

LHCb Experiment -Physics and Detector-

On behalf of the LHCb collaboration Tatsuya Nakada CERN/PSI

Why is CP violation highly interesting?

 No precision test of the Standard Model in CP violation so far: we cannot exclude that CP violation is partly due to new physics.

(Why strong CP is small but weak CP not?)

- Since CP violation is due to an "interference", it is sensitive to a small effect due to new physics.
- Cosmology (baryon genesis) suggests that an **additional source** of CP violation other than the Standard Model is needed.

A promising place to look for new Physics

CKM matrix;

in the Standard Model, CP violation is due to $\eta \neq 0$

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i \eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i \eta) & -A\lambda^2 & 1 \end{pmatrix}$$
$$+ \begin{pmatrix} 0 & 0 & 0 \\ -iA^2\eta\lambda^5 & 0 & 0 \\ (\rho + i\eta)\lambda^5/2 & (1/2 - \rho)A\lambda^4 - iA\eta\lambda^4 & 0 \end{pmatrix}$$

Qualitatively, the Standard Model predicts

- $|\eta_{+-}| \neq |\eta_{00}|$ so called Re(ϵ'/ϵ)=~10⁻³ due to CP violation in decay: penguins+tree NA31:(2.30±0.65)×10⁻³, E731:(0.74±0.60)×10⁻³ NA48: ?, KTeV:(2.80±0.41)×10⁻³
- Br(K_L $\rightarrow \pi^0 \nu \bar{\nu}) \approx 10^{-11}$

so called CP violation in the interplay between decay (penguin) and oscillation (box)
Being discussed at FNAL and BNL (CERN?)
Very small CP violation in charged kaon decays,

etc.

In kaon system,

high precision test is rather difficult due to theoretical uncertainties in the Standard Model introduced by strong interactions.

B-meson system

Standard way to extract the CKM elements

If there is nothing else but the Standard Model,

 $|V_{cb}|, |V_{ub}|$ B-meson decays (usually semileptonic) Δm_d B_d- \overline{B}_d oscillations will fix all the Wolfenstein's parameters,

A, ρ and η (λ is well known).

CKM Unitarity Triangles

CP violation in

$$B_{d} \rightarrow J/\psi K_{S} \text{ v.s. } \overline{B}_{d} \rightarrow J/\psi K_{S}$$

measures the phase of V_{td} , i.e. β
$$B_{d} \swarrow B_{d} \swarrow J/\psi K_{S}$$

R

compare two β measurements = consistency test $H_{\rm B-\overline{B}} \propto (V_{\rm th}^* V_{\rm td})^2 \propto e^{2i\beta}$ $A_{\rm B \to J/\psi Ks} \propto V_{\rm cb}^{*} V_{\rm cs} \propto e^{0i}$ \overline{b} d J/v b W B_d $B_d - B_d$ W W S Ks b d d d C J/ψ Penguin effect t,c,u g $\frac{1}{d}$ K_s is negligible W B_d

By 2005, CLEO, BaBar, BELLE, CDF, D0 and HERA-B will have

-accurate $|V_{ub}|$, $|V_{cb}|$ and

CDF(1999)
$$\sin 2\beta = 0.79 \stackrel{+0.41}{-0.44}$$

- β from CP violation in $B_d \rightarrow J/\psi K_S$ with $\sigma \sim 0.025$

(Expected range in the Standard Model: $0.3 < \sin 2\beta < 0.8$)

Possibilities are

- a) There will be already a sign of new physics:
 - -precision measurements in different decay modes in order to pin down the details of new physics.
- b) Measurements look "consistent" with the Standard model.
 - -what could happen?
 - Let's make the following "interesting" scenario.

A model for new physics

CP violation in $B_d \rightarrow J/\psi K_S v.s. B_d \rightarrow J/\psi K_S$ measures $\beta_{J/\psi K} = \beta + \phi_{db}$ If the model is such that numerically $\phi_{db} \approx \beta_\Delta - \beta$ " $\beta_{J/\psi K} = \beta_\Delta$ " CP measurement and triangle measurements agree with each other.

