Indirect searches for Physics beyond the Standard Model with the LHCb experiment

## Johannes Albrecht (CERN)

B-Physik Seminar München, 07. Oktober 2011





#### ATLAS / CMS

A *unique* effort toward the high-energy frontier



Coutesy of G. Isidori, LP07









- The LHCb experiment
  - Overview of the experiment and performance
- Focus here on most promising searches:
  - Probe of Lorentz structure in  $B_d \rightarrow K^* \mu^+ \mu^-$  decays
  - Measurement of CP violation in B<sub>s</sub> mixing:  $B_s \rightarrow J/\psi \phi$ ,  $J/\psi f_0$
  - Probe an extended scalar sector:  $B_{s,d} \rightarrow \mu^+ \mu^-$
- Many interesting LHCb measurements not covered here
  - search for CPV in charm
  - Bs mixing in  $B_s \rightarrow \phi \phi$
  - radiative decays  $B_s \rightarrow K^* \gamma, \phi \gamma$
  - Progress towards the CKM phase  $\gamma$
  - Search for new penguin decays, for majorana neutrinos
  - production measurements, excited B's



## The LHCb Experiment: Overview of the experiment and performance



### The LHCb detector



- Huge cross sections:  $\sigma(pp \rightarrow bbX) @ 7 \text{ TeV} \sim 300 \ \mu b^*$ 
  - But only 1/200 events contain b quark → Trigger
- Large acceptance 1.9<η<4.9</li>
- Large boost:
  - average flight distance of B mesons ~ 10mm

→ A huge amount of very displaced b's

(\*) LHCb, Phys.Lett.B 694 (2010) 209

5/54

7. Oktober 2011



### Keys for b-physics I: Trigger



| L0<br>hardware   | "high p <sub>T</sub> " signals in<br>calorimeter and muon<br>systems                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| HLT1<br>software | Partial reconstruction<br>selection based on one or<br>two tracks (dimuon)<br>displaced in the VELO,<br>muon ID (offline like) |
| HLT2<br>software | Global reconstruction<br>(very close to offline)<br>dominantly inclusive<br>signatures                                         |

#### + Global event cuts rejecting busy events

|                      | Charm | Hadr. B | Lept. B |
|----------------------|-------|---------|---------|
| Global<br>efficiency | ~10%  | ~40%    | 75-90%  |





Keys for b-physics II: mass resolution LM:  $\mu(B_d)$  and  $\mu(B_s)$ 







## Keys for b-physics III: IP and vertex resolution

### Primary vertex resolutions (25 tracks):

|      | LHCb [µm] | ATLAS [µm] | CMS [µm] |
|------|-----------|------------|----------|
| σ(x) | 15.8      | 60         | 20-40    |
| σ(y) | 15.2      | 60         | 20-40    |
| σ(z) | 76        | 100        | 40-60    |



7. Oktober 2011





### Keys for b-physics IV: Muon ID





**Johannes Albrecht** 

9/54 Hich



- - Momental Glooperation 0 19:49:24
  - 46 Event 143858637 IP: VELO (planes of silicon) which moves in to 8 mm from the LHC beams

2000 ب<sup>ي</sup>

0.0

Mar

May

(generated 2011-10-05 01:15 including fill 2181)

Jun

Jul

Month in 2011

Aug

Sep Oct

Apr

- Most of 2011, LHCb ran at 3.5x10<sup>32</sup>cm<sup>-2</sup>s<sup>-1</sup>
  - LHCb design luminosityprode100326mon 551 2<p<100 GeV/c



![](_page_9_Figure_7.jpeg)

![](_page_9_Picture_9.jpeg)

