B-Physics Potential of ATLAS, CMS, LHCb and BTeV

Neville Harnew University of Oxford

8th International Symposium on Heavy Flavour Physics

- Introduction
- The 2nd Generation experiments : LHCb, B-TeV, ATLAS, CMS.
- Precision measurements : CP-violation, rare B decays.
- Performance summary

Introduction

Before 2005 various experiments will explore the unitarity triangle :

- sin 2β well measured by BaBar/Belle/ HERA-B/CDF/D0 perhaps to ~ 0.03 - 0.05
- Side opposite γ : known assuming B_s mixing is measured by (SLD/LEP?) CDF/D0
- Side opposite $\boldsymbol{\beta}$: significant hadronic error
- sin 2α measured but with poor statistical precision and significant theoretical uncertainties
- γ no good or direct measurement

Decay modes to measure triangle parameters

Either : Inconsistency in 'gold plated' measurements (eg. β and mixing side) Or : Hint of inconsistency, or inconsistency with less precise data (eg. α , kaon asymmetries)

Or : Measurements consistent with SM interpretation

In all cases, next generation experiments at LHC/Tevatron will need to make precise investigation of CP violation

- Precision measurements : same parameters in previously measured channels
- Different channels (theoretically clean but not necessarily easiest experimentally) : cross checks of same parameters
- New parameters : eg. What is γ ?
- **B**_s sector : relatively unexplored by Phase 1

<u>Comparison of the LHC and the</u> <u>Tevatron experiments</u>

	Tevatron	LHC			
Energy / collision mode	2.0 TeV p̄p	14.0 TeV pp			
bb cross section	~ 100 µb	~ 500 µb			
Inelastic cross section	~ 50 mb	~ 80 mb			
Ratio bb / inelastic	0.2%	0.6%			
Bunch spacing	132 ns	25 ns			
	BTeV	LHCb	ATLAS / CMS		
Detector configuration	Two-arm forward	Single-arm forward	Central detector		
Running luminosity	2 x 10 ³² cm ⁻² s ⁻¹	$2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \le 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$			
bb events per 10 ⁷ sec	2 x 10 ¹¹ x accept.	1 x 10^{12} x accept. $\leq 5 \times 10^{12}$ x acce			
<interactions crossings=""></interactions>	~ 2.0	0.5 (~30% single int.) ~ 2.3			

 \rightarrow

 \rightarrow

٠

Key design features

- Forward double arm spectrometer
- Precision pixel vertex detector inside dipole B field (\int B.dL=5.2 Tm)
- Vertex trigger at first level
- Single RICH detector for particle ID
- Lead tungstate EM calorimeter for γ and π^0 reconstruction

The LHCb Detector

Key design features

- Forward single arm spectrometer
- Precision Si-strip vertex detector
- Efficient 4 Level trigger incl. L1 vertex trigger
- Two RICH detectors for particle ID
- Hadron & EM calorimetry
- Designed to run at low LHC lumi (2x10³²cm⁻²s⁻¹)

The ATLAS/CMS Detectors

Central general-purpose detectors :

- Tracking up to $|\eta| < 2.5$
- Specialist B triggers operating at lumi ≤ 1x10³³ cm⁻²s⁻¹

Importance of efficient triggering

BTeV

Three levels :-<u>L1</u>: Pioneering pixel vertex <u>L0</u>: "High" $p_T \mu$, e, hadron <u>L1</u>: High $p_T \mu$, & cal trigger (132ns pipelined) (p_T~1-2 GeV/c) <u>L2,L3</u>: Software triggers

LHCb

Four levels :-<u>L1</u>: Vertex trigger <u>L2, L3</u>: Software triggers

ATLAS/CMS

Three levels :-(p_T~ 5-6 GeV/c) <u>L2,L3</u>: Software triggers No vertex trigger

Level-1 vertex-trigger efficiencies

		BTeV	LHCb
B ⁰ → J	J/ψ K _s ⁰ (μμ)	50%	50%
$B^0 \rightarrow \pi$	τ ⁺ π ⁻	55%	48%
$B_s^0 \rightarrow$	D _s [−] K ⁺	70%	56%
Tagging efficion Wrong tag fra	encies typic actions typic	ally 40% ally 30%	

BTeV Pixel Detector

The BTeV Baseline Pixel Detector

Importance of Particle ID (RICH detectors)

$\underline{\mathbf{B}_{d}} \rightarrow \mathbf{J} / \mathbf{\Psi} \mathbf{K}_{s} \operatorname{decay}$

Here the General Purpose Detectors compare quite well with the forward detectors (high p_T muon triggers).

