



# First measurement of CP-violation using $B^0_{ m s} o K^{*0} \overline{K}^{*0}$ decays

#### Matthew Kenzie University of Cambridge On behalf of the LHCb collaboration

- ▶ Precision measurement of *CP*-violation in  $B^0_{
  m s} o J/\psi \, K^+K^-$  decays PRL 114 041801 (2015)
- Measurement of *CP*-violation in  $B^0_{
  m s} o \phi \phi$  decays PRD 90 052011 (2014)
- First measurement of the *CP*-violating phase  $\phi_s^{d\bar{d}}$  in  $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$  decays NEW LHCb-PAPER-2017-048

**CERN LHC seminar**  $21^{st}$  November 2017

# Why is the universe matter dominated?



- $\blacktriangleright$  We live in a matter (and photon) dominated universe:  $n_b/n_\gamma \sim 10^{-10}$
- CP-violation is a crucial ingredient to this problem
- $\blacktriangleright$  But CP-violation in the SM only accounts for  $\sim 10^{-20}$
- There must be new physics and new sources of CP-violation

### How to find New Physics at the LHC?



- Most HEP direct discoveries have been preceded by indirect evidence first!
- If we don't see New Physics directly at the LHC can indirect evidence guide us where to look (or what to build) next?

- $\blacktriangleright$  In the SM quarks can change flavour by emission of a  $W^\pm$  boson
  - So must also change charge (i.e. from up-type to down-type or vice-versa)



The probability for such a transition is governed by the elements of the 3 × 3 unitary CKM matrix

CKM matrix
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix}$$
= $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$  $\begin{pmatrix} d \\ s \\ b \end{pmatrix}$ flavourmasseigenstateseigenstates

- $\blacktriangleright$  In the SM quarks can change flavour by emission of a  $W^\pm$  boson
  - ▶ So must also change charge (i.e. from up-type to down-type or vice-versa)



- $\blacktriangleright$  The probability for such a transition is governed by the elements of the 3  $\times$  3 unitary CKM matrix
  - It exhibits a clear hierarchy

#### CKM hierarchy

$$V = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \sim \left(egin{array}{ccc} 1 & 0.2 & 0.004 \ 0.2 & 1 & 0.04 \ 0.008 & 0.04 & 1 \end{array}
ight)$$

- $\blacktriangleright$  In the SM quarks can change flavour by emission of a  $W^\pm$  boson
  - So must also change charge (i.e. from up-type to down-type or vice-versa)



- $\blacktriangleright$  The probability for such a transition is governed by the elements of the 3  $\times$  3 unitary CKM matrix
  - It exhibits a clear hierarchy
  - Contains the only source of *CP*-violation in the SM (i.e. if  $\Lambda_{QCD} = m_{\nu} = 0$ )

#### Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Unitarity imposes several conditions which give rise to "unitarity" triangles

#### Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$



Unitarity imposes several conditions which give rise to "unitarity" triangles

#### Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$



#### Neutral meson mixing



The physical mass eigenstates are admixtures of the weak eigenstates

$$|B^0_{{
m s}\,L,H}
angle=p|B^0_{{
m s}}
angle\mp q|\overline{B}^0_{{
m s}}
angle$$

with mass difference,  $\Delta m$ , and width difference,  $\Delta \Gamma$ .

- If *CP* is conserved in mixing then  $\left|\frac{p}{q}\right| = 1$
- States evolve with time according to Schrödinger's equation,

$$i\frac{\partial}{\partial t} \begin{pmatrix} |B_{\rm s}^0(t)\rangle \\ |\overline{B}_{\rm s}^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_{\rm s}^0(t)\rangle \\ |\overline{B}_{\rm s}^0(t)\rangle \end{pmatrix}$$

► SM prediction and experimental value for CP violation in B<sup>0</sup><sub>s</sub> mixing is ~ 0 -[arXiv:1205.1444], [arXiv:1612.07233]

- Must have two interfering amplitudes with different strong ( $\delta$ ) and weak ( $\phi$ ) phases
- ► For a  $B_s^0$  decay to a *CP*-eigenstate, *f*, *CP*-violation effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_f}$

CPV in decay:

- Must have two interfering amplitudes with different strong ( $\delta$ ) and weak ( $\phi$ ) phases
- For a  $B_s^0$  decay to a *CP*-eigenstate, *f*, *CP*-violation effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_c}$



