History

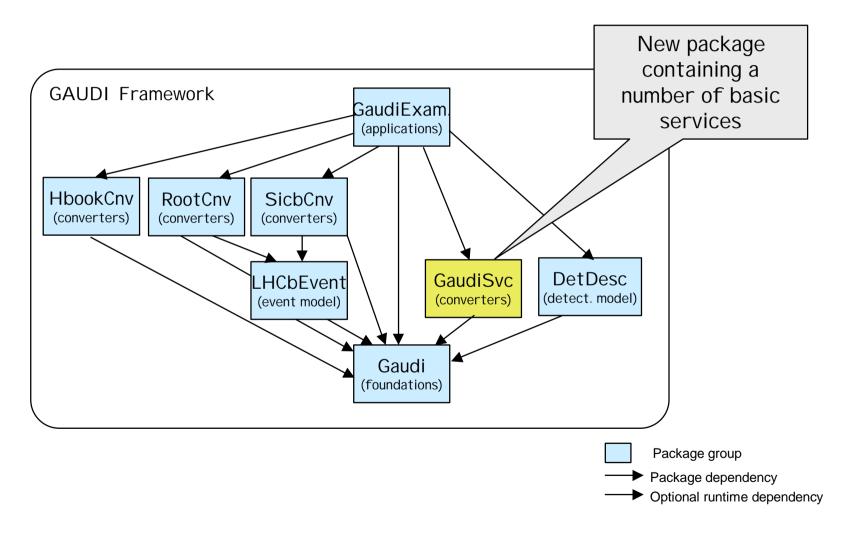
- ◆ Nov 23 '99 third GAUDI release
 - Functionally complete version (basic services, access to SICb data, detector description framework, histograms, n-tuples, examples, ...)
- ◆ New sub-detectors starting using the framework
 - Calorimeter, Trigger L1, VELO, RICH, ...
- Many problems reported and very constructive feedback
 - A list of 40 items produced
 - Prioritisation
- ◆ Better understood how sub-detectors can work independently
- ◆ Feb 14 '00 Bug fix release for some of the packages
 - Completely backwards compatible

Work going on: Data access

- Overcoming deficiencies in EventSelector
 - Handling more than one jobID or file
 - Without event input file
- Bookkeeping database API
 - Understanding how to access the bookkeeping DB from GAUDI

Work going on: Event Model

- ◆ Improved performance of SICb converters
 - Avoided extra passes for resolving references
- Structure of transient event store
 - Build the tree structure from the local information of SICb Converters
- Conformance to new Units
 - Make the necessary conversions in the Converters
- Helping sub-detectors
 - Trigger, Calorimeter, ...
- Review activities
 - Calorimeter data model reviewed last week


Work going on: Detector Description

- ◆ Improved XML Document Type Definition (DTD)
 - Better adapted to the needs of sub-detectors
- ◆ Allow simple mathematical expressions in XML assignments
 - Handle units explicitly
 - Document how a numbers is calculated from others
- Improved user friendliness
 - Implemented many suggestions from the user feedback
- Estimation of the material between two points in the detector
 - Request from the Tracking group
- Started to define the interface to the "Conditions Database" (calibration, alignment, slow control,...)
 - Implementation carried out by IT/DB

Work going on: Basic Services

- ◆ Improved *JobOptionsSvc* service
 - Support for environment variables and some preprocessor directives
- ◆ Changed *HistogramSvc* service
 - Conformance to the new histogram interface (AIDA project in LHC++)
- New Chrono service
 - Utility service for measuring elapsed time
- New Random number generator service
 - Centralized control over random number sequences
- Visualization service
 - Continuing the integration with OpenScientist

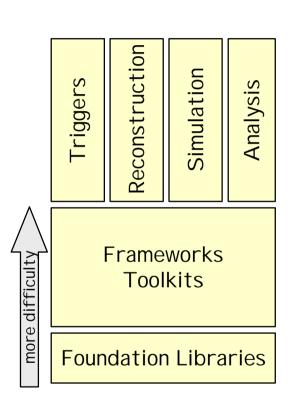
Work going on: Re-packaging

Current Problems

- Dynamic libraries
 - Sharing data through FORTRAN common blocks between 2 dynamic libraries
 - STL maps use static storage.
- ClassID and IID management
 - Worldwide allocation of ClassID and InterfaceID
- Data dictionaries
 - Need if we want to automatically generate converters
- ◆ Still CMT on NT is not yet perfect
 - Environment variables, manual builds, ...
- ◆ Release procedure too time consuming
 - Multiple platforms (Linux, NT)
 - Need an automatic nightly or weekly rebuild

CHEP contributions

- ◆ LHCb computing papers presented at the International Conference on Computing in High Energy and Nuclear Physics, February 7-11, Padova.
 - GAUDI The software architecture and framework for building LHCb data processing applications, by M. Cattaneo
 - LHCb detector description framework, by R. Chytracek
 - Data persistency solution for LHCb, by M. Frank
 - Use of Configuration Management tool in LHCb software, by P. Mato on behalf of F. Ranjard


Collaboration with ATLAS

Background

 The ATLAS architecture team got interested with GAUDI architecture as a candidate for evaluation.

Collaboration Scope

- Common foundation libraries
- Common interface model
- Common frameworks (interfaces + basic services)
- Different Event Model and Algorithms
- Different Applications

Collaboration with ATLAS (2)

Benefits

- Better architecture
- Sharing development of basic infrastructure services (higher quality)
- CERN/IT efforts better focussed (single request may fulfill more than one experiment) (AIDA project)
- Better communication (same vocabulary)

Disadvantages

- Less freedom
- Needs more formality (change procedures, upgrades, etc.)
- It may fail

Collaboration with ATLAS (3)

GAUDI is being evaluated

 Proposed and decided to base their May prototype on GAUDI ATLAS Software Week, 15 Feb 2000

GAUDI Evaluation

- Use case coverage
 - Does their architecture address all use cases? [8]
 - Does their implementation demonstrate consistency with their architecture? [8]
 - Can we identify changes/enhancements to their implementation, within the context of the architecture, to address what we consider to be important use cases? [8]
- Software Process
 - Based on their documentation, do they appear to have lived by what they've preached? [8]
 - What is the quality of their documentation? [7]
 - Has their evolution from their first prototype to V3 been consistent with their projections? [8]
- Physical Design & Configuration
 - How easy is it to build V3 of Gaudi? [7]
 - Is the code of a high quality? [8]
 - What stress have they laid on testing? [5]
 - Are the tools they've chosen adequate? [8]

David R. Quarrie: ATLAS Architecture and Framework

11

Summary

- ◆ After the release of last version new sub-detector groups started using the GAUDI framework. SICb migration.
 - A lot of feedback.
- ◆ Improving the product
 - Working currently in many areas. Emphasis on "usability".
- ◆ The GAUDI framework is known outside LHCb
 - CHEP2000
 - ATLAS will use GAUDI for their May prototype