Status of the LHCb Experiment

Mitesh Patel (CERN)

29th March 2006

Introduction

- LHCb is the dedicated B physics experiment at the LHC designed for the precision study of CP violation and rare decays
- Following cancellation of BTeV + foreseen closure of BaBar LHCb may become the *only* running B physics experiment after the B-factories (unless Super-Belle is approved)
- Syracuse University group from BTeV recently joined LHCb
 → now 47 institutes in 16 countries
 > 600 authors
- Why are we preparing a B physics experiment, after the B-factories?

- Spectacular progress from the B-factories :
 - Precision result of their baseline measurement A_{CP} (J/ ψK_S) in striking agreement with the Standard Model CKM picture
- Also performed an impressive range of additional measurements

29th March 2006

Mitesh Patel, RHUL Particle Physics Seminar

• However... $\sin 2\beta_{b \to s} = \sin 2\beta_{b \to c}$ in the Standard Model

- If $b \rightarrow s$ transition has a contribution from new physics
 - should see effect in other modes, such as ${\sf B}_{s} \to \phi \phi$
 - $-\,$ may give increased branching ratio for $B_s^{} \rightarrow \mu^+ \mu^-$
 - B_s oscillation may be affected \rightarrow higher frequency Δm_s
 - -~ or larger CP violation in $B_s \to J/\psi \phi$

29th March 2006

$B_s - \overline{B}_s$ oscillation

- Expected value of $\Delta m_{\rm s}$ < 30 ps⁻¹ from Standard Model CKM fits
- If Δm_s as expected in Standard Model CDF or D0 might measure it ...

But if the value is *beyond* the Standard Model expectation, LHCb should be the first to see it (or rule out the entire SM range)

B physics sensitivity

- Illustrate analysis steps for measurement of $B_s \overline{B}_s$ oscillations
- Use mode: $B_s \rightarrow D_s^-\pi^+$ Plot made for 1 year of data (80k selected events) for $\Delta m_s = 20 \text{ ps}^{-1}$ (SM preferred)
- Diluted by flavour tagging:
 εD² ~ 6% for B_s decays
- Proper time resolution ~ 40 fs
- Signal/Background ~ 3 (from 10⁷ inclusive bb events)
- Include effect of acceptance: Oscillations still clearly seen

$B_s - \overline{B}_s$ oscillation sensitivity

- Plot uncertainty on amplitude of fitted oscillation vs Δm_s:
- 5σ observation of B_s oscillation for $\Delta m_{\rm s} < 68 \text{ ps}^{-1}$ (in one year) \rightarrow LHCb could exclude *full* SM range Once observed, precise value is obtained: $\sigma_{\rm stat}(\Delta m_{\rm s}) \sim 0.01 \text{ ps}^{-1}$

- Use mode $B_s \rightarrow J/\psi \phi$ to measure the phase of B_s oscillation In Standard Model expected asymmetry $\propto \sin 2\chi$ = very small (~ 0.04) \rightarrow sensitive probe for new physics
- 120,000 events should be reconstructed per year $\rightarrow \sigma(\sin 2\chi) \sim 0.06$, $\sigma(\Delta\Gamma_s/\Gamma_s) \sim 0.02$ in one year

New D0 result on Δm_s

•

D0 sensitivity	Now at 1 fb ⁻¹	Extrapolated to 10 fb-1
5σ observation of Δm_s up to	5.6 ps ⁻¹	14.4 ps ⁻¹
3σ observation of Δm_s up to	9.3 ps ⁻¹	18.6 ps ⁻¹
95% CL exclusion up to	14.1 ps ⁻¹	24.1 ps ⁻¹

D0 do not claim a measurement

- No sensitivity yet to observe a signal above 10 ps⁻¹
- Need 10 times more data (or equivalent analysis improvements) for a 3σ observation at 19 ps⁻¹

Other topics

 Sin 2β not a central physics goal (as so well measured by B-factories) but an important check :

Expect 240,000 reconstructed $B^0 \rightarrow J/\psi K_S$ events/year $\sigma_{stat}(\sin 2\beta) \sim 0.02$ in one year