 \rightarrow Looks consistent with the Standard Model!

CP violation in $B_d \rightarrow D^{*+} n\pi \text{ v.s. } B_d \rightarrow D^{*-} n\pi$ $B_d \rightarrow D^{*-} n\pi \text{ v.s. } B_d \rightarrow D^{*+} n\pi$ measures $2(\beta + \phi_{db}) + \gamma$ $\beta_{J/\psi K}$ is already measured $\rightarrow \gamma$ " $\gamma \neq \gamma_{\Lambda}$ " **CP** measurement is inconsistent with triangle measurements!

Similarly, $B_d \rightarrow \pi^+ \pi^-$ and $B_d \rightarrow$ measure $\beta + \phi_{db} + \gamma$

CDF, D0 and HERA-B may be able to measure $\Delta m(B_s)$ $\frac{\Delta m(B_d)}{\Delta m(B_s)} = \frac{A^2 \lambda^4 \left[(1-\rho)^2 + \eta^2 \right] + r(db)}{A^2 \lambda^2 + r(sb)}$

It helps to reduce hadronic uncertainties:

 $f_{\rm B}^{2}B$ (~20% error, lattice calculation) $f_{\rm B}^{2}B({\rm B_d})/f_{\rm B}^{2}B({\rm B_s})$ is much better known (~5% error) But cannot resolve new physics. CP violation in $B_s \rightarrow J/\psi \phi v.s. B_s \rightarrow J/\psi \phi$ measures $\delta \gamma + \phi_{sb}$ CP violation in $B_s \rightarrow D_s^+ K^- v.s. B_s \rightarrow D_s^- K^+$ $B_s \rightarrow D_s^- K^+ v.s. \overline{B}_s \rightarrow D_s^+ K^$ measures $2(\delta \gamma + \phi_{sh}) + \gamma$ Combination of two $\rightarrow \gamma$ " $\gamma \neq \gamma_{\Lambda}$ " **CP** measurement is inconsistent with triangle measurements!

$$B_s \rightarrow B_s \Rightarrow 2(\delta \gamma + \phi_{db})$$

Potential problems for BaBar, BELLE, CDF, D0, HERA-B

- α (β + γ , or 2β + γ):
 - $\pi^+\pi^-$ small branching fraction <10⁻⁵ large penguin contribution possible new physics effect in the decay need particle ID at large *p* (CDF, D0)
 - $\rho\pi$ time dependent Dalitz plot fit requires high statistics some theoretical assumption about resonances
 - $D^*\pi$ small asymmetries require high statistics
- γ:
- DK^{*} small branching fractions <<10⁻⁵ many-fold ambiguities
- D_sK need B_s (BaBar, BELLE) particle ID at large *p* (CDF, D0) small branching fractions <10⁻⁵

More generally new physics can appear in $\Delta b = 1$ process through penguin $\overline{b} \leftarrow \overline{b}$

 $\Delta b = 2 \text{ process}$ through box

CP violation must be studied in

 B_d decays via Oscillations ⊗ b→c+W and b→u+W B_s decays via Oscillations ⊗ b→c+W and b→u+W $B_{d,s,u}$ decays via penguins $B_{d,s}$ decays via box

Experimental requirements are Small branching fractions \rightarrow many $B_{d,s,u}$'s Rapid B_s oscillations \rightarrow decay time resolution Including multi-body hadronic final states \rightarrow particle ID mass resolution

sensitive trigger

\rightarrow *LHCb* experiment

At LHC, we will have

- large bb cross section of ~500 μb
- "reasonable" signal/noise ratio of $\sigma_{b\bar{b}}/\sigma_{inelastic} \sim 5 \times 10^{-3}$ This is similar to $\sigma_{cc}/\sigma_{inelastic}$ of the present fixed target charm experiments.

Overview of the Experiment

Spectrometer:

A single-arm spectrometer covering $\theta_{min} = \sim 15 \text{ mrad}$ (beam pipe and radiation) to $\theta_{max} = \sim 300 \text{ mrad}$ (cost optimisation) i.e. $\eta = \sim 1.88$ to ~ 4.89 has an equal bb acceptance

as a large central detector.

