
Author: M. Cattaneo
Status: Draft 3
Last modified: 13th September 2000

PROPOSED LHCb coding convention:
Event data model conventions

Deadline for comments on draft 1: 11th September 2000
Presentation for approval: LHCb week in Milano
Implementation: Gaudi release 6, Brunel v2

Introduction
This document is intended as a discussion document whose goal is to define a set of
conventions to ensure that the LHCb transient event data model has a coherent structure
across the different sub-detectors. Each section of the document will address one aspect.

1. Glossary

The event data is logically subdivided in sub-events that are the results of a processing
step.

§ MC Event is the output of the physics event simulation. This typically includes MC
Particles and MC Vertices

§ MC Hits are the output of the GEANT tracking step. They typically include detector
entrance and exit point, energy loss etc.

§ FE data is the simulated output of the detector front end, as seen by the hardware
triggers, when this is different from Raw data.

§ Raw data is the output of the digitisation step of the detector simulation, and the
output of the data acquisition system for real data. For example, ADC and TDC
counts.

§ Coordinates are the output of the reconstruction program when applied to detector
hits. This typically consists of hit coordinates, calorimeter clusters etc.

§ Reconstructed data is the final output of the reconstruction program. This typically
consists of tracks, particle ID, energy flow objects etc.

§ Analysis data is the output of specialised analysis algorithms.

2. Proposal for relationship between raw data and MC Hits
During the code reviews that took place spring 2000, it became clear that various
approaches are possible to allow navigation from simulated raw data back to the
MonteCarlo Hits truth information. Of the approaches proposed, two seem most relevant:
navigation by inheritance, and navigation by association (lookup table).

§ Navigation by inheritance
In this scheme, a MonteCarlo class (e.g. MCCaloDigit) inherits from the
corresponding real data class (CaloDigit), adding to the real data class a pointer to the
MonteCarlo truth information (MCCaloSummedDeposit in this example).

Advantages
§ Easy and fast access: navigation to

MonteCarlo truth is as easy as
dereferencing a pointer.

§ Space efficient: navigation
information adds only 4 or 8 bytes.

§ Most algorithms (e.g. reconstruction)
deal only with the base class: they do
not see the difference between real
and simulated data. To access the
truth information they have to do a
dynamic_cast.

Disadvantages
§ The scheme is not general: it cannot

work when the navigation is not
deterministic, as is the case after pattern
recognition.

§ It is complex, e.g. when several truth
hits lead to one digitising. It also leads
to some technical problems, such as how
to create a new MCCaloDigit from a
calibration algorithm that only knows
about CaloDigits.

§ The criticism has been made that the
reconstruction and analysis programs
will never see real data without the MC
links before data-taking begins, so it will
not be possible to check that the
software does not rely on MC truth.
This is not a real problem:
MCCaloDigits could be generated in
which the pointer is set to NULL.

§ Navigation by association
In this scheme, there are no explicit links between simulated digitisings (or the
subsequent reconstruction output) and MC truth. The link is made via a link variable
(such as the calorimeter CellId), or a lookup table in the case of many-to-many
associations, or via some more complex algorithm in the case of non-deterministic
relationships (such as reconstructed track to MC particle).

Advantages
§ The simulated raw and reconstructed

data are identical to the real data.
There is no risk of accessing the
MonteCarlo truth "by mistake".

§ The scheme is general: it can work
for all types of relationships.

Disadvantages
§ The scheme does not use the power

of inheritance. In particular,
navigation is slow

§ The connection path to the MC truth
can become complex and will be
different for different classes.

It is clear that both methods have advantages and disadvantages. In some cases (e.g. one
to one relationships between digitisings and MC Hits) the inheritance mechanism is very
appealing. In other cases (e.g. the rather vague relationship between reconstructed tracks
and the generated particles) an associative algorithm may be the only solution.

In the specific case of navigation from simulated raw data to MC Hit information,
navigation by inheritance seems the most appropriate choice, as proposed by the
calorimeter (see figure below) and tracking groups.

3. Proposal
For the time being we limit ourselves to the relationship between raw data and MC Hits,
and propose that this be implemented using the inheritance mechanism discussed above.
Note that the link is unidirectional, allowing efficient navigation from the reconstruction
class to the MonteCarlo class (navigation in the opposite direction is also possible, but
requires looping over all, e.g., hits to find the required one).

With this choice, it should always be possible to navigate from any reconstruction class
back to the MC Truth classes. It is understood that navigation via all the intermediate
classes may not be optimal in terms of I/O, so the data model could be optimised at a later
stage by introducing additional navigation classes. This is illustrated in the following
figure, where the "cloud" hides classes that allow direct association of TrTracks to
MCParticles, without having to load the OTHits and OTDigis. Such additional navigation
mechanisms could be implemented at a later stage to optimise the I/O performance of the
analysis algorithms.

MCParticle

Attributes

Operations

MCCaloDigit MCCalo
SummedDeposit

Attributes

Operations

1
MCCalo
Deposit

Attributes

Operations

1..N

CaloDigit

Attributes

Operations

1

Proposed naming convention
When the navigation to MC truth is implemented by inheritance, as discussed above, it is
proposed that all MC classes that derive from a real data base class have the same name as
the base class, prefixed by "MC"

It is also necessary to agree on basic names. In the examples above, we see CaloDigit and
OTDigi. We should converge on one. Digit seems more natural, without too much extra
typing....

Implications
The choice of inheritance has implications for the way in which such objects are created
and copied. It is a requirement that a reconstruction program or a calibration task should
not make a distinction between real data and MonteCarlo data, and should therefore only
deal with the real data base classes. An implication of this is that when such a task needs
to make a copy of these objects, it needs to do so in such a way as to preserve the MC
information, even though it doesn't know that the MC information is there! This can be
achieved using the cloning pattern. The Gaudi team should provide an example of this.
For creation, the Gaudi team should provide an example factory to be used by everybody.

MCParticle
Attributes

Operations

MCTrackingHit

Attributes

Operations

TrTrack
Attributes

Operations

1

OTHit

TrMeasurement
Attributes

Operations

MCOTDigi

OTDigi

Attributes

Operations

1

1

2..

MCHitBase

TrTrackMCParticle
Associator