- Measure γ in various channels, differing sensitivity to new physics:
 - Time-dependent CP asymmetry of $B_s \rightarrow D_s^-K^+$ and $D_s^+K^- \rightarrow \sigma_{\gamma} \sim 14^{\circ}$
 - Asymmetries of $B^0 \to \pi^+\pi^-$ and $B_s \to K^+K^-$ (U(1) sym, loop eff.) $\to \sigma_\gamma \sim 5^\circ$
 - Decay rates in the $B^0 \rightarrow D^0 K^{*0}$ system
 - Asymmetries of decays $B^{\pm} \rightarrow D^{0}K^{\pm}$ potentially LHCb's most precise measurement of γ will come back to...
- Study rare decays such as $B_s \to \mu^+ \mu^-$ and $B^0 \to K^{*0} \, \mu^+ \mu^-$ etc...

29th March 2006 Mitesh Patel, RHUL Particle Physics Seminar

 $\rightarrow \sigma_{\nu} \sim 8^{\circ}$

B production at LHC

- Large b cross section $\sigma_{bb} \sim 500 \ \mu b$ But only ~ 0.5% of total cross section
- Pile-up at high luminosity: Choose luminosity ~ 2 ×10³² cm⁻²s⁻¹ Tuneable by defocusing beams → most events have single interactions + reduced radiation dose

29th March 2006

pp interactions/crossing

- → 10^7 s taken as nominal "year" = 2 fb⁻¹ → 10^{12} bb produced/year
- Forward peaked b production at the LHC
 → LHCb is a forward spectrometer

Spectrometer

Mitesh Patel, RHUL Particle Physics Seminar

LHCb at Point 8

Detector status

- Conical Be beam-pipe: completed
- Warm dipole magnet: / B dL = 4 Tm Regular field reversal planned for systematic control of CP

Vertex locator

- Silicon microstrip detector with *r*-φ geometry
- Variable pitch 40–100 μm
 300 μm thick

- To give precise reconstruction, silicon approaches to 8 mm from beam
- Uses secondary vacuum system like a Roman Pot

- Complex mechanics to allow retraction during injection: close to completion
- Module production in progress

Trigger Tracker

- Silicon strip detectors covering full acceptance upstream of magnet: ~ 8 m² Together with Vertex Locator measures p_T of tracks for use in the trigger
- 500 µm silicon, CMS OB2-type sensors
- Now in production

low-mass Kapton readout cable

Outer Tracker

• 3 stations each made up of 4 double-layers of Kapton/Al straws glued together to form modules: module production now complete

Inner Tracker

- Silicon strip detectors close to beam pipe, in region of high occupancy: only 2% of area, but 20% of tracks
- 11 cm strips, 198 µm pitch arranged in boxes around beam pipe

Production of ladders under way

RICH system

- Three radiators used to give π -K separation from 2–100 GeV
- Novel photon detectors: Hybrid Photon Detectors
 ~ 500 tubes, each with ~1000 pixels Production underway

30

60 70 80

50

Mitesh Patel, RHUL Particle Physics Seminar

90

29th March 2006

- RICH-1 (before magnet) combines the use of aerogel and $C_4 F_{10}$ gas radiators for low momentum tracks

- Vessel under construction, magnetic shielding box for HPDs installed
- High clarity aerogel developed, production nearing completion

- RICH-2 (after magnet) uses CF_4 gas radiator for high *p* tracks
- Vessel completed and in position, mirrors installed and aligned

Calorimeter system

- *Pre-shower:* scintillating pads + WLS fibres + 2 X_0 Pb
- Electromagnetic: Pb-scintillator Shashlik calorimeter, 25 X₀
- Hadronic: Fe-scintillator tile calorimeter, 5.6 λ_{I}

29th March 2006

- ECAL modules: $\sigma_E / E = 10\% / \sqrt{E \oplus 1\%}$
- 3300 modules stacked: ~ 6 m high dimensions agree to specification < 1 mm

29th March 2006

Muon system

 MWPCs used for all except highest rate region (inner part of M1, > 100 kHz/cm²) where triple-GEMs are used instead

~50% of chambers complete

Installation status

Muon system -iron shielding -electronics tower Calorimeter RICH2 Magnet RICH1 -E-cal, H-cal modules - shielding box