- Must have two interfering amplitudes with different strong ( $\delta$ ) and weak ( $\phi$ ) phases
- For a  $B_s^0$  decay to a *CP*-eigenstate, *f*, *CP*-violation effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_f}$



- Must have two interfering amplitudes with different strong ( $\delta$ ) and weak ( $\phi$ ) phases
- For a  $B_s^0$  decay to a *CP*-eigenstate, *f*, *CP*-violation effects depend on  $\lambda = \frac{q}{p} \frac{A_f}{A_f}$



• Must have two interfering amplitudes with different strong ( $\delta$ ) and weak ( $\phi$ ) phases

▶ For  $B_s^0 \to f$  decay, *CP*-violation effects depend on  $\lambda = \frac{q}{p} \frac{A_{\bar{f}}}{A_f}$ 



#### CPV in the interference between decay and mixing:

#### Sensitivity to $\phi_{\rm s}$

- ▶ SM predicts:  $\phi_s = (-0.0370 \pm 0.0006) \, \mathrm{rad} \, [arXiv:1612.07233]$ 
  - Small but non-zero

Golden mode:  $B^0_{
m s} 
ightarrow J\!/\!\psi\,K^+K^-$  - [Phys. Rev. Lett. 114 (2015) 041801]

$$\phi_{\rm s} = \underbrace{\phi_{\rm SM}}_{-2\beta_{\rm s}} + \Delta \phi_{\rm peng} + \Delta \phi_{\rm NP}$$





- Only for  $b 
  ightarrow c ar{c} s$  transitions  $(\phi_s^{c ar{c}})$
- Estimate  $\Delta \phi_{\text{peng}} \approx 0.003$  [JHEP 11 (2015) 082]  $(B^0 \rightarrow J/\psi \rho, B_s^0 \rightarrow J/\psi K^{*0})$

#### Current status

- World average for these modes currently dominated by LHCb
- Consistent with both the SM and zero [arXiv:1612.07233]

$$\label{eq:phi} \begin{split} \phi_s^{c\bar{c}}({\rm SM}) &= (-0.0370 \pm 0.0006) \, {\rm rad} \\ \phi_s^{c\bar{c}}({\rm WA}) &= (-0.021 \pm 0.031) \, {\rm rad} \end{split}$$



#### 2. Status of $\phi_{\rm S}$

# $B_{\rm s}^{0} \rightarrow \phi \overline{\phi}$ decays

- Pure penguin decay  $b \rightarrow ss\bar{s}$  transition
- New Physics can be significantly enhanced
- Purely hadronic final state
- The  $\phi$  resonance is very narrow



# $B^0_{ m s} ightarrow (K^+\pi^-)(K^-\pi^+)$ decays

- Pure penguin decay  $b \rightarrow sd\bar{d}$  transition
- ▶ New Physics can be significantly enhanced and entirely different from  $B^0_s \to J/\psi \phi$  and  $B^0_s \to \phi \phi$
- Expect similar statistical precision to  $B^0_{
  m s} o \phi \phi$
- CPV in decay is also possible



#### Experimentally challenging:

- Low branching fraction (100 times smaller than  $B^0_{
  m s} \rightarrow J/\psi \phi$ )
- Purely hadronic final state
- K\* is fairly wide (several resonant and non-resonant components)
- Several peaking backgrounds

$$\phi^{car{c}}_{s}
eq\phi^{sar{s}}_{s}
eq\phi^{dar{d}}_{s}$$

#### Ingredients required for a $\phi_{\rm s}$ analysis

In the simplest case, and only if there is no CP-violation in decay, the time-dependent CP-asymmetry

$$A_{CP}(t) = \frac{\Gamma(\overline{B}_{\rm s}^0 \to f) - \Gamma(\overline{B}_{\rm s}^0 \to f)}{\Gamma(\overline{B}_{\rm s}^0 \to f) + \Gamma(\overline{B}_{\rm s}^0 \to f)} = \eta_f \sin(\phi_{\rm s}) \sin(\Delta m_s t)$$

Experimentally

$$A_{CP}(t) \approx (1-2w)e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin(\phi_s) \sin(\Delta m_s t)$$

- w: Probability the initial B flavour was tagged incorrectly
- $\sigma_t$ : Decay-time resolution
- $\eta_f$ : *CP*-eigenvalue  $\implies$  angular analysis