Sensitivities per year :

	<mark>σ(sin 2</mark> β)	
BTeV	0.021	
LHCb	0.011 to	
	0.017	
ATLAS	0.021	
CMS	0.025	

	Xs reach (10 ⁷ s/year)
BTeV	60
ATLAS	46
CMS	48
LHCb	75

$\frac{\text{Xs Reach}}{\text{B}_{s} \rightarrow \text{D}_{s}^{-} \pi^{+}, \overline{\text{B}}_{s} \rightarrow \text{D}_{s}^{+} \pi^{-}}$

 $B_d^0 \rightarrow D^0 K^{*0} decay$ $B_d \rightarrow \overline{D}^0 K^{*0}$ signal Without RICH Determination of γ from the measurement 300 of 6 time-integrated decay rates : LHCb $B_d \rightarrow D^0 K^{*0}, B_d \rightarrow \overline{D}^0 K^{*0}, B_d \rightarrow D^0_{CP=+1} K^{*0}$ 200 $\overline{B}_{d} \rightarrow \overline{D^{0}} \ \overline{K^{*0}}, \ \overline{B}_{d} \rightarrow D^{0} \ \overline{K^{*0}}, \overline{B}_{d} \rightarrow D^{0}_{CP=+1} \ \overline{K^{*0}}$ $\mathbf{k}^{+}\pi^{-} \qquad \mathbf{k}^{-}\pi^{+} \qquad \mathbf{k}^{+}\mathrm{K}^{-},$ 100 $\pi^+\pi^-$ With RICH 0 4.5 Visible BR's ~ $10^{-8} \rightarrow 10^{-7}$ Measurement only possible with forward $m(K^{+}\pi^{-}K^{+}\pi^{-})$ [GeV/c²] detector with particle ID (LHCb, BTeV)

 $B^- \rightarrow D^0 K^- decay$

LHCb sensitivity per year : $\sigma(\gamma) = 10^{\circ}$

Determination of γ from the measurement of 9 time-integrated decay rates :

Interference of the decays $B^- \rightarrow D^0 K^-$, $B^- \rightarrow \overline{D^0} K^-$ where $D^0, \overline{D^0} \rightarrow$ same final state

BTeV sensitivity per year : $\sigma(\gamma) = 13^{\circ}$

$(\overline{B}_{s}^{0} \rightarrow D_{s}^{-} K^{+}, D_{s}^{+} K^{-} decays)$

Measurement of (γ - 2 $\delta\gamma$) from the measurement of 4 time-dependent decay rates :

Fitting γ in $B_s^0 \rightarrow D_s^- K^+$ (BTeV)

ρ = 0.5 ; sin (γ + δ) = 0.771 ;sin (γ - δ) = 0.629 ; $γ = 45^{O}$

Extraction of (2\beta+\gamma)

${\sf B_d} \,{ ightarrow}\, {\sf D}^{*-} \pi^+$, ${\sf D}^{*+} \pi^-$

- 4 Time-dependent decay rates
- Relies on efficient hadron trigger
- Need large statistics (CP asymmetry very small)
 - Inclusive D* reconstruction
 ~ 270 k events/year with S/B~7
 - Add D*a₁ channels
 - ~ 320 k events/year

 $(2\beta + \gamma)$ in degrees

No strong phase difference assumed

$B_d \rightarrow \rho \pi$ reconstruction

Measurement of the angle α

BTeV mass resolution $B_d^{0} \rightarrow \pi^+\pi^-\pi^0$

2800 tagged $B_d{}^0 \to \rho \ ^+\pi^-$ events per year obtained

BTeV : lead tungstate calorimetry : LHCb : Shashlik EM calorimetry : ~2% / sqrt(E) + 0.6% vs. 10% / sqrt(E) + 1.5%

Rare decays

Standard Model BR ~ 3.5x10⁻⁹

Here the General Purpose Detectors have an advantage : high p_T di-muon triggering at high (1x10³⁴) luminosity.

Muon trigger : 2 μ's with p_T > 4.3 GeV | η| < 2.4 CMS : 100 fb⁻¹ (10⁷s at 10³⁴ cm⁻²s⁻¹) : 26 signal events 6.4 events background

Performance summary

Sensitivities per year :

Measurement	Channel	BTeV	LHCb	ATLAS	CMS
sin(2β)	$B^0 \rightarrow J/\psi K_s^0$	0.021	0.011 to 0.017	0.021	0.025
sin(2α)	$B^0 \rightarrow \pi^+ \pi^-$ (assuming no penguin)	0.06	0.05	0.10	0.17
	$B^0 \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$				
2β + γ	$B^0 \rightarrow D^{*+} \pi^-$		9 0		
<mark>γ - 2</mark> δγ	$B_s^0 \rightarrow D_s^- K^+$	11 ⁰	6° to13°		
γ	$B_d^{0} \rightarrow D^0 K^*$		10 ⁰		
γ	$B^- \rightarrow D^0 K^-$	13 ⁰			
δγ	$B_s^0 \rightarrow J/\psi \Phi$		0.6 ⁰	0.9 ⁰	
X _s	$B_s^0 \rightarrow D_s^- \pi^+$	< 60	< 75	< 46	< 48
Rare decays	$B_s^{0} \xrightarrow{\rightarrow} \mu^+ \mu^-$ (SM. BR. ~3.5x10 ⁻⁹)		4.4σ SM signal	4.3σ SM signal	10σ SM signal
	$B_d^{\ 0} \rightarrow K^* \gamma$	24k evts.	26k evts.		

- The 2nd Generation CP-violation experiments will provide massive statistics : ~10¹² bb pairs per year.
- LHCb/BTeV will provide : Efficient B triggers Excellent proper time resolution ($\sigma_t \sim 40 - 50$ fs) Particle ID.
- The experiments will measure precisely the angles and the sides of the Unitarity Triangle.

A unique opportunity to understand origin of CP violation in framework of SM and BEYOND !