29th March 2006

Computing

- Final system: filter farm of ~ 2000 CPU nodes at pit + extensive use of the Grid for offline computing
- Test-bed of a CPU sub-farm set up with 44 CPU nodes
 Test the transfer of data through the system, running the trigger code

Populated with 150M events generated using the Grid in 3 weeks

Expected performance

 Study performance using fully-simulated events (GEANT4) and full pattern recognition

Mitesh Patel, RHUL Particle Physics Seminar

Tracking

 Reconstruction of tracks passing through full spectrometer: efficiency ~ 95%, with a few percent of ghost tracks

• Momentum resolution $\Delta p/p \sim 0.4\%$ Impact parameter resolution $\sigma_{IP} \sim 20 \,\mu m$ for high- p_T tracks

Particle ID

 RICH system provides excellent hadron identification 2–100 GeV → K tagging + clean separation of two-body B decays

A physics study ...

The ADS Method - Introduction

- Decays B and \overline{B} to $D^0(\overline{D^0})K$ involve $b \rightarrow c$ and $b \rightarrow u$ transitions \rightarrow sensitive to γ if a common final state is studied for both D^0 and $\overline{D^0}$
- LHCb will exploit a number of strategies to study such decays :
 - Atwood-Dunietz-Soni ('ADS')
 - Dalitz
 - Gronau-London-Wyler-(Dunietz) ('GLW')
- The ADS method is a candidate for LHCb's most precise measurement of $\boldsymbol{\gamma}$
- Dalitz plot analysis sensitive to some of the same parameters two methods complementary

B[±] decays

 B^0 and $\overline{B^0}$ decays

ADS method – $B^{\pm} \rightarrow DK^{\pm}$ diagrams

• B^- can decay into both D^0 and $\overline{D^0}$, diagrams have very different amplitudes

 Decays of D⁰, D
⁰ to same final state allows these two *tree diagrams* (theoretically clean!) to interfere

eg. consider decays $D^0 \rightarrow K\pi (K\pi\pi\pi) \dots$

ADS method – $D \rightarrow K^+\pi^-$ diagrams

• Both D^0 and $\overline{D^0} \to K^+\pi^-$:

- For these decays the reversed suppression of the D decays relative to the B decays results in much more equal amplitudes
 → big interference effects
- Counting experiment no need for flavour tagging or proper time determination

Interference parameters

- Interference depends on a number of parameters :
 - From the B decays :

– The D decays introduce :

 $\begin{array}{l} \gamma \ -\ because \ have \ b \rightarrow u \ , \ b \rightarrow c \ interference \\ r_B \ -\ the \ ratio \ in \ magnitude \ of \ two \ diagrams \ (0.1 \ -\ 0.3) \\ \delta_B \ -\ a \ CP \ conserving \ strong \ phase \ difference \\ r_D^{\ K\pi} \ -\ the \ ratio \ in \ magnitude \ of \ two \ diagrams \ (0.060) \\ \delta_D^{\ K\pi} \ -\ a \ CP \ conserving \ strong \ phase \ difference \end{array}$

- BELLE measure :
 - $r_{B} = 0.25 \pm 0.22$
 - $-\delta_B = 157 \pm 30$

[hep-ph/0411049, 0504013 – Dalitz analysis]

- BR(suppressed) = $(3.9\pm2.1)\times10^{-7}$ [hep-ph/0412025 - ADS anal, 275M BB]

 $- r_{\rm B} < 0.18 (90\% \text{ CL})$

[hep-ex/0508048 - ADS anal, 386M BB]

• We have assumed : $r_B = 0.15$, $\delta_B = 130^{\circ}$, $\delta_D^{K\pi} = 180^{\circ}$ (arb.) $\rightarrow BR(sup.) \sim 4.5 \times 10^{-7}$ 29th March 2006 Mitesh Patel, RHUL Particle Physics Seminar 36

- BABAR measure :
 - $r_{B} = 0.12 \pm 0.09$
 - $\delta_{B} = 104 \pm 53$

[hep-ph/0504039, 0507101 – Dalitz analysis]

- r_B < 0.23 (90% CL)

[hep-ph/0504047 - ADS anal, 232M BB]