IP 8

The LHCb Detector

The LHCb Detector (Technical Proposal)

Vertex detector:

Si *r*- ϕ strip detector, single-sided, 150µm thick, analogue readout **Tracking system:**

Outer; drift chamber with honeycomb technology Inner; Micro Strip Gas Chamber with Gaseous Electron Multiplier or Micro Cathode Strip Chamber (backup solution Si)

RICH system:

RICH-1; Aerogel (n = 1.03) C₄F₁₀ (n = 1.0014) RICH-2; CF₄ (n = 1.0005)

Photon detector; Hybrid Photon Diodes (backup solution PMT) Calorimeter system:

Preshower; Single layer Pb/Si (14/10 mm)

Electromagnetic; Shashilik type $25X_0$ 10% resolution

Hadron; ATLAS design tile calorimeter $7.3\lambda 80\%$ resolution

Muon system:

Multi-gap Resistive Plate Chamber and Cathode Pad Chamber

Physics capability of the LHCb detector is due to:

- Trigger efficient for both leptons and hadrons high p_T hadron trigger $\Rightarrow 2$ to 3 times increase in $\pi\pi, K\pi, D^*\pi, DK^*, D_s\pi, D_sK \dots$ $D_s\pi$: ATLAS=3k, CMS=4.2k, LHCb=34k /year
- -Particle identification $e/\mu/\pi/K/p$ $\pi\pi, K\pi, D^*\pi, DK^*, D_s\pi, D_sK$
- -Good decay time resolution
 - e.g. 43 fs for $B_s \rightarrow D_s \pi$, 32 fs for $B_s \rightarrow J/\psi \phi$ ATLAS($D_s \pi$)=73 fs, CMS($J/\psi \phi$)=68 fs

-Good mass resolution

e.g. 11 MeV for $B_s \rightarrow D_s \pi$, 17 MeV for $B_d \rightarrow \pi^+\pi^-$ ATLAS($D_s \pi$)=40 MeV, CMS($\pi^+\pi^-$)=31 MeV

particle ID + mass resolution \Rightarrow redundant background rejection

LHCb Trigger Efficiency for reconstructed and correctly tagged events

	L0(%)			L1(%)	L2(%)	Total(%)	
	μ	e	h	all			
$B_d \rightarrow J/\psi(ee)K_S + tag$	17	63	17	72	42	81	24
$B_d \rightarrow J/\psi(\mu\mu)K_S + tag$	87	6	16	88	50	81	36
$B_s \rightarrow D_s K + tag$	15	9	45	54	56	92	28
$B_d \rightarrow DK^*$	8	3	31	37	59	95	21
$B_d \rightarrow \pi^+ \pi^- + tag$	14	8	70	76	48	83	30

- trigger efficiencies are ~ 30%
- hadron trigger is important for hadronic final states
- lepton trigger is important for final states with leptons

Very small visible branching fractions $(10^{-7} \sim 10^{-8})$

Importance of particle identification

$B_s - \overline{B}_s$ oscillations with $B_s \rightarrow D_s \pi$

120 k reconstructed and tagged events measurements of Δm_s with a significance >5: up to 48 ps⁻¹ ($x_s = 75$)

$B_s \rightarrow D_s K$ Major background: $B_s \rightarrow D_s \pi$ (No CP violation) Importance of particle identification and mass resolution

Performance figures are supported in particular by:

- **GEANT** detector simulation
- Low luminosity $(2 \times 10^{32} \text{ cm}^2 \text{s}^{-1})$ needed
- Flexible and robust early level trigger Level-0: High $p_t e, \mu, h$, Level-1: Vertex
- Conservative approach to the detector

Optimal Running luminosity is determined by # of bunch crossing with one pp interaction vs

radiation damage, detector occupancy, bunch-bunch pile-up, etc.