ATLAS

ALICE

CMS

LHCb

13h

10h

16h

19h

![](_page_10_Figure_0.jpeg)

ojections of the fit results in M<sub>B</sub> opo Johannes Albrecht

11/54

![](_page_11_Figure_0.jpeg)

ktober 2011

### b fragmentation $f_d/f_s$

- Fraction of  $b \rightarrow B_s$  is an essential ingredient to  $B_s \rightarrow \mu\mu$  and other searches
- LHCb has measuredeatuin the data
  - Ratio of  $B \rightarrow D_s \mu X$  to  $B \rightarrow D^+ \mu X$  modes [LHCb-CONF-2011-028]
  - Ratio of  $B_d \rightarrow DK$  and  $B_s \rightarrow D_s \pi$  modes [Accepted by PRL]

 $B^{\upsilon} {\rightarrow} DK$  and  $B_{s} {\rightarrow} D_{s} \pi$   $_{[arxiv:1106.4435]}$ 

• Combination [LHCb-CONF-2011-034] Consistent results, combine B<sub>s</sub>/B<sup>0</sup> ratio f<sub>s</sub>/f<sub>d</sub>:

 $\left(\frac{f_s}{f_d}\right)_{\text{LHCb}}^{\text{TLHCb-CONF-2011-341}} = 0.267 \stackrel{+0.021}{-0.020}$ 

: similar to

LEP & Tevatron result:

- Found to be independent of  $PT.271 \pm 0.027$ 
  - Also similar to the test property and align to the property of the end of the property of the end of the property of the proper

![](_page_11_Figure_13.jpeg)

## New Lorentz structure: Angular analysis of $B^0 \rightarrow K^* \mu^+\mu^-$

![](_page_12_Figure_1.jpeg)

# CERNY

### New Lorentz structure: $B^0 \rightarrow K^* \mu^+ \mu^-$

![](_page_13_Figure_2.jpeg)

7. Oktober 2011

Johannes Albrecht

14/54

# CERNY

### New Lorentz structure: $B^0 \rightarrow K^* \mu^+\mu^-$

![](_page_14_Figure_2.jpeg)

![](_page_15_Picture_0.jpeg)

### $B^0 \rightarrow K^* \ \mu^+ \mu^-$ in LHCb

- Select events with Boosted Decision Tree
  - Veto J/ $\psi$  and  $\psi$ (2S)
- Weight events according to ε<sup>-1</sup>
  - As function of  $(\theta_1, \theta_k, q^2)$
  - Procedure verified on  $B_d \rightarrow J/\psi K^*$  data and MC

![](_page_15_Figure_7.jpeg)

#### LHCb-CONF-2011-038

Johannes Albrecht

16/54 **Ric** 

![](_page_16_Picture_0.jpeg)

## $B^0 \rightarrow K^* \ \mu^+ \mu^-$ in LHCb

- Select events with Boosted Decision T
  - Veto J/ $\psi$  and  $\psi$ (2S)
- Weight events according to  $\varepsilon^{-1}$ 
  - As function of  $(\theta_l, \theta_k, q^2)$
  - Procedure verified on  $B_d \rightarrow J/\psi K^*$  data a
- Perform measurement in 6 q<sup>2</sup> bins using simultaneous fit of mass,  $\theta_l$  and  $\theta_k$ 
  - Differential BR dΓ/dq<sup>2</sup>
  - Longitudinal polarization F<sub>L</sub>
  - Forward backward assymmetry A<sub>FB</sub>
- [ Likelihood scan for F<sub>L</sub> and A<sub>FB</sub> due to correlations ]

![](_page_16_Figure_12.jpeg)

LHCb-CONF-2011-038

![](_page_17_Picture_0.jpeg)

## $\mathbb{B}^{0} \to \mathbb{K}^{*} \mu^{+} \mu^{-}$ in LHCb

![](_page_17_Figure_2.jpeg)

- Measurement based on 300 candidates (largest sample)
  - Purity comparable to B-factories
     Data in excellent agreement with SM predictions at current level of precision.
  - Generally statistics limited, systematic uncertainties small
     Next: add other observables such as AT<sup>(2)</sup>, sensitive to RH currents
- Data in excellent agreement with theory (☺ or ⊗ ?)