• Allowing for all possibilities, have 4 $B^{\pm} \rightarrow D(K\pi)K^{\pm}$ rates we can measure :

$$\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} - \gamma\right), \tag{1}$$

$$\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} - \gamma\right),$$
(2)

$$\Gamma(B^+ \to (K^+ \pi^-)_D K^+) \propto 1 + (r_B r_D^{K\pi})^2 + 2 r_B r_D^{K\pi} \cos\left(\delta_B - \delta_D^{K\pi} + \gamma\right),$$
(3)

$$\Gamma(B^+ \to (K^- \pi^+)_D K^+) \propto r_B^2 + (r_D^{K\pi})^2 + 2 r_B r_D^{K\pi} \cos\left(\delta_B + \delta_D^{K\pi} + \gamma\right)$$
(4)

- Two rates are favoured (1) and (3)
- Two rates are suppressed (2) and (4)

– but these suppressed rates have order 1 interference effects as $r_B \sim r_D$

 Although r_D^{Kπ} known, taking the relative rates have more unknowns than equations – need information from other decays

> eg. D $\rightarrow K\pi\pi\pi$, or the CP eigenstates KK, $\pi\pi$ (r_D^{KK}=1, δ_D^{KK} =0) CLEO-C also expected to measure δ_D

Present Experimental Status

B factories are looking for these suppressed decays (2) & (4)

29th March 2006

- Our total efficiency, ε_{TOT}, and resulting sensitivity depend entirely on our ability to control the background – in very different environment to the B factories
- Full simulation indicates that acceptance \times trigger efficiency \times selection efficiency gives $\varepsilon_{TOT} = 0.5\%$ (more in a moment) :
 - Favoured \rightarrow ~60,000 events/year
 - Suppressed→ ~2,000 events/year
 - cf. the ~15 events in the suppressed modes currently seen by BELLE

Full MC performance

- LHCb uses full MC simulation to estimate the signal selection efficiency and the background :
 - PYTHIA generation of p-p collisions at √s = 14TeV
 - GEANT full detector response/spill-over and tracking through material
 - on/offline pattern recognition, full trigger chain, selections
- Signal selection efficiency ε_{TOT}=0.5% : 8.2% (geom.) × 87.8% (rec.) × 28.4% (seln.) × 25.0% (trig.)
- Mass resolutions
 - B[±] ~15 MeV
 - D⁰ ~6.5 MeV
- Vertex resolutions
 - Primary vertex $\sigma_z \sim 50 \ \mu m$
 - B decay vertex $\sigma_z \sim 200 \ \mu m$

29th March 2006

Mitesh Patel, RHUL Particle Physics Seminar

40

Estimating the background

- From a large sample of minimum bias events find no events are selected by selection cuts
- To study background in more detail focus on bb events where one b decays in 400 mrad – after the application of the trigger most likely source of background
- Background sample 20 million bb events generated with above condition

(\rightarrow factor 0.434, sample equivalent to ~46M bb events)

• Still equivalent to only a few minutes of LHCb running !

Background studies

• Favoured modes - expect ~60k signal events/year

- Background from $D^0\pi$ decays dominates (BR ~13 × D⁰K)
 - Use RICH information to separate D^oK and D^o π
 - Find 3 $D^0\pi$ events survive analysis from bb sample
 - Generate a larger sample of $D^0\pi$ decays to get better idea of B/S find 387/580k $D^0\pi$ events accepted

 \rightarrow Expect ~25k bkgrd events/year from $D^0\pi$

- Find no other events from bb sample survive all cuts
- To improve background estimate in particular from 'combinatoric' events – widen B mass window to 10×the standard one :
 - Then find 3 events survive analysis from bb sample
 - Linearly extrapolate into normal mass window
 - → Expect ~1k bkgrd events/year from combinatoric

(making conservative assumption trigger efficiency same for combinatoric background as for signal)

- B/S ~ 0.5

[dominated by $D^0\pi$]

