Fixed-target & heavy-ion collision results from LHCb

Michael Winn on behalf of the LHCb collaboration

Laboratoire de l'Accélérateur Linéaire, Orsay

LHC seminar, CERN, 21.08.2018

The LHCb detector

- precise tests of the Standard Model in the flavour sector
- spectacular QCD spectroscopy and precision EW measurements
- flexible trigger down to low-p_T with high rates in fixed-target geometry
- High-Energy Physics eagerly waiting for news from lepton universality ... LHCb is even more than this!

Unique forward kinematics in heavy-ion collider mode

- 2016 *p*Pb run at $\sqrt{s_{NN}} = 8.16$ TeV:
 - 10^9 minimum bias collisions in *p*Pb and Pb*p* mode
 - 34 nb⁻¹ in *p*Pb+Pb*p* for heavy-flavour/other probes processed in HLT: \approx 0.5 million J/ ψ in *p*Pb, Pb*p* each
- Ion-ion: 10 µb⁻¹ PbPb and 0.4 µb⁻¹ XeXe → 2018 PbPb aiming for a factor 10 more
- heavy-ion and low-x with inclusive and exclusive production channels

Unique fixed target mode at the LHC

System for measuring Overlap with Gas: most precise LHC luminosity LHCb-PAPER-2014-047, JINST 9 (2014) no.12

used as internal gas target for physics parasitic to collider data taking

cosmic ray and heavy-ion related physics with He, Ne and Ar targets CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Today's selection

 p
-production in pHe fixed-target collisions: reference for direct cosmic rays

Final results at $\sqrt{s_{NN}} = 110$ GeV LHCb-PAPER-2018-031, arXiv:1808.06127

 charm production in fixed-target collisions in p⁴He/⁴⁰Ar: intermediate/large-x & reference for ion-ion collisions

 D^0 and J/ ψ production LHCb-PAPER-2018-023, in preparation

▶ heavy-flavour and quarkonium production in *p*Pb: **low**-*x*, **energy loss tests & reference for ion-ion collisions** New Λ_{+}^{+} at $\sqrt{s_{NN}} = 5$ TeV & $\Upsilon(nS)$ at $\sqrt{s_{NN}} = 8.16$ TeV LHCb-PAPER-2018-021, in preparation. & LHCb-PAPER-2018-035, in preparation. J/ ψ at $\sqrt{s_{NN}} = 8.16$ TeV LHCb-PAPER-2017-014, PLB 774 (2017) 159

 D^0 at $\sqrt{s_{NN}} = 5$ TeV LHCb-PAPER-2017-015, JHEP 10 (2017) 090

 exclusive photonuclear J/ψ production in ultra-peripheral PbPb collisions:
 probe low-x and nuclear shadowing

LHCb-CONF-2018-003

$ar{p}$ from space: indirect search for the unknown

Image: GALEX, JPL-Caltech, NASA; Drawing: APS/Alan Stonebraker.

matter:

primary cosmic rays from Supernovae Remnants (SNR) and other sources

- > possible exotic antimatter sources in space: dark matter annihilations
- irreducible background: primary cosmic rays hitting interstellar medium, Hydrogen and Helium, producing secondary cosmic rays containing p
- direct charged cosmic ray detection in space: precision data with Pamela and AMS

Production cross sections in pHe: a crucial missing piece

comparsion with AMS data JCAP 1509 (2015) no.09, 023

 \bar{p} -measurement kinematics, z-axis ϵ_{rec} .

- flux prediction uncertainties in 10-100 GeV kinetic energy range: dominated by production cross sections uncertainties
- \bar{p} -production in pHe collisions never directly measured
- LHCb in fixed-target mode: pioneer with well suited kinematics
- publication submitted to PRL, LHCb-PAPER-2018-031, arXiv:1808.06127

Prompt \bar{p} -production in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV

- proton beam 1 hits He-gas pressure O(10⁻⁷) mbar
- \bar{p} momentum: 12-110 GeV/c \bar{p} transverse momentum: 0.4-4 GeV/c lower bound: RICH K⁻-threshold
- prompt: excluding weak hyperon decays
- trigger: activity in scintillator $+ \ge 1$ track at software stage
- event vertex: -700 < z < 100 mm

simulation: minimum bias EPOS LHC PRC 92, 034906 (2015) CERN LHC seminar 2018 Michael Winn, LHCb Collaboration \bar{p} -production in pHe collisions: luminosity determination