Trigger:

Flexible: Robust: Efficient: Multilevel with different ingredients Evenly spread selectivities over all the levels High $p_{\rm T}$ leptons and hadrons Detached decay vertices

Level	Characteristics	Sub-detector		
Level-0	high p _T :e :h :µ pile-up	ECAL E+HCAL Muon Pile-up	(60k channels)	in-put 40 MHz latency 3.2 μs
	on-detec	tor \rightarrow off-detector	or electronic	s (1 TB/s)
Level-1	sec. vertices high $p_{\rm T}$	Vertex Trackers+L0-See	(220k) ed	1 MHz <256 μs
	off-detec	$ctor \rightarrow event buff$	er (2-4 GB/	s)
Level-2	refined sec. vertices	Vertex + Trackers		40 kHz 10 ms
Level-3	partial and full reconstruction of final states	All	To tape =	5 kHz 200 ms 200 Hz

Trigger operating point can be adjusted to the running condition without loss in physics.

Example: Thresholds for three different L0 trigger components can be adjusted depending on the running condition.

Example of "shopping list":	LHCb	ATLAS/CMS
$B_d \rightarrow J/\psi K_S$	1	✓
$B_s \rightarrow J/\psi \phi$	1	✓
$B_s \rightarrow D_S K$	1	X (PID)
$B_d \rightarrow DK^*$	1	X (PID,Trigger)
$B_d \rightarrow D^* \pi$	1	X (PID)
$B_d \rightarrow \pi \pi$	1	X (PID)
$B_d \rightarrow K\pi (CP)$ in gluonic penguin)	1	X (PID)
$B_d \rightarrow \rho \pi$	1	?
(BaBar 160 events, LHCb 670 events / year)		
$B_s \rightarrow K^* \gamma (C \not P \text{ in radiative penguin})$	1	?
$B_s \rightarrow K^* l^+ l^- (CP \text{ in radiative penguin})$	1	✓
B_s oscillations, x_s up to	75	38
$B_s \rightarrow \mu^+ \mu^-$	1	✓

	The LHCb Collaboration(24.3.99)
Finland:	Espoo-Vantaa Inst. Tech.
France:	Clermont-Ferrand, CPPM Marseille, LAL Orsay
Germany:	Humboldt Univ. Berlin, Univ. Freiburg, Tech. Univ. Dresden, Phys. Inst. Univ. Heidelberg, IHEP Univ. Heidelberg, MPI Heidelberg,
Italy:	Bologna, Cagliari, Genoa, Milan, Univ. Rome I (La Sapienza), Univ. Rome II(Tor Vergata)
Netherlands:	Univ. Amsterdam, Free Univ. Amsterdam, Univ. Utrecht, FOM
Poland:	Cracow Inst. Nucl. Phys., Warsaw Univ.
Spain:	Univ. Barcelona, Univ. Santiago de Compostela
Switzerland:	Univ. Lausanne
UK:	Univ. Cambridge, Univ. Edinburgh, Univ. Glasgow, IC London, Univ. Liverpool, Univ. Oxford
CERN	
Brazil:	UFRJ
China:	IHEP(Beijing), Univ. Sci. and Tech.(Hefei), Nanjing Univ., Shandong Uni.
Russia:	INR, ITEP, Lebedev Inst., IHEP, PNPI(Gatchina)
Romania:	Inst. of Atomic Phys. Bucharest
Ukraine:	Inst. Phys. Tech. (Kharkov), Inst. Nucl. Research (Kiev)
U.S.A.:	Univ. Virginia, Northwestern Univ., Rice Univ.

Conclusions

- The LHCb experiment can fully exploit the large B-meson yields at LHC with its flexible, robust and efficient trigger.
- Low required luminosity, 2×10³², guarantees physics results from the beginning of the LHC operation. Locally tuneable luminosity ensures long physics programme.
- The LHCb detector can be constructed in an existing experimental area with a modest cost. Its open geometry allows easy access to the detector for adjusting to the machine condition and upgrading.
- With the particle identification capability, excellent mass and decay time resolutions, LHCb can study many different B-meson decay modes with a high precision which is essential to reveal physics beyond the Standard Model in rare processes.