Precision measurements of the Cabibbo-Kobayashi-Maskawa angle γ at LHCb

Donal Hill on behalf of the LHCb collaboration CERN seminar

10 October 2017

- It's that time of year again many congratulations to all of those involved on LIGO and VIRGO
- Spare a thought for the C in CKM, who didn't win the Nobel prize in 2008 along with K & M
- Today's talk is dedicated to Cabibbo, and to everyone else who hasn't won a Nobel prize!

"I've already got the prize. The prize is the pleasure of finding the thing out..." - R. P. Feynman

The CKM matrix and the weak force

$$V_{\mathsf{CKM}} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

- Connects u- and d- type quarks via the weak force
- Each element related to a transition probability, $|V_{ij}|^2$
- 3 × 3 unitary matrix is parameterised by three rotation angles and one complex phase
 - Phase changes sign under the CP operator
 - In SM, this phase is the single source of quark sector *CP* violation

The Unitarity Triangle

- Unitary matrix: $\sum_{j} |V_{ij}|^2 = \sum_{i} |V_{ij}|^2 = 1$
- Any dot product of two columns is zero
- Take first and third columns:
 - $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
 - Equation of a triangle in the complex plane!
 - The Unitarity Triangle 3 angles of similar size

- The Unitarity Triangle is built assuming unitarity i.e. no other flavour changing couplings apart from W^\pm
 - New Physics could violate unitarity
- Need to over-constrain all sides and angles with independent measurements
 - See if the various constraints agree
 - Is unitarity valid?

Is The Unitarity Triangle actually a triangle?

$$\alpha = \arg \left[-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*} \right] \quad \beta = \arg \left[-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*} \right] \quad \gamma = \arg \left[-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} \right]$$

- Global CKM fits performed using information from many measurements
 - Measuring β and γ is an important part of this process
 - Let's explore β first as an example

CKM angle β

$$\beta = \arg \left[- \frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right]$$

- Contains couplings to the top quark
 - Interested in looking at V_{tb} compared to V_{td}
 - How can we access this?
- Via a handy box diagram!
 - This diagram is responsible for B^0/\bar{B}^0 oscillations
 - Can measure β , knowing $K^0 \ CP$ violation

CKM angle β

- If $V_{td} \neq V_{td}^*$:
 - $\Gamma(B^0 \to f_{CP}) \neq \Gamma(\bar{B}^0 \to f_{CP})$
 - Example: $f_{CP} = J/\psi K_s^0$
 - Shows up as CP violation in mixing
- Well studied by the B factories and LHCb time dependent $C\!P$ violation
 - Amplitude of oscillation is $\sin(2\beta)$ (diluted by tagging)

[arXiv:0902.1708, arXiv:1201.4643, LHCb-PAPER-2015-004, LHCb-PAPER-2017-029]

- No top quark in the definition of γ
 - This time, we don't need a box diagram
 - Can measure purely with tree level decays
- Look for direct CP violation by comparing V_{ub} and V_{cb}
 - How do we do that?

Measuring γ with $B^- \rightarrow DK^-$ decays

- Ideal laboratory is $B^- \to DK^-$
 - $D = D^0$ or \overline{D}^0 decaying to the same final state
- There are two competing diagrams
 - Each of them has an amplitude ${\cal A}$
- One diagram is suppressed by a factor r_B
- The diagrams have a relative phase θ

Measuring γ with $B^- \rightarrow DK^-$ decays

- θ contains two parts
 - δ_B which covers QCD strong phase
 - Other part is the weak phase let's suggestively call it γ
- Weak phase γ in $B^-\to DK^-$ decays is the same as the CKM angle γ within 10^{-4}
- $B^- \to DK^-$ decays are a theoretically super-clean probe of γ
 - Non-tree SM diagrams contribute $\leq \mathcal{O}(10^{-7})$

[arXiv:1412.1446, arXiv:1308.5663]

From amplitudes to decay rates - the GLW method

- Two possible $B^- \to DK^-$ paths: add 'em up then square! $\Gamma \propto |1 + r_B e^{i\theta}|^2 = 1 + r_B^2 + 2r_B \cos{(\theta)}$
- γ is the $C\!P$ violating phase \Rightarrow changes sign under charge conjugation
 - Different decay rates for B^+ and B^-
 - This is the GLW method