![](_page_18_Picture_0.jpeg)

## $B^0 \rightarrow K^* \ \mu^+ \mu^-$ in LHCb: next steps

![](_page_18_Figure_2.jpeg)

- Precisely determine the zero crossing point of A<sub>FB</sub>
- Measure A<sub>t</sub><sup>(2)</sup>, partial angular analysis
  - − 2/fb  $\rightarrow$  full angular analysis
- Many anaogue channels in preparation
  - $-~B_s\!\to \phi\mu^+\mu^-$  ,  $B^0\!\to K^*~e^+e^-$  ,  $\Lambda_B\to\Lambda~\mu^+\mu^-$
  - Isospin analyses

![](_page_18_Picture_11.jpeg)

# Search for NP in the Bs mixing phase: $B_s \rightarrow J/\psi\phi$ and $B_s \rightarrow J/\psi f_0$

![](_page_20_Picture_0.jpeg)

## CP violation in B<sub>s</sub> mixing

![](_page_20_Figure_2.jpeg)

- Interference between mixing and decay leads to CPV phase  $\phi_s = \phi_M 2\phi_D$
- Precise SM calculation for f<sub>s</sub> possible (small penguin contribution)

 $\phi_s^{SM}$  = -0.0363±0.0016rad

CKMFitter, hep-ph:0406184

- Additional contributions from New Physics possible φ<sub>s</sub>=φ<sub>s</sub><sup>SM</sup> +φ<sub>s</sub><sup>NP</sup>
- Requires time dependent, flavour tagged angular analysis

![](_page_20_Picture_9.jpeg)

## Experimental situation (before summer 2011)

Results presented before summer 2011 showed compatibility with SM at  $\sim 1\sigma$  but all experiments with the same trend....

![](_page_21_Figure_2.jpeg)

#### 7. Oktober 2011

![](_page_21_Picture_5.jpeg)

![](_page_22_Figure_0.jpeg)

gnal component

![](_page_23_Picture_0.jpeg)

LHCb has measured the Bs mixing frequency in  $B_s \rightarrow D_s^- \pi^+$  decays

![](_page_23_Figure_3.jpeg)

new WA: 
$$\Delta m_s^{
m WA} = 17.731 \pm 0.045~{
m ps}^{-1}$$

7. Oktober 2011

**Johannes Albrecht** 

24/54

lattice

exp

![](_page_24_Picture_0.jpeg)

### Time dependent CPV in Bs

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_0.jpeg)

### Time dependent CPV in Bs

$$\overline{B}_{s}^{0}\left\{\begin{array}{c} b \\ \overline{s} \\ W \\ W \\ \overline{s} \\ W \\ \overline{s} \\$$

- Narrow resonance  $\rightarrow$  clean
- Vector-vector final state
  - Requires time dependent angular analysis to separate CP even and CP odd
  - Measure also  $\Delta\Gamma$  directly

![](_page_25_Figure_7.jpeg)

![](_page_25_Figure_8.jpeg)

- Lower branching fraction (~1/4)
  - Higher background level
- Vector-pseudoscalar final state
  - No angular analysis needed
  - Needs  $\Delta\Gamma$  as input

#### 7. Oktober 2011

![](_page_25_Picture_16.jpeg)

![](_page_26_Figure_0.jpeg)

- Maximum likelihood fit with 10 physics parameters
  - 7 angular amplitudes and phases
  - $\Gamma_{s}, \Delta\Gamma_{s}, \phi_{s}$
- Proper time calibrated with prompt J/ $\psi$ :  $\sigma$ (t)~50ps
- Used Opposite sign flavour tagging, εD<sup>2</sup>=(2.08±0.41)%

![](_page_26_Figure_7.jpeg)

#### 7. Oktober 2011

![](_page_26_Picture_11.jpeg)