- gas pressure not precisely known
 - \rightarrow indirect luminosity measurement
- ▶ elastic scattering of proton beam with atomic e⁻ of He-gas: → QED and proton form factors
- ▶ simulation: ESEPP for e⁻ scattering J. Phys. G41 (2014) 115001

\bar{p} -production in pHe collisions: luminosity determination

• single soft e^- in $11 < \Theta < 21$ mrad: $< \epsilon_{rec} >= 16.3\%$

- ▶ loose e⁻/e⁺-ID via energy in ECal
- background charge symmetric: e⁺ as background proxy from data
- ▶ BDT-based selection on geometry, kinematics + exclusivity: $\epsilon = 96$ %

 $\blacktriangleright main uncertainty low < \epsilon_{rec} >: 5 \% relative uncertainty CERN LHC seminar 2018 Michael Winn, LHCb Collaboration$

\bar{p} -production in pHe collisions: particle identification

LHCb-PAPER-2018-031, arXiv:1808.06127

- negatively charged tracks: π^- , K⁻ and \bar{p} ; 1.7 % fakes (simulation)
- PID with 2 RICH detectors
- 3 set of templates:
 - pHe simulation (default)
 - pHe data: tracks from weakly decaying light-flavour and $\phi
 ightarrow {\it KK}$
 - pp data: as in pHe and D-meson decays
- 2 methods:
 - 2-dimensional binned extended-max. likelihood fit
 - cut & count

Prompt \bar{p} -production in pHe collisions: uncertainties

LHCb-PAPER-2018-031, arXiv:1808.06127

- Iuminosity and PID dominating uncertainties
- uncertainties below 10% for most kinematic bins

Prompt \bar{p} -production cross section results in pHe collisions

EPOS LHC, EPOS 1.99, QGSJET-II, QGSJETII-04m, Hijing, PYTHIA 6.4, ICRC '17: difference summary by T. Pierog CERN LHC seminar 2018 Michael Winn, LHCb Collaboration uncertainties smaller than model spread

differ by hadronisation & parton model+dynamics

EPOS LHC tuned on LHC collider data underestimates p-production

 $\sigma_{vis}^{LHCb}/\sigma_{vis}^{EPOS-LHC} = 1.08 \pm 0.07 (lumi) \pm 0.03 (primary vertex)$

 \rightarrow discrepancy: \bar{p} yield/event

unique and precise: decisive contribution to shrink background uncertainties in dark matter searches in space

- natural *p*He extensions:
 - inclusive \bar{p} with hyperon decays
 - charged π, K, p spectra

-
$$\sqrt{s_{NN}} = 87$$
 GeV data

Charm production in fixed-target pHe and pAr

PRD 75 (2007) 054029

EPJC 77 (2017), 163

- nuclear modification of parton distribution function
- 'valence-like' intrinsic charm via backward rapidity coverage
- reference for future Pb−A fixed target studies for Quark-Gluon Plasma: → quarkonium suppression patterns and open charm: intermediate √s between SPS & top RHIC energy

Charm production in fixed-target configuration: data sets

- bridging the gap:
 - Tevatron/HERA fixed-target up to $\sqrt{\textit{s}_{NN}}$ = 42 GeV
 - RHIC at $\sqrt{s_{NN}}=200~{
 m GeV}$
- ▶ pHe at 87 GeV: luminosity as for 110 GeV p̄-analysis
- indirect luminosity not available for 2015 pAr

System	$\sqrt{s_{NN}}$	Protons on target	Target A	L _{int}
<i>p</i> Ar	110 GeV	$4 \cdot 10^{22}$	40	-
<i>p</i> He	87 GeV	$5\cdot 10^{22}$	4	$7.58{\pm}0.47~{ m nb}^{-1}$

${\rm J}/\psi$ production in $p{\rm Ar}$ collisions at $\sqrt{s_{NN}}=110~{\rm GeV}$