29th March 2006

Background studies

- Suppressed modes expect 2k signal events /year
 - $D^0\pi$ suppressed by subsequent DCS $D^0\,decay \rightarrow contribution$ with $B/S \sim 0.5$
 - In addition, bb sample indicates that there is significant combinatoric contribution :
 - No events in normal mass window
 - Find 3 events in the 10× standard mass window
 - Linearly extrapolate into normal mass window
 - \rightarrow Expect ~1k background events/year from combinatoric events
 - B/S ~ 1 [both D0 π and combinatoric events]
 - Other sources of background have been considered :
 - Favoured sign events when $K\pi$ mis-identified as πK
 - Factor ≥0.05 for π mis-id as K, factor for K mis-id as π ≤0.10 → 300 events, B/S ~0.15 (BELLE veto on D⁰ mass with particle hypotheses reversed)
 - $B \rightarrow K\pi K \mod BELLE$ estimate from D⁰ mass sidebands \rightarrow contribution with B/S ~ 0.20
 - $B \rightarrow D^0(KK)\pi$ mode BR ~40 × sup. modes BELLE use veto on m(KK) little impact on E_{TOT}
- The other modes that are required to solve for all unknowns are under study eg. $B \rightarrow D^0(KK, \pi\pi, K\pi\pi\pi)$

Estimating LHCb's sensitivity

- Preliminary studies performed using toy MC to generate event yields
 - Fix :

[CERN-LHCb-2005-066]

- $\gamma = 60^{\circ}$
- $\delta_B = 130^{\circ}$
- $r_{\rm B} = 0.15$
- $r_D^{K\pi}, r_D^{K3\pi} = 0.060$
- Try full range of values for $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$
- Using particular set of parameters generate event yields
- Assume cos (δ_D) known to ±0.20 (conservative estimate CLEO-C precision)
- Fit parameters (r_B , δ_B , $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$ and γ)
- Establish errors from spread of results over 1000 experiments

Typical fit results: $\delta_D^{K\pi} = 180^\circ$, $\delta_D^{K3\pi} = 120^\circ$

2 fb⁻¹

Without background included

Fit results return input values

Error on $\gamma = 3.9^{\circ}$

Adding the background ...

• Precision on γ after adding the background :

		$B/S_{\pi}K$, KK, $\pi\pi$			
		0	$\langle \hat{1} \rangle$	2	5
	0	3.9°	4.0°	4.0°	4.1°
B/S	1	4.6°	4.8°	4.8°	5.0°
Κπππ	2	5.0°	5.1°	5.3°	5.5°
	5	5.6°	5.9°/	6.0°	6.3°
			N. J.		

taking same example position in parameter space ($\delta_D^{K\pi}=180^\circ$, $\delta_D^{K3\pi}=120^\circ$)

Recall background estimate for $B \rightarrow D(K\pi)K$: $B/S \sim 1$ $B \rightarrow D(K\pi\pi\pi)K$ under study

29th March 2006

Robustness

• Scan over range of D strong phases, $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$

While there are some values where close lying ambiguities cause problems, in general fit robust to range of values :

Conclusions

- Construction of the LHCb experiment proceeding well
- Hope to address wide range of B physics topics :
 - B_s oscillations, 5σ observation of B_s osc. for $\Delta m_s < 68 \text{ ps}^{-1}$ (in one year)
 - Rare decays eg. $B_s^{} \to \mu^+\mu^-$ and $B^0 \to K^{*0}\,\mu^+\mu^-,$ sensitive to NP
 - CKM angles α , β (cross-check)
 - CKM angle γ
 - ADS method candidate for LHCb's most precise measurement
 - Other B \rightarrow DK decay modes will provide complementary information on γ :
 - GLW method
 - Dalitz plot analysis
- Eagerly awaiting the first collisions at the LHC !

29th March 2006

Mitesh Patel, RHUL Particle Physics Seminar

50

Extending to $B \rightarrow D^*K$

- D*K has an extremely attractive feature :
 - − $D^* \rightarrow D^0 \pi^0$ − here the D^{*} and D⁰ have the same CP
 - $D^* \rightarrow D^0 \gamma$ here the D^{*} and D⁰ have opposite CP
 - \rightarrow relative 180° offset to δ_B in the expression for the rates
- If can distinguish the two decays → powerful additional constraint ! [Bondar and Gershon: hep-ph/0409281]
- LHCb's ability to separate the π^0 and γ contributions is under investigation