 $\Gamma(B^- \to DK^-) \propto 1 + r_B^2 + 2 r_B \cos(\delta_B - \gamma)$ $\Gamma(B^+ \to DK^+) \propto 1 + r_B^2 + 2 r_B \cos(\delta_B + \gamma)$

- ADS method: choose a D decay with amplitude ratio (r_D) and phase (δ_D)
 - Pick one where $r_D \sim r_B$
 - For $B^- \rightarrow DK^-$, $r_B \sim 0.1$
 - Nice choice is $D \rightarrow K\pi$, $r_D \sim 0.06$
- Bigger interference effect \Rightarrow larger B^+/B^- differences

 $\Gamma(B^- \to DK^-) \propto r_D^2 + r_B^2 + 2 r_D r_B \cos(\delta_B + \delta_D - \gamma)$ $\Gamma(B^+ \to DK^+) \propto r_D^2 + r_B^2 + 2 r_D r_B \cos(\delta_B + \delta_D + \gamma)$

The ADS method

• Measure rates of B^+ and B^- decays separately and build asymmetries

$$A = \frac{\Gamma(B^- \to [\pi^- K^+]_D K^-) - \Gamma(B^+ \to [\pi^+ K^-]_D K^+)}{\Gamma(B^- \to [\pi^- K^+]_D K^-) + \Gamma(B^+ \to [\pi^+ K^-]_D K^+)}$$

• Also interested in rate of suppressed decays compared to their doubly-favoured counterparts, $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}]_D K^{\pm}$

$$R = \frac{\Gamma(B^- \to [\pi^- K^+]_D K^-) + \Gamma(B^+ \to [\pi^+ K^-]_D K^+)}{\Gamma(B^- \to [\pi^+ K^-]_D K^-) + \Gamma(B^+ \to [\pi^- K^+]_D K^+)}$$

• Both A and R contain information about γ

$B^{\pm} ightarrow [\pi^{\pm}K^{\mp}]_D K^{\pm}$ (Run 1: 3 fb $^{-1}$) [LHC6-PAPER-2016-003]

- $B^{\pm} \rightarrow DK^{\pm}$ $C\!P$ violation significance 8σ
- First observation of CP violation in a single B[±] → Dh[±] decay (h = π, K)

Constraining γ across many final states

- No single method can tell us everything e.g. ADS doesn't give a single γ solution
- Real power comes from combining lots of D modes
- LHCb made great strides with $B^{\pm} \rightarrow DK^{\pm}$ on several fronts in Run 1:
 - GLW: $D \to KK, \pi\pi, \pi\pi\pi\pi, KK\pi^0, \pi\pi\pi^0$
 - ADS: $D \to \pi K, \ \pi K \pi \pi, \ \pi K \pi^0$
 - GGSZ: $D \to K_s^0 \pi \pi, \ K_s^0 K K$
 - GLS: $D \to K^0_s K \pi$
- Is there anything else out there?

More data! The Run 2 era is well underway

- LHCb collected 2 fb⁻¹ in 2015-2016
 - Just crossed 1 fb⁻¹ in 2017
 - Luminosity levelling to achieve desired performance
- Increased statistics not just coming from extra fb⁻¹:
 - Improved software HLT performance
 - Increased B production cross-section at $\sqrt{s}=13~{\rm TeV}$

LHCb Integrated Recorded Luminosity in pp, 2010-2017

- Add a star to the K select $K^{*\pm} \to K^0_s \pi^\pm$
- Challenging final state
 - Two extra tracks compared to $B^\pm \to D K^\pm, D \to h h$
 - $K_s^0 \to \pi\pi$: efficiency $\sim 10\%$
 - Select within $K^*(892)$ window
- **Interesting feature** no background from misidentified *D*π-type decays
 - Measure only $B^\pm \to D K^{*\pm}$ across various 2- and 4-body D final states
 - Follow the same formalism as B[±] → DK[±] rates and asymmetries

$B^{\pm} ightarrow DK^{*\pm}$ (5 fb $^{-1}$) [LHCb-PAPER-2017-030]

$B^{\pm} \rightarrow DK^{*\pm}$ (5 fb⁻¹) [LHCb-PAPER-2017-030]