- backward hemisphere in centre-of-mass probing Bjorken-x: 0.02-0.16 estimate: $x = 2m_c/\sqrt{s_{NN}} \cdot e^{-y*}$
- shape in agreement for rapidity with phenomenological parametrisation JHEP 1303 (2013) 122
- HELAC-onia model EPJC 77 (2017) designed and tuned for collider data reasonable for rapidity, not working very well for p_T

D^0 production in *p*Ar collisions at $\sqrt{s_{NN}} = 110$ GeV

LHCb-PAPER-2018-023, in preparation.

probing Bjorken-x: 0.02-0.16

estimate: $x = 2m_c/\sqrt{s_{NN}} \cdot e^{-y*}$

► HELAC-onia model EPJC 77 (2017) designed for collider data reasonable for rapidity, not working very well for p_T

${\rm J}/\psi$ production in pHe collisions at $\sqrt{s_{NN}}=$ 87 GeV

- probing Bjorken-x: 0.03-0.37 estimate: $x = 2m_c/\sqrt{s_{NN}} \cdot e^{-y*}$
- in agreement for rapidity, tension for p_T with phenomenological parametrisation JHEP 1303 (2013) 122
- HELAC-onia model designed for collider data reasonable for rapidity, not working well for p_T and requiring scale factor of 1.78 EPJC 77 (2017)

D^0 production in pHe collisions at $\sqrt{s_{NN}} = 87$ GeV

LHCb-PAPER-2018-023, in preparation.

probing Bjorken-x: 0.03-0.37

estimate: $x = 2m_c/\sqrt{s_{NN}} \cdot e^{-y*}$

- HELAC-onia model designed and tuned for collider reasonable for rapidity, not working well for p_T and requiring a scale factor of 1.44 EPJC 77 (2017)
- ▶ no indication of visible valence-like intrinsic charm in rapidity distribution
- ▶ starting point for more detailed *p*-ion and future ion-ion collisions: open charm & charmonium down to 0 $p_{\rm T}$ at $\sqrt{s_{NN}} = 69$ GeV on Neon targets

p-nucleus collider: control & limits of collinear factorisation

Eur.Phys.J. C77 (2017) no.3, 163

modified from "QCD and collider physics", Ellis, Stirling, Webber

- no HERA equivalent for lepton-nuclei: partons largely unconstrained for LHC heavy-ions
- ▶ saturation scale $Q_s^2 \propto A_{nucleus}^{1/3} \rightarrow$ linear parton evolution break-down? Color glass condensate Ann.Rev.Nucl.Part.Sci.60:463-489,2010?
- Other effects?

as coherent energy loss by enhanced small-angle gluon radiation JHEP 1303 (2013) 122

- LHCb: forward acceptance + heavy-flavour
- \rightarrow low, but perturbatively amenable Q^2 to reach low-x CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

D^0 production in pPb collisions at 5.02 TeV: precision data LHCh LHCb Forward 8000 + Data + Data p < 3 GeV/c 2 < p < 3 GeV/a 7000 Di-Candidates Signal 3000 D⁰-from-b $2.5 < y^{\circ} < 3.0$ $2.5 < y^{+} < 3.0$ Background 2500 5000

- strong suppression at forward rapidity, modification factor at backward rapidity close to 1, increasing in most backward bins
- nuclear PDFs EPJC 77 (2017) & color glass condensate calculation PRD91 (2015) no.11, 114005 accounting for observations

coherent energy-loss JHEP 1303 (2013) 122 qualitatively similar expectation

assuming no other effect: constraining nPDFs in unexplored area at low-x, see PRL 121, 052004 (2018) CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Λ_c production in *p*Pb collisions at 5.02 TeV: test of charm fragmentation

LHCb-PAPER-2018-021, in preparation.

- input for hadronisation phenomenology: crucial comparison with other collision systems
- hadronisation pattern of cc̄ similar to model tuned to pp

Prompt J/ψ production in *p*Pb collisions at 8.16 TeV: precision nuclear modification

LHCb-PAPER-2017-014, PLB 774 (2017) 159.

- strong suppression at forward rapidity: increasing from 0.5 at lowest p_T reaching 1 at highest p_T
- nuclear PDFs EPJC77 (2017) 1 & Color Glass Condensate calculations PRD91 (2015) no.11, 114005 accounting for observations coherent energy-loss JHEP 1303 (2013) 122 accounting for rapidity dependence

assuming no other effect: constraining nPDFs in unexplored area at low-x, see PRL 121, 052004 (2018)

Non-prompt J/ψ production in *p*Pb collisions at 8.16 TeV: precision data on beauty

- suppression at forward rapidity, modification factor at backward rapidity close to 1
- first precise *b*-production measurement in *p*Pb down to 0 $p_{\rm T}$
- crucial input for PbPb phenomenology
- assuming no other effect:

constraining nPDFs in unexplored area at low-x, see PRL 121, 052004 (2018) CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

$\Upsilon(nS)$ in heavy-ions: probe of deconfinement

- quarkonium: QCD hydrogen atom \rightarrow probe deconfinement in PbPb
- $\Upsilon(nS)$ suppression patterns in PbPb by CMS and ALICE
- ▶ observed additional suppression of $\psi(2S)$ and $\Upsilon(2S,3S)$ at low- p_T also in pPb/Pbp by LHC collaborations in Run 1
- ► LHCb Run 1 T(nS) in pPb/Pbp statistically limited

$\Upsilon(nS)$ production in *p*Pb and Pb*p* collisions with LHCb

LHCb: factor 20 more luminosity in 2016 than in Run 1 to scrutinize the situation

 \rightarrow fully profitting thanks to resolution and excellent $\mu\text{-PID}$

 $\Upsilon(1S)$ in *p*Pb and Pb*p* collisions at $\sqrt{s_{NN}} = 8.16$ TeV

LHCb-PAPER-2018-035, in preparation.

- \blacktriangleright $\Upsilon(1S):$ suppressed forward, compatible with unity backward \rightarrow within nPDF uncertainties
- ▶ p_T -integrated $\Upsilon(1S)/J/\psi$ -from-*b* similar in *pp* & in *p*Pb/Pb*p*:

 \rightarrow naive approximate expectation in pure nuclear PDF & coherent energy-loss

- \rightarrow 'additional' suppression limited for ground state
- \rightarrow new observable:

proxy for 'natural' normalisation by total $b\bar{b}$ with same final state

 $\Upsilon(\rm nS)$ suppression patterns in $p\rm Pb$ and $\rm Pb{}p$ collisions at $\sqrt{s_{NN}}=8.16~{\rm TeV}$

$$R(pPb/pp)[\Upsilon(2S)] = 0.86 \pm 0.15$$
$$R(pPb/pp)[\Upsilon(3S)] = 0.81 \pm 0.15$$
$$R(Pbp/pp)[\Upsilon(2S)] = 0.90 \pm 0.21$$
$$R(Pbp/pp)[\Upsilon(3S)] = 0.44 \pm 0.15$$

LHCb preliminary LHCb-PAPER-2018-035, in preparation.

 additional suppression of excited states observed in inclusive collisions: significant for Υ(3S) in Pbp

 \rightarrow factorisation with respect to final state broken

 in qualitative agreement with models invoking late time interactions in pPb/Pbp

PLB749 (2015) 98-103, NPA 943 (2015) 147-158, PRC 97, 014909 (2018)

• comprehensive understanding: ingredient for ion-ion collisions \rightarrow upcoming prompt $\psi(2S)$ LHCb measurement at 8.16 TeV will contribute CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Ultra-peripheral PbPb collisions: γ -probe of the nucleus

- exclusive vector meson production via γ-pomeron scattering
- sensitive to generalised gluon distributions for Bjorken- $x \in 10^{-2}$ - 10^{-5}
- ▶ for small $q\bar{q}$ at leading twist, leading $\ln(1/x)$, t→0: $\sigma \propto (\text{gluon PDF})^2$ PRD50 (1994) 3134-3144
- LHCb well suited for exclusive production studies with Pb-beams: resolution, PID & very forward detector HerSCheL

LHCb experience: unique γ-p production studies in pp with quarkonium LHCb-PAPER-2018-011, arXiv:1806.04079; JHEP 1509 (2015) 084, LHCb-PAPER-2015-011; J. Phys. G41

(2014) 055002, LHCb-PAPER-2013-059; J. Phys. G40 (2013) 045001, LHCb-PAPER-2012-044 CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Ultra-peripheral PbPb collisions at 5.02 TeV: first J/ψ results LHCb Preliminary

- coherent J/ψ production can be well separated from incoherent part
- covered rapidity range and precision constraining model space: Cepila et al. PRC 97 024901 (2018), Goncalves et al.: PRD 96, 094027 (2017) Guzey et al.: PRC 93, 055206 (2016), Mäntysaari, PLB 772 (2017) 832-838
- heavy-ions: Mäntysaari-Schenke requires fluctuations to describe data as for v_n coefficients from particle correlations in pPb collisions
- final publication: include HerSchel information
- 2018 data waiting with $10 \times$ larger luminosity and exploiting other final states in exclusive γ -induced reactions

CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Guzey et al.

Outlook collider

heavy-ion Run 2 data started to be exploited:

ightarrow largest heavy-flavour statistics in pPb, forward acceptance & PID

LS 5

Phase I: $\approx 5 \times L_{inst}$ (Run II) in *pp* LHCB-TDR-12 – 17

Run 5: LHCb upgrade Phase II

- extend ion-ion capabilities
- increase pA luminosity for low-x sector

Phase II in design phase: $\approx 50 \times L_{inst}$ (Run II) in *pp* \rightarrow dream detector for heavy-ion physics

Physics case for an LHCb Upgrade II; CERN-LHCC-2018-026; LHCB-TDR-019 CERN LHC seminar 2018 Michael Winn, LHCb Collaboration

Outlook fixed target

- pNe data sample from 2017: $\approx 10 \times p \text{He}/p \text{Ar}$
- large PbNe sample in 2018
- Run 3: plan for storage cell upstream, allow for non-noble gas targets, in particular H² and D² as references
- ▶ 10-100 × larger instant. luminosity per unit length
- upgrades with crystal target for *c*-quark MDM, EDM polarised target further upstream & wire targets under discussion
 N LHC seminar 2018 Michael Winn, LHCb Collaboration

Conclusions:

LHCb as versatile lab for heavy-ion & fixed-target collisions

fixed-target pHe:

reference for direct cosmic ray \bar{p} measurements

- uncertainties mostly < 10 %: improve baseline for darkmatter searches

fixed-target pA:

high-x tests: intrinsic charm & gluon pdfs at low scales

- $y \& p_T$ -distributions with D⁰ & J/ ψ at backward y with A=4/40: y-dependence reproduced by models

*p*Pb and PbPb collider:

tests of low-x with perturbative probes in gluon and $\gamma\text{-induced}$ reactions

- nuclear suppressions in *p*Pb: up to 50% at low- p_T in *p*Pb forward with charm and 20-30% for beauty

- $d\sigma/dy$ of coherent J/ $\psi\text{-production}$ in PbPb collision constraining models

test heavy-flavour bound state hadronisation & fragmentation down to low- $p_{\mathcal{T}}$ with Λ_C and $\Upsilon(nS)$

Conclusions:

LHCb as versatile lab for heavy-ion & fixed-target collisions

A precision experiment at low/moderate Q^2 :

Unique acceptance at a hadron collider

- the world of colour charges & hadrons
- A chance:
 - to measure soft QCD
 - to probe the partonic content of nucleons and nuclei
 - to investigate QCD many body systems

Thanks a lot for two exciting years!

Back-up

Heavy-ion collisions at the LHC as a probe of QCD matter

The QCD many-body system in the lab: nucleus-nucleus collisions

- measure equilibrium properties: deconfinement, chiral restoration, thermodynamic&transport properties
- quantify QCD properties:
 QCD radiation, hadronisation, phase transition characteristics
- understand non-equilibrium dynamics and relation to equilibrium

p-n<u>ucleus and *pp* as a test of the heavy-ion paradigm</u>

Left: arXiv:1404.7327 Kn = L_{micro} / L_{macro}. Right: arXiv:1611.00329

- correlations & bulk production@low-p_T & large multiplicity:
 'same' patterns as in PbPb where assumption of local thermalisation
- hydro in large multiplicity pPb: set-up as in PbPb describing data despite precondition doubts PLB772 (2017) 681-686
- role of kinetic theory: to be quantified arXiv:1805.04081
- debate on saturation explanations of observed anisotropies arXiv:1808.01276 arXiv:1805.09342
- alternative: string interactions PLB779 (2018) 58-63
- LHCb: acceptance + heavy-flavour as hard scale: ideal testing ground