![](_page_27_Picture_0.jpeg)

## $B_s \rightarrow J/\psi \phi : \Delta \Gamma \text{ and } \phi_s$

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

## $B_s \rightarrow J/\psi f_0: \phi_s$

- LHCb made first observation of the decay  $B_s \rightarrow J/\psi f_0$
- Nice channel to measure  $\phi_s$  (CP odd eigenstate)
  - No need for angular analysis
  - But need to export  $\Gamma_s$ ,  $\Delta\Gamma_s$  & correlation matrix from  $B_s \rightarrow J/\psi \phi$

 $\phi_s = -0.44 \pm 0.44(stat) \pm 0.02(syst)$ 

LHCb-CONF-2011-051

![](_page_28_Figure_8.jpeg)

7. Oktober 2011

2010 data

arXiv:1102:0206

## Combination of $\phi_s$ results

![](_page_29_Figure_1.jpeg)

Combine both results, simultaneous fit using joint likelihood

$$\phi_s = 0.03 \pm 0.16(stat) \pm 0.07(syst)$$

LHCb-CONF-2011-051

 $\phi_{s}^{SM} = -0.0363 \pm 0.0016$ rad

- Outlook:
  - 1/2 statistical uncertainty with 2011 data
  - Resolve ambiguity in  $\Delta\Gamma_{s}, \varphi_{s}$
  - Evaluate penguin contributions
  - Measurable with ~1/fb:  $A_{sl}$  and  $B_s \rightarrow \phi \phi$

![](_page_29_Picture_13.jpeg)

![](_page_30_Picture_0.jpeg)

## Artists impression: $\phi_s$ from LHC & Tevatron

![](_page_30_Figure_2.jpeg)

This is NOT an official accurate overlay – the experiments have not done this yet ! This is just flipping and scaling the PDFs taken from talks to give impression

#### 7. Oktober 2011

![](_page_31_Picture_0.jpeg)

# Search for the rare decays $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$

arXiv:1103.2465 Phys. Lett. B 699 (2011) 330-340

LHCb-CONF-2011-047 will be submitted to PLB

370pb<sup>-1</sup>

37pb<sup>-1</sup>

32/54

![](_page_32_Picture_0.jpeg)

Double suppressed decay: FCNC process and helicity suppressed:

→ very small in the Standard Model but well predicted:

| Mode                                | SM                           |
|-------------------------------------|------------------------------|
| $B_s \rightarrow \mu^+ \mu^-$       | 3.2 ± 0.2 10 <sup>-9</sup>   |
| ${ m B}^0\!\!\rightarrow\mu^+\mu^-$ | 0.10 ± 0.01 10 <sup>-9</sup> |

A.J.Buras: arXiv:1012.1447 E. Gamiz et al: Phys.Rev.D 80 (2009) 014503

![](_page_32_Figure_6.jpeg)

BR expressed in Wilson coefficients:

$$BR(B_q \to l^+ l^-) \approx \frac{G_F^2 \alpha^2 M_{B_q}^3 f_{B_q}^2 \tau_{B_q}}{64\pi^3 \sin^4 \theta_W} |V_{tb} V_{tq}^*|^2 \sqrt{1 - \frac{4m_l^2}{M_{B_q}^2}} \\ \left\{ M_{B_q}^2 \left( 1 - \frac{4m_l^2}{M_{B_q}^2} \right) c_S^2 + \left[ M_{B_q} c_P + \frac{2m_l}{M_{B_q}} (c_A - c_A') \right]^2 \right\}.$$

→ sensitive to contributions in the scalar/pseudo-scalar sector

 $\rightarrow$  highly interesting to probe **extended Higgs** models

7. Oktober 2011

![](_page_32_Picture_13.jpeg)

![](_page_33_Figure_0.jpeg)

## $B_{s,d} \rightarrow \mu^+ \mu^-$ as probe for New Physics

Example: MSSM (with R-parity conservation)

$$BR(B_S \rightarrow \mu^+ \mu^-) \propto \frac{\tan^6 \beta}{m_A^4}$$

![](_page_33_Figure_4.jpeg)

→ limit or measurement of  $B_{s,d} \rightarrow \mu \mu$ will strongly constrain tan $\beta$  vs M<sub>A</sub> plane

### NUHM1

 $\tan\beta$  vs M<sub>A</sub> plane 60 tanβ ប៉ 0.9 Best fit contours in tan $\beta$  vs M<sub>A</sub> 50 0.8 plane in the NUHM1 model 0.7 40 [O. Buchmuller et al, arxiv:0907.5568] 0.6 30 0.5 0.4 20 0.3 0.2 CMS direct search 30-60fb<sup>-1</sup>: 10 **IO\_1**  $5\sigma$  discovery H/A $\rightarrow \tau\tau$ 100 200 300 400 500 600 700 800 900 1000 (2007 analysis: arXiv:0704.0619)  $M_{A}$  [GeV/c<sup>2</sup>]

![](_page_34_Figure_0.jpeg)

## $B_{s,d} \rightarrow \mu^+ \mu^-$ as probe for New Physics

• <u>Example: MSSM</u> (with R-parity conservation)

$$BR(B_S \rightarrow \mu^+ \mu^-) \propto \frac{\tan^6 \beta}{m_A^4}$$

![](_page_34_Figure_4.jpeg)

→ limit or measurement of  $B_{s,d}$ →µµ s<sup>-</sup> will strongly constrain tanβ vs M<sub>A</sub> plane

### • <u>NUHM1</u>

Best fit contours in tanβ vs M<sub>A</sub> plane in the NUHM1 model [0. Buchmuller et al, arxiv:0907.5568] Regions compatible with

 $BR(B_s \rightarrow \mu\mu) = 2x10^{-8}, 1x10^{-8}, 5x10^{-9} \text{ and } SM$ 

LHCb calculation using F. Mahmoudi, Superlso, arXiv: 08083144

#### $\tan\beta$ vs M<sub>A</sub> plane

![](_page_34_Figure_11.jpeg)

![](_page_35_Picture_0.jpeg)

### Experimental status before summer 2011

![](_page_35_Figure_2.jpeg)

![](_page_36_Picture_0.jpeg)

### CDF "evidence"

#### Search for $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ Decays with CDF II

A search has been performed for  $B_s^0 \to \mu^+ \mu^-$  and  $B^0 \to \mu^+ \mu^-$  decays using 7 fb<sup>-1</sup> of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of  $B^0$  candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of  $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 6.0 \times 10^{-9}$  at 95% confidence level. We observe an excess of  $B_s^0$  candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expected standard model rate of  $B_s^0 \to \mu^+ \mu^-$  could produce such an excess or larger is 1.9%. These data are used to determine  $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (1.8^{+1.1}_{-0.9}) \times 10^{-8}$  and provide an upper limit of  $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.0 \times 10^{-8}$  at 95% confidence level.

## arXiv: 1107.2304 [hep-ex]

12. July 2011

![](_page_36_Picture_8.jpeg)

![](_page_37_Picture_0.jpeg)

### CDF "evidence"

#### Search for $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ Decays with CDF II

M<sub>uu</sub> distribution in Bs search window for different NN bins

![](_page_37_Figure_4.jpeg)

2.8 σ assuming bkg-only hypothesis1.9% compatibility with bkg+SM hypothesis

 $0.46 \ge 10^{-8} \le BR \le 3.9 \ge 10^{-8}$  @ 90% CL (BR=1.8<sup>+1.1</sup>-0.9)  $\ge 10^{-8}$ 

![](_page_38_Picture_0.jpeg)

## $B_{s,d} \rightarrow \mu^+ \mu^-$ peak hunting I

Search for  $B_s^0 \to \mu^+ \mu^-$  and  $B^0 \to \mu^+ \mu^-$  Decays with CDF II

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_6.jpeg)

![](_page_39_Picture_0.jpeg)

### Selection

- Muon based triggers
- Soft selection to reduce size of dataset
- Similar to control channels

### Signal and background likelihoods

- Geometrical Likelihood (BDT)
   Multivariate classifier combining topological and kinematic information
- Invariant mass

### Normalization

 Convert number of observed events in branching fraction by normalizing with channels of known BR

### Extraction of the limit

Extract observation / exclusion measurement using the CL<sub>S</sub> method

![](_page_39_Figure_12.jpeg)

![](_page_39_Picture_15.jpeg)

Use 9 input variables:

![](_page_40_Figure_1.jpeg)

- B isolation
- Polarization variable
- Minimum Pt of the muons
- Choice of variables to avoid correlation with invariant mass
- Optimization and training on MC, using  $B_s \rightarrow \mu^+ \mu^$ and bb $\rightarrow \mu \mu X$  background

![](_page_40_Figure_7.jpeg)

![](_page_40_Figure_8.jpeg)

#### 7. Oktober 2011

![](_page_40_Picture_11.jpeg)

![](_page_41_Picture_0.jpeg)

### Signal likelihood calibration

BDT

identical decay topology

- Use events triggered independent of signal (TIS) to avoid trigger bias
- Signal distribution in GL flat as expected from simulation

![](_page_41_Figure_6.jpeg)

![](_page_42_Picture_0.jpeg)

- Signal invariant mass modelled with a crystal ball
  - Resolution obtained from data:
    - Interpolation between dilepton resonances (J/ $\psi$ ,  $\psi$ (2S) and Y)
    - Cross checked with inclusive B→h<sup>+</sup>h<sup>'-</sup>
  - − Mean from exclusive  $B^0 \rightarrow K^+\pi^-$  and  $B_s \rightarrow K^+K^-$

![](_page_42_Figure_7.jpeg)

 $\sigma(B_s) = (24.6 \pm 0.2 \pm 1.0) \text{ MeV/c}^2$  $\sigma(B_d) = (24.3 \pm 0.2 \pm 1.0) \text{ MeV/c}^2$ 

![](_page_42_Picture_11.jpeg)

- Combinatorial background expectation extracted from a fit to the mass sidebands in bins of BDT
- Systematics evaluated using different fit functions and ranges

![](_page_43_Figure_2.jpeg)

7. Oktober 2011

![](_page_44_Figure_0.jpeg)

#### 7. Oktober 2011

![](_page_44_Picture_3.jpeg)

![](_page_45_Figure_0.jpeg)

## Results: $B_s \rightarrow \mu^+ \mu^-$

# LHCb result in the B<sub>s</sub> mass window with 300 pb<sup>-1</sup> (preliminary)

![](_page_45_Figure_3.jpeg)

|                   | BDT<0.25    | 0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<> | 0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<> | 0.75 <bdt< th=""></bdt<> |
|-------------------|-------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
| Exp.combinatorial | 2968 ± 69   | 25 ± 2.5                                                                                                  | 2.99 ± 0.89                                                       | 0.66 ± 0.40              |
| Exp. SM signal    | 1.26 ± 0.13 | 0.61 ± 0.06                                                                                               | 0.67 ± 0.07                                                       | 0.72 ± 0.07              |
| Observed          | 2872        | 26                                                                                                        | 3                                                                 | 2                        |

#### 7. Oktober 2011

![](_page_46_Picture_0.jpeg)

## "Perfect" $\underline{B}_{s} \xrightarrow{\mu^{+}} \mu^{\pm} \mu^{-}$ candidate

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_5.jpeg)

![](_page_47_Figure_0.jpeg)

| $B_s \rightarrow \mu^+ \mu^-$ | 90% CL                | 95% CL                |
|-------------------------------|-----------------------|-----------------------|
| Expected limit (bkg only)     | 8 x 10 <sup>-9</sup>  | 10 x 10 <sup>-9</sup> |
| Expected limit(bkg+SM)        | 12 x 10 <sup>-9</sup> | 15 x 10 <sup>-9</sup> |
| Observed limit                | 13 x 10 <sup>-9</sup> | 16 x 10⁻ <sup>9</sup> |
| combination 2010+2011         | 12 x 10 <sup>-9</sup> | 15 x 10 <sup>-9</sup> |

7. Oktober 2011

48/54 Hich

![](_page_48_Picture_0.jpeg)

### Results: $\overline{B_d} \rightarrow \mu^+ \mu^-$

LHCb result in the  $B_d$  mass window with 300 pb<sup>-1</sup> (preliminary)

![](_page_48_Figure_3.jpeg)

|                   | BDT<0.25  | 0.25 <bdt<0.5< th=""><th>0.5<bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<></th></bdt<0.5<> | 0.5 <bdt<0.75< th=""><th>0.75<bdt< th=""></bdt<></th></bdt<0.75<> | 0.75 <bdt< th=""></bdt<> |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
| Exp.combinatorial | 3175 ± 72 | 26.6 ± 2.5                                                                                                | 3.1 ± 0.8                                                         | 0.7 ± 0.4                |
| Exp. MisID        | 0.6± 0.1  | 0.6± 0.1                                                                                                  | 0.6± 0.1                                                          | 0.6± 0.1                 |
| Observed          | 3025      | 31                                                                                                        | 5                                                                 | 4                        |

![](_page_49_Figure_0.jpeg)

| $B_d \rightarrow \mu^+ \mu^-$ | 90% CL                 | 95% CL                 |
|-------------------------------|------------------------|------------------------|
| Expected limit (bkg only)     | 2.4 x 10 <sup>-9</sup> | 3.1 x 10 <sup>-9</sup> |
| Observed limit                | 4.2 x 10 <sup>-9</sup> | 5.2 x 10 <sup>-9</sup> |

7. Oktober 2011

![](_page_50_Figure_0.jpeg)

- CMS limit with 1.18/fb very competitive with LHCb
- Results combined using LHCbs f<sub>d</sub>/f<sub>s</sub>
- Observed distribution agrees very well with bkg+SM

![](_page_50_Figure_5.jpeg)

| $B_s \rightarrow \mu^+ \mu^-$ , 95% CL | LHCb                                    | CMS                   |  |
|----------------------------------------|-----------------------------------------|-----------------------|--|
| Expected limit (bkg+SM)                | 15 x 10 <sup>-9</sup>                   | 18 x 10 <sup>-9</sup> |  |
| Observed limit                         | 15 x 10 <sup>-9</sup>                   | 19 x 10 <sup>-9</sup> |  |
| Observed LHCb+CMS                      | 11 x 10 <sup>-9</sup>                   |                       |  |
|                                        | CMS-PAS-BPH-11-019 and LHCb-CONF-2011-0 |                       |  |

7. Oktober 2011

![](_page_50_Picture_9.jpeg)

![](_page_51_Picture_0.jpeg)

# Maybe winter (conferences) is a better time for mountaineering...

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_6.jpeg)

![](_page_52_Figure_0.jpeg)

### Prospects: $B_s \rightarrow \mu^+ \mu^-$

![](_page_52_Figure_2.jpeg)

With the data collected in 2011 we will be able to explore the region BR~ 6-8×10<sup>-9</sup> at 95% CL

![](_page_52_Picture_6.jpeg)

![](_page_53_Figure_0.jpeg)

- LHC and LHCb are running extremely well
  - LHCb is taking data at higher than design luminosity
  - LHCb has >1fb<sup>-1</sup> recorded, analyses shown with 0.3fb<sup>-1</sup>
- LHCb has contributed the worlds