- 12 $C\!P$ observables used to determine the fundamental parameters $r_B^{DK^*}$, $\delta_B^{DK^*}$, γ
- This mode will become valuable for constraining γ in future, as more data and D modes are added

 $B^{\pm} \rightarrow D^{*0} K^{\pm}$ with $D \rightarrow KK, \pi\pi$ (GLW)

- Theoretically similar to $B^{\pm} \rightarrow DK^{\pm}$, with interesting extra features
 - Two $\gamma\text{-sensitive sub-decays: } D^{*0} \to D\pi^0 \text{ and } D^{*0} \to D\gamma$
 - π^0 and γ variants have 180° δ_D difference opposite CP[Phys. Rev. D 70, 091503(R)]
 - Gives us access to a CP-odd mode at LHCb
- Measure both $B^{\pm} \to (D^{*0} \to D\pi^0) K^{\pm}$ and $B^{\pm} \to (D^{*0} \to D\gamma) K^{\pm}$ decays to determine $r_B^{D^*K}$, $\delta_B^{D^*K}$, γ
- Same formalism as $B^{\pm} \rightarrow DK^{\pm}$ measure rates and asymmetries

Experimental challenge

- Soft neutral reconstruction is difficult at LHCb, and has limited efficiency [LHCb-DP-2014-002]
 - $\epsilon(\pi^0) \sim 4\%$
 - $\epsilon(\gamma) \sim 20\%$
- Expect lower statistics than in $B^\pm \to D K^\pm$ case
 - Is there anything we can do to get around this limitation?

Partial reconstruction approach

- Don't consider the soft neutral at all!
 - Partially reconstruct and select identically to $B^{\pm} \rightarrow DK^{\pm}$
 - No statistics loss due to $\epsilon(\pi^0)$ or $\epsilon(\gamma)$
- BDT trained on combinatorial background in data and $B^\pm \to D K^\pm$ signal MC
 - Efficiencies very similar for $B^\pm \to D K^\pm$ and $B^\pm \to D^{*0} K^\pm$
- All signal modes end up in the same event sample
 - Differentiate between them based on their m(DK)

The m(DK) distribution

- Fit variable is $m(DK) \Rightarrow$ uniquely related to angular properties of D^{*0} decay daughters
 - Different mass and spin of π^0 and γ different m(DK)
 - Parabolic distributions:

double peak for $B^{\pm} \rightarrow (D^{*0} \rightarrow D\pi^0)K^{\pm}$ single wide peak for $B^{\pm} \rightarrow (D^{*0} \rightarrow D\gamma)K^{\pm}$

Detector resolution effects

• Detector isn't perfect - convolve parabolas with a double Gaussian resolution function

• Modelled on the $B^{\pm} \rightarrow DK^{\pm}$ peak resolution

- Distinctive distributions for $D^{*0} \to D\pi^0$ and $D^{*0} \to D\gamma$
 - Both sit lower in mass than the $B^{\pm} \rightarrow DK^{\pm}$ peak (red region)
 - In previous 3 fb⁻¹ $B^{\pm} \rightarrow DK^{\pm}$ analysis, these decays were background $> 5000 \text{ MeV}/c^2$

Fits to $B^{\pm} \rightarrow D^{*0} K^{\pm}$ simulation

- Custom RooFit PDFs authored to model the distributions
 - Parabolic function convolved with a double Gaussian
 - Shape parameters determined from fits to selected signal MC
- Mission: measure B[±] → DK[±], B[±] → (D^{*0} → Dπ⁰)K[±] and B[±] → (D^{*0} → Dγ)K[±] in a single fit after common DK[±] candidate selection

- In reality, there are more B decays than our $B^\pm\to DK^\pm$ and $B^\pm\to D^{*0}K^\pm$ friends!
 - Several other partially reconstructed decays sit in the same invariant mass region as the signals
- Extensive simulation studies performed to understand the m(DK) distributions of each background

Fully reco. signal	Partially reco. signal	Partially reco. bkg.
$B^{\pm} \rightarrow DK^{\pm}$	$B^{\pm} \to (D^{*0} \to D\pi^0) K^{\pm}$ $B^{\pm} \to (D^{*0} \to D\gamma) K^{\pm}$	$B^{0} \to (D^{*-} \to D\pi^{-})K^{+}$ $B^{\pm} \to DK^{\pm}\pi^{0}$ $\bar{B}^{0}_{s} \to DK^{\pm}\pi^{\mp}$ $B \to (D^{*} \to DX)K^{\pm}Y$

Background shapes

 $m(Dh^{\pm})$ fit, $D
ightarrow K^{\pm}\pi^{\mp}$ (5 fb $^{-1}$) [LHC6-PAPER-2017-021]

 Favoured mode data helps us understand the signal and background contributions

- $\begin{array}{c} & B^{\pm} \to DK^{\pm} \\ & B^{\pm} \to D\pi^{\pm} \end{array}$
- $B^{\pm} \to (D^{*0} \to D\pi^0)h^{\pm}$ $B^{\pm} \to (D^{*0} \to D\gamma)h^{\pm}$

$$\begin{split} B^0 &\to (D^{*-} \to D\pi^-)h^+ \\ B^\pm &\to Dh^\pm\pi^0 \\ B &\to (D^* \to DX)h^\pm Y \\ \text{Particle misidentification} \end{split}$$

Simultaneous fit to m(DK)and $m(D\pi)$ - split based upon particle ID requirement

• Fit measures several branching fractions

- All agree with current world averages ($< 1.3\sigma)$
- Validation of the partial reconstruction method

Observable	This result	World average	
$\frac{\mathcal{B}(B^{\pm} \to D^{*0} K^{\pm})}{\mathcal{B}(B^{\pm} \to D^{*0} \pi^{\pm})}$	$(7.93 \pm 0.57)\%$	$(8.11 \pm 0.77)\%$	
$\mathcal{B}(B^{\pm} \to D^{*0}\pi^{\pm})$	$(4.66\pm 0.27)\times 10^{-3}$	$(5.18 \pm 0.26) \times 10^{-3}$	
$\mathcal{B}(D^{*0} \to D^0 \pi^0)$	0.636 ± 0.015	0.647 ± 0.009	

Making a γ -sensitive measurement

- What we really want to measure is CP violation!
 - γ causes a difference in B^+ and B^- decay rates
- Split data by \boldsymbol{B} charge and measure charge asymmetries
 - Correct all raw asymmetries for B^\pm production asymmetry and additional detection asymmetry effects
- Also interested in relative rates
 - Rate of $B^\pm \to D^{*0} K^\pm$ compared to $B^\pm \to D^{*0} \pi^\pm$
 - Rates of *CP* mode decays $(D \to KK, \pi\pi)$ compared to favoured mode $(D \to K\pi)$

$m(Dh^{\pm})$ fit, $D ightarrow K^{\pm}\pi^{\mp}$ (5 fb $^{-1}$) [LHCb-PAPER-2017-021]

CP observables (*CP* = $KK, \pi\pi$)

- Measure π^0 and γ asymmetries in favoured and $C\!P$ modes
 - 4 observables $A_{K\pi}^{\pi^0}$, $A_{K\pi}^{\gamma}$, $A_{CP}^{\pi^0}$, A_{CP}^{γ}
- Measure rates of $B^{\pm} \to D^{*0}([CP]_D \pi^0) K^{\pm}$ and $B^{\pm} \to D^{*0}([CP]_D \gamma) K^{\pm}$ compared to favoured mode counterparts
 - 2 observables $R_{CP}^{\pi^0}$, R_{CP}^{γ}
- Strong phase difference of 180° between π^0 and γ sub-decays: effectively measuring $R_{C\!P}^\pm$ and $A_{C\!P}^\pm$

$$\begin{aligned} R_{CP}^{\pi^{0}} &\equiv R_{CP}^{+} = 1 + r_{B}^{2} + 2 r_{B} \cos(\delta_{B}) \cos(\gamma) \\ R_{CP}^{\gamma} &\equiv R_{CP}^{-} = 1 + r_{B}^{2} - 2 r_{B} \cos(\delta_{B}) \cos(\gamma) \\ A_{CP}^{\pi^{0}} &\equiv A_{CP}^{+} = + 2 r_{B} \sin(\delta_{B}) \sin(\gamma) / R_{CP}^{+} \\ A_{CP}^{\gamma} &\equiv A_{CP}^{-} = - 2 r_{B} \sin(\delta_{B}) \sin(\gamma) / R_{CP}^{-} \end{aligned}$$

$m(Dh^{\pm})$ fit, $D \to K^+K^-$ (5 fb $^{-1}$) [LHCB-PAPER-2017-021]

$m(Dh^{\pm})$ fit, $D \to K^+K^-$ (5 fb $^{-1}$) [LHCB-PAPER-2017-021]

$m(Dh^{\pm})$ fit, $D \to K^+K^-$ (5 fb $^{-1}$) [LHCB-PAPER-2017-021]

$m(Dh^{\pm})$ fit, $D ightarrow \pi^+\pi^-$ (5 fb $^{-1}$) [LHCb-Paper-2017-021]

$m(Dh^{\pm})$ fit, $D ightarrow \pi^+\pi^-$ (5 fb $^{-1}$) [LHCb-Paper-2017-021]

$m(Dh^{\pm})$ fit, $D ightarrow \pi^+\pi^-$ (5 fb $^{-1}$) [LHCb-Paper-2017-021]

CP observable results (5 fb⁻¹) [LHCb-PAPER-2017-021]

- $B^{\pm} \to D^{*0} h^{\pm}$ modes measured for the first time at LHCb and using a brand new technique!
 - Currently GLW modes are included ADS under investigation
 - Fully reconstructed $B^\pm \to D^0 h^\pm$ results are measured with the same fit

 $B^{\pm} \rightarrow D^{*0} K^{\pm}$ results [LHCb-PAPER-2017-021]

$A_K^{K\pi,\gamma}=$	+0.001	± 0.021	(stat)	± 0.007	(syst)
$A_{K}^{K\pi,\pi^{0}} =$	+0.006	± 0.012	(stat)	± 0.004	(syst)
$A_K^{C\!P,\gamma} =$	+0.276	± 0.094	(stat)	± 0.047	(syst)
$A_{K}^{C\!P,\pi^{0}} =$	-0.151	± 0.033	(stat)	± 0.011	(syst)
$R^{CP,\gamma} =$	0.902	± 0.087	(stat)	± 0.112	(syst)
$R^{C\!P,\pi^0} =$	1.138	± 0.029	(stat)	± 0.016	(syst)

$B^\pm o DK^\pm$ results (5 fb $^{-1}$) [LHCb-PAPER-2017-021]

- Important not to forget the $B^\pm \to D K^\pm$ GLW updates!
 - World-best measurements supersede those in 3 fb⁻¹ analysis
 - Consistent picture between previous results and this update
 - Improved precision as expected from increased statistics
- Statistical precision approaching level of systematics in some observables future work to drive down systematics

$B^{\pm} \rightarrow DK^{\pm}$ results [LHCb-PAPER-2017-021]					
$A_K^{K\pi} =$	-0.019	± 0.005 (stat)	± 0.002 (syst)		
$A_K^{KK} =$	+0.126	± 0.014 (stat)	± 0.002 (syst)		
$A_K^{\pi\pi} =$	+0.115	± 0.025 (stat)	± 0.007 (syst)		
$R^{KK} =$	0.988	± 0.015 (stat)	± 0.011 (syst)		
$R^{\pi\pi} =$	0.992	± 0.027 (stat)	± 0.015 (syst)		

Determining γ , $r_B^{D^*K}$ and $\delta_B^{D^*K}$ (5 fb⁻¹) [LHCb-PAPER-2017-021]

- 6 partially reconstructed GLW CP observables used to constrain the fundamentals
 - Determine profile likelihood contours for $r_B^{D^*K},\,\delta_B^{D^*K}$ and γ
- + $r_B^{D^*K}$ and $\delta_B^{D^*K}$ align with HFLAV GGSZ averages $_{\rm [arXiv:1612.07233]}$
- γ within 1 σ of 2016 LHCb combination [LHCb-PAPER-2016-032]
 - Will further improve precision with addition of ADS modes

- Perform a statistical combination using observables from several LHCb analyses
 - Many hadronic parameters, but critically γ is common to all
- Previous combination based entirely on Run 1 measurements [LHCb-PAPER-2016-032]
- An update has been performed, which includes the following:
 - $B^{\pm} \rightarrow DK^{\pm}$ GLW (5 fb⁻¹) 3 fb⁻¹ \rightarrow 5 fb⁻¹
 - $B^{\pm} \rightarrow D^{*0} K^{\pm}$ GLW (5 fb⁻¹) NEW
 - $B^{\pm} \rightarrow DK^{*\pm}$ ADS/GLW (5 fb⁻¹) NEW
 - Time-dependent $B_s^0 \rightarrow D_s^- K^+$ (3 fb⁻¹) 1 fb⁻¹ \rightarrow 3 fb⁻¹

Updated combination results [LHCb-CONF-2017-004]

• Profile likelihood contours have shrunk after updating $B^\pm\to DK^\pm$ GLW and adding new information

Measuring γ [lhcb-conf-2017-004]

- New combination supersedes previous most precise measurement of γ from a single experiment
- Uncertainty reduced by $\sim 1.7^\circ$ relative to previous combination

$$\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$$

• Current HLFAV average (inc. BaBar and Belle): $\gamma = (76.2^{+4.7}_{-5.0})^{\circ}$

Outlook for γ at the end of Run 2

- LHCb has more to say on γ before Run 2 wraps up
- Several key measurements are underway, to name a few:
 - $B^{\pm} \rightarrow DK^{\pm}$ ADS UPDATE
 - $B^{\pm} \rightarrow DK^{\pm}$ GGSZ UPDATE
 - $B^0 \rightarrow DK^{*0} \text{ ADS/GLW} \text{ UPDATE}$
 - $B^{\pm} \rightarrow DK^{*\pm}$ GGSZ NEW
 - $B^{\pm} \rightarrow D^{*0} K^{\pm} \text{ ADS } \text{ NEW}$
- Increased statistical power of Run 1 + Run 2 dataset will improve γ precision even further
 - Plenty to stay tuned for in the coming months!

What does it all mean?

- Main idea: compare γ measured in tree level decays with the value inferred from indirect global fits
- Loop processes, which give β , Δm_s & Δm_d , are NP sensitive
- Indirect γ precision $\sim 2^\circ$ limited by QCD theory uncertainty in B^0/\bar{B}^0 $_{\rm [MLC]}$
 - We must strive to push tree level γ below this
 - Does the Unitarity Triangle close?

What does it all mean?

- Main idea: compare γ measured in tree level decays with the value inferred from indirect global fits
- Loop processes, which give β , Δm_s & Δm_d , are NP sensitive
- Indirect γ precision $\sim 2^\circ$ limited by QCD theory uncertainty in B^0/\bar{B}^0 $_{\rm [MLC]}$
 - We must strive to push tree level γ below this
 - Does the Unitarity Triangle close?

What does it all mean?

- Main idea: compare γ measured in tree level decays with the value inferred from indirect global fits
- Loop processes, which give β , Δm_s & Δm_d , are NP sensitive
- Indirect γ precision $\sim 2^\circ$ limited by QCD theory uncertainty in B^0/\bar{B}^0 $_{\rm [MLC]}$
 - We must strive to push tree level γ below this
 - Does the Unitarity Triangle close?

Latest LHCb combination (direct) $\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$

HFLAV 2017 world average (direct) $\gamma = (76.2^{+4.7}_{-5.0})^{\circ}$

CKMfitter 2016 world average (indirect) $\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$

- Can't say anything definitive with current precision, but...
 - + LHCb combination is $\sim 2\sigma$ higher than indirect world average
- Strongly motivates the continued pursuit of $\boldsymbol{\gamma}$ with trees
 - LHCb is in a strong position to improve γ precision further
 - Will high central value of tree level γ persist?

Another kid on the block

- Belle II due to start taking data next year
 - Aiming for 50 ab⁻¹ by 2025
 - Expecting $\sim 2^\circ$ single experiment precision on γ by the end of running [I. Komarov, EPS 2017, Venice]
- Belle II has some advantages to help it compete with the power of LHCb statistics:
 - Higher sensitivity to neutrals (π^0, γ) : *CP*-odd $D \to K_s^0 \pi^0$
 - Full event interpretation: semi-leptonic modes $(|V_{ub}|)$
- LHCb will retain the advantage of superior statistics in fully charged modes: $D \rightarrow KK, \pi\pi, \pi K$ e.t.c.

Belle II and LHCb upgrade γ sensitivity

- Assuming 10 fb⁻¹ BESIII dataset to provide input on GGSZ c_i & s_i
 - Belle II expect 3° precision from $B^\pm \to DK^\pm$ GGSZ alone
 - Combining with all other D modes gives 1.6°
- LHCb will work hard to compete well into the upgrade era
 - 1.5° by end of Run 3 ($\sim 22~{
 m fb}^{-1}$, 2024) [arXiv:1709.10308]
 - $<1^\circ$ by end of Run 4 (~50 fb $^{-1}$, 2029) $_{\rm [arXiv:1709.10308]}$
 - $\sim 0.4^\circ$ in Phase II upgrade ($\sim 300~{
 m fb}^{-1}$, 2034) [CERN-LHCC-2017-003]

- + γ is a cornerstone of the Standard Model
 - Measured precisely using tree level *B* decays with negligible theoretical uncertainty
- $\bullet\,$ LHCb keeps making world-best measurements of γ across a range of interesting modes
 - New techniques like $B^\pm\to D^{*0}K^\pm$ partial reconstruction help squeeze the most out of the data
- Many updates to come as we approach the end of Run 2
 - Entering an exciting phase in CKM precision measurements!

Backup

Time-dependent $B^0_s ightarrow D^-_s K^+$ (3 fb⁻¹) [LHCB-CONF-2016-015]

- Time-dependent *CP* asymmetries measure interference between mixing and decay
- γ sensitive measurement
 - Assume no NP and no penguin pollution
 - Plug in $\phi_s = -0.010 \pm 0.039 ~\mathrm{rad}$ [LHCb-PAPER-2014-059]
- Flavour-tagged analysis measures *CP* parameters from fit to decay time distribution

Time-dependent $B^0_s \rightarrow D^-_s K^+$ (3 fb⁻¹) [LHCb-CONF-2016-015]

$$\gamma = (127^{+17}_{-22})^{\circ}$$
$$\delta_{D_sK} = (358^{+15}_{-16})^{\circ}$$
$$r_{D_sK} = 0.37^{+0.10}_{-0.09}$$

- Input: $\phi_s = -0.010 \pm 0.039 \; {
 m rad}$ [LHCb-PAPER-2014-059]
- 3.6 σ evidence of CP violation in $B_s^0 \to D_s^{\mp} K^{\pm}$
- 2.2σ compatibility with LHCb time-integrated γ combination

GGSZ modes

- LHCb has a suite of completed 3 fb $^{-1}$ GGSZ analyses:
 - $B^{\pm} \to D^0 K^{\pm}$ with $D^0 \to K^0_s \pi^+ \pi^-, K^0_s K^+ K^-$ [JHEP 10 (2014) 097]
 - MD $B^0
 ightarrow D^0 K^{*0}$ with $D^0
 ightarrow K_s^0 \pi^+ \pi^-$ [Jhep 08 (2016) 137]
 - MI $B^0 \to D^0 K^{*0}$ with $D^0 \to K^0_s \pi^+ \pi^-, K^0_s K^+ K^-$

[JHEP 06 (2016) 131]

• $B^{\pm} \rightarrow D^0 K^{\pm}$ update is active using Run 1 + Run 2 data

MD $B^0
ightarrow D^0 K^{*0}$ with $D^0
ightarrow K^0_s \pi^+ \pi^-$ [Jhep 08 (2016) 137]

Summer 2017 HFLAV averages - $B^{\pm} \rightarrow D_{CP}K^{\pm}$

Summer 2017 HFLAV averages - $B^{\pm} \rightarrow D_{CP}^{*}K^{\pm}$

- Analysis measures ratios of very similar final states large degree of systematic uncertainty cancellation
- Some residual effects remain:
 - Fixed shape parameters from MC fits
 - Use of MC to determine efficiencies
 - Fixed background yields using PDG branching fractions
 - Data-driven method to measure particle ID efficiencies
- All systematics relate to use of fixed parameters in the fit
 - Run the fit many times and vary their values ⇒ variation in observable results assigned as systematics