#### Important requirements

- Good decay time resolution
- Good flavour tagging
- Sufficient statistics for an angular analysis
- Good particle identification

#### LHCb Detector

• Copius production of  $B^+$ ,  $B^0$ ,  $B_s^0$ ,  $\Lambda_b^0$  (100K  $b\overline{b}/s$ )



LHCb performance - [Int. J. Mod. Phys. A30, (2015) 1530022]

# The $B^0_{ m s} o K^{*0} \overline{K}^{*0}$ decay

- Interference between  $B^0_s \to K^{*0} \overline{K}^{*0}$  and  $B^0_s \to \overline{B}^0_s \to K^{*0} \overline{K}^{*0}$ 
  - where  $K^{*0} \to K^+ \pi^-$  and  $\overline{K}^{*0} \to K^-_- \pi^+$
- Gives access to CP-violating phase  $\phi_s^{d\bar{d}}$
- ► First discovered by LHCb in [Phys. Lett. B709 (2012) 50]
  - Update in [JHEP 07 (2015) 166]
- Discussed extensively in the literature as a promising mode for New Physics
  - Fleisher et. al. [Phys. Lett. B660 (2008) 212]
  - Ciuchini et. al. [Phys. Rev. Lett. 100 (2008) 031802]
  - Descotes-Genon et. al. [Phys. Rev. D85 (2012) 034010 ]
  - Bhattacharya et. al. [Phys. Lett. B717 (2012) 403]





SM expectation:

$$|\lambda| = \frac{p}{q} \frac{\bar{\mathcal{A}}_f}{\mathcal{A}_f} \approx 1$$

• 
$$\phi_s^{d\bar{d}} = \phi_{\rm mix} - 2\phi_{\rm decay} \approx 0$$

Use a wide  $m(K\pi)$  mass range: 750 - 1600 MeV/ $c^2$ 



#### Increasing the statistics available

Use a wide  $m(K\pi)$  mass range: 750 - 1600 MeV/ $c^2$ 



#### Increasing the statistics available

Use a wide  $m(K\pi)$  mass range: 750 - 1600 MeV/ $c^2$ 



#### Increasing the statistics available

Use a wide  $m(K\pi)$  mass range:  $750 - 1600 \text{ MeV}/c^2$ 



- A single phase,  $\phi_s^{d\bar{d}}$ , is used for all
- Scalar description from Pelaez et. al. [Phys. Rev. D 93 (2016) 074025]



 $B^0_{
m s} o K^*(892)^0 \overline{K}^*(892)^0$ 

VV0, VV∥, VV⊥



 $B^0_{
m s} 
ightarrow K^*(892)^0 \overline{K}^*(892)^0$ 

VV0, VV∥, VV⊥





 $B^0_{
m s} o K^*_2(1430)^0 \overline{K}^*_2(1430)^0$ 

TT0, TT $\parallel_1$ , TT $\perp_1$ , TT $\parallel_2$ , TT $\perp_2$ 









Factorise the time-dependent probability

$$p(t,\Omega) \propto \sum_{ij} \underbrace{\mathcal{K}_{ij}(t)}_{ ext{time dep}} \cdot \underbrace{\mathcal{F}_{ij}(\Omega)}_{ ext{ang/mass dep}}$$

Time-dependent terms

$$K_{ij}(t) = \underbrace{R(t, \delta) \otimes e^{-\Gamma_s t}}_{\text{decay time}} \begin{bmatrix} \xi_{+} \underbrace{\left(a_{ij} \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_{ij} \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right)\right) + \xi_{-}(c_{ij} \cos(\Delta m_s t) + d_{ij} \sin(\Delta m_s t))}_{\text{decay time}} \end{bmatrix}_{\substack{\text{decay time} \\ + \text{ resolution}}} \underbrace{\frac{\text{flavour}}{\text{tagging}} + \text{decay}}_{\text{decay}}$$

#### Coefficients contain dependence on physical parameters

$$\begin{aligned} a_{ij} &= \frac{2}{1+|\lambda|^2} \left( A_i A_j^* + \eta_i \eta_j |\lambda|^2 A_{\bar{i}} A_{\bar{j}}^* \right), \quad b_{ij} &= \frac{-2|\lambda|}{1+|\lambda|^2} \left( \eta_j e^{i\phi_s} A_i A_{\bar{j}}^* + \eta_i e^{-i\phi_s} A_{\bar{i}} A_{\bar{j}}^* \right), \\ c_{ij} &= \frac{2}{1+|\lambda|^2} \left( A_i A_j^* - \eta_i \eta_j |\lambda|^2 A_{\bar{i}} A_{\bar{j}}^* \right), \quad d_{ij} &= \frac{-2|\lambda|i}{1+|\lambda|^2} \left( \eta_j e^{i\phi_s} A_i A_{\bar{j}}^* - \eta_i e^{-i\phi_s} A_{\bar{i}} A_{\bar{j}}^* \right) \end{aligned}$$







# Selecting the signal

Remove unwanted backgrounds:

- Use particle identification requirements from Cherenkov detectors
- Boosted Decision Tree to reject combinatorial background
- Mass vetoes for unwanted contributions



#### 4.2 Signal isolation

# Selecting the signal

Remove unwanted backgrounds:

- Use particle identification requirements from Cherenkov detectors
- Boosted Decision Tree to reject combinatorial background
- Mass vetoes for unwanted contributions
- Use sPlot procedure to subtract background



 $N_{\rm S}=6080\pm84$  events

#### Kinematic acceptance

- Detector geometry and selection criteria introduce non-uniform acceptance
- Introduce event weights in the normalisation term of the model
- Create a 5D efficiency map for angular terms,  $F_{ij}(\Omega)$



#### Kinematic and decay-time acceptance

- Detector geometry and selection criteria introduce non-uniform acceptance
- Model the decay-time acceptance parametrically using cubic splines



#### Decay-time resolution

Time-dependent decay rate of  $B_{\rm s}^0$ 

$$\frac{d\Gamma}{dt} \propto \sum_{ij} \frac{R(t,\delta t)}{R(t,\delta t)} \otimes e^{-\Gamma_s t} \left[ a_{ij} \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_{ij} \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_{ij} \cos(\Delta m_s t) + d_{ij} \sin(\Delta m_s t) \right]$$



#### Decay-time resolution

- Modelled as a Gaussian
- True decay-time resolution,  $\sigma_t$ , as a function of the estimated decay-time resolution,  $\delta_t$ , obtained from simulation using a linear calibration

#### Flavour tagging

Use both same side (SS) and opposite side (OS) taggers calibrated on real data



Combined Tagging Performance:  $\epsilon_{tag} = (75.6 \pm 0.6)\%$  and  $\epsilon_{eff} = (5.15 \pm 0.14)\%$ 

| Table of systematic uncertainties          |                           |             |  |  |  |
|--------------------------------------------|---------------------------|-------------|--|--|--|
| Parameter                                  | $\phi_s^{d\bar{d}}$ [rad] | $ \lambda $ |  |  |  |
| Yield and shape of mass model              | 0.012                     | 0.001       |  |  |  |
| Signal weights of mass model               | 0.012                     | 0.007       |  |  |  |
| TD fit procedure                           | 0.006                     | 0.002       |  |  |  |
| TD fit parametrisation                     | 0.049                     | 0.013       |  |  |  |
| Acceptance weights (simulated sample size) | 0.106                     | 0.078       |  |  |  |
| Other acceptance and resolution effects    | 0.063                     | 0.008       |  |  |  |
| Production asymmetry                       | 0.002                     | 0.002       |  |  |  |
| Total                                      | 0.141                     | 0.089       |  |  |  |

- $\blacktriangleright$  Only shown for the CP observables,  $\phi_s^{d\bar{d}}$  and  $\lambda$
- There are 39 physical observables in total

# **Fit Projections**

- Nominal fit took too long on a conventional CPU
- Novel implementation in GPUs with Ipanema ([arXiv:1706.01420])  $\sim 60 \times$  faster
- $\Delta m_s$ ,  $\Delta \Gamma_s$ ,  $\Gamma_s$  are constrained to their known values



4.4 Results

# Numerical Results

| _                                            |                             | Parameter                                | Value                       |  |
|----------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|--|
| Parameter                                    | Value                       | Single D-wave (VT and TV)                |                             |  |
| Common parameters                            |                             |                                          |                             |  |
| $\phi_s^{d\bar{d}}$ [rad]                    | $-0.10 \pm 0.13 \pm 0.14$   | $f^{VT} = 0.160 \pm 0.016 \pm 0.049$     |                             |  |
| $ \lambda $                                  | $1.035 \pm 0.034 \pm 0.089$ | $f_{VT}^{VT} = 0.911 \pm 0.020 \pm 0.11$ |                             |  |
| $B_s^0 \to K^*(892)^0 \bar{K}^*(892)^0 (VV)$ |                             | $f^{TV}$                                 | $0.036 \pm 0.014 \pm 0.048$ |  |
| $f^{VV}$                                     | $0.067 \pm 0.004 \pm 0.024$ | $f_{\rm L}^{TV}$                         | $0.62 \pm 0.16 \pm 0.25$    |  |
| $f_{\rm L}^{VV}$                             | $0.208 \pm 0.032 \pm 0.046$ | $f_{\parallel}^{TV}$                     | $0.24 \pm 0.10 \pm 0.143$   |  |
| $f_{\parallel}^{VV}$                         | $0.297 \pm 0.029 \pm 0.042$ | $\delta_0^{VT''}$ [rad]                  | $-2.06 \pm 0.19 \pm 1.17$   |  |
| $\delta_{\parallel}^{VV''}$ [rad]            | $2.40 \pm 0.11 \pm 0.33$    | $\delta_{\parallel}^{VT}$ [rad]          | $-1.8 \pm 0.4 \pm 1.16$     |  |
| $\delta_{\perp}^{VV}$ [rad]                  | $2.62 \pm 0.26 \pm 0.64$    | $\delta_{\perp}^{VT}$ [rad]              | $-3.08 \pm 0.29 \pm 0.97$   |  |
| Single S-wave (SV and VS)                    |                             | $\delta_0^{TV}$ [rad]                    | $1.91 \pm 0.30 \pm 0.80$    |  |
| $f^{SV}$                                     | $0.329 \pm 0.015 \pm 0.071$ | $\delta_{\parallel}^{TV}$ [rad]          | $1.09 \pm 0.19 \pm 0.55$    |  |
| $f^{VS}$                                     | $0.133 \pm 0.013 \pm 0.065$ | $\delta_{\perp}^{TV}$ [rad]              | $0.2\pm0.4\pm1.1$           |  |
| $\delta^{SV}$ [rad]                          | $-1.31 \pm 0.10 \pm 0.35$   | Double DD-wave (TT)                      |                             |  |
| $\delta^{VS}$ [rad]                          | $1.86 \pm 0.11 \pm 0.41$    | f <sub>TT</sub>                          | $0.011 \pm 0.003 \pm 0.007$ |  |
| Double SS-wave (SS)                          |                             | $f_{\rm L}^{TT}$                         | $0.25 \pm 0.14 \pm 0.18$    |  |
| $f^{SS}$                                     | $0.225 \pm 0.010 \pm 0.069$ | $f_{\parallel_1}^{TT}$                   | $0.17 \pm 0.11 \pm 0.14$    |  |
| $\delta^{SS}$ [rad]                          | $1.07 \pm 0.10 \pm 0.40$    | $f_{\perp 1}^{TT}$                       | $0.30 \pm 0.18 \pm 0.21$    |  |
| Single <i>P</i> -wave decays (ST and TS)     |                             | $f_{\parallel_2}^{IT}$                   | $0.015 \pm 0.033 \pm 0.107$ |  |
| $f^{ST}$                                     | $0.014 \pm 0.006 \pm 0.031$ | $\delta_0^{IT}$ [rad]                    | $1.3 \pm 0.5 \pm 1.8$       |  |
| $f^{TS}$                                     | $0.025 \pm 0.007 \pm 0.033$ | $\delta_{\parallel_1}^{IT}$ [rad]        | $3.00 \pm 0.29 \pm 0.57$    |  |
| $\delta^{ST}$ [rad]                          | $-2.3 \pm 0.4 \pm 1.69$     | $\delta_{\perp_1}^{TT}$ [rad]            | $2.6\pm0.4\pm1.5$           |  |
| $\delta^{TS}$ [rad]                          | $-0.10 \pm 0.26 \pm 0.82$   | $\delta_{\parallel_2}^{TT}$ [rad]        | $2.3\pm0.8\pm1.7$           |  |
| o [rad]                                      | 0.10 ± 0.20 ± 0.02          | $\delta_{\perp_2}^{TT}$ [rad]            | $0.7\pm0.6\pm1.3$           |  |

4.4 Results

#### Numerical Results

| Demonstern                | V. I                      | Parameter                 | Value                       |  |
|---------------------------|---------------------------|---------------------------|-----------------------------|--|
| Parameter                 | value                     | Single D-wave (VT and TV) |                             |  |
| Common parameters         |                           | fVT                       | $0.160 \pm 0.016 \pm 0.049$ |  |
| $\phi_s^{d\bar{d}}$ [rad] | $-0.10 \pm 0.13 \pm 0.14$ | $f_{L}^{VT}$              | $0.911 \pm 0.020 \pm 0.165$ |  |

#### Summary

- Measure *CP*-averaged fractions, f, and strong phase differences,  $\delta$ , for **19 different** amplitudes
- In particular:
  - ▶  $f_L^{VV} = 0.208 \pm 0.032 \pm 0.046$  small value (as in previous [JHEP 07 (2015) 166]) ▶  $f^{SS} = 0.225 \pm 0.010 \pm 0.069$  large value
  - ▶ f<sup>VV</sup> = 0.067 ± 0.040 ± 0.024 small value
- Measure CP-violation parameters
  - $\phi_{s}^{d\bar{d}} = (-0.10 \pm 0.13 \pm 0.14) \text{ rad}$
  - $|\lambda| = (1.035 \pm 0.034 \pm 0.089)$
- SM wins again!

| $\int_{f^{TS}} f^{TS}$<br>$\delta^{ST}$ [rad]<br>$\delta^{TS}$ [rad] | $\begin{array}{c} 0.014 \pm 0.000 \pm 0.031 \\ 0.025 \pm 0.007 \pm 0.033 \\ -2.3 \pm 0.4 \pm 1.69 \\ 0.10 \pm 0.26 \pm 0.82 \end{array}$ | $ \begin{array}{c c} \delta_{\parallel_1}^{TT} \text{ [rad]} \\ \delta_{\perp_1}^{TT} \text{ [rad]} \\ \delta_{\parallel_2}^{TT} \text{ [rad]} \end{array} $ | $\begin{array}{c} 3.00 \pm 0.29 \pm 0.57 \\ 2.6 \pm 0.4 \pm 1.5 \\ 2.3 \pm 0.8 \pm 1.7 \end{array}$ |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 010 [rad]                                                            | $-0.10 \pm 0.26 \pm 0.82$                                                                                                                | $\delta_{\perp}^{TT}$ [rad]                                                                                                                                  | $0.7 \pm 0.6 \pm 1.3$                                                                               |

#### Future prospects



- Ready for operation in Run 3
- Completely redesigned tracking systems
- Redesigned readout for all subsystems





#### Beyond Run 4?

Expression of interest submitted for Phase-II upgrade





#### **Expected luminosities**

Run 1 + Run 2 $\int L \approx 8.5 \text{ fb}^{-1}$ Run 3 + Run 4 $\int L \approx 50 \text{ fb}^{-1}$ Run 5 + $\int L \approx 300 \text{ fb}^{-1}$ 

Current developments in  $B^0_{\rm s} \rightarrow J/\psi \, K^+ K^-$ 

Run 2 analysis of  $B^0_{
m s} o J\!/\psi\, K^+K^-$  is underway

- More than double the statistics of Run 1 (with just 2015 and 2016)
- $\sigma_{\rm stat} \approx 0.042 \, {\rm rad} \, ({\rm Run \ 1: \ 0.049 \, rad})$

Run 2 analysis of  $B^0_{
m s} 
ightarrow \phi \phi$  also underway



# Summary and Outlook

First ever measurement of  $\phi_s^{dar{d}} = (-0.10\pm0.13\pm0.14)\,\mathrm{rad}$ 

- Statistical precision similar to  $B^0_{
  m s} o \phi \phi$  with a large systematic contribution
- $\blacktriangleright$  Statistical precision  $\sim 2.5 \times$  worse than  $B^0_{\rm s} \rightarrow J\!/\psi\,\phi$
- Dominant systematics arise from limited MC statistics so are reducible



- ▶ At present no evidence of *CP*-violation in interference between B<sub>s</sub><sup>0</sup> decay and mixing
- Currently all CP-measurements are consistent with the SM
- Let's hope we can break it in Run 2 and beyond!

# THANK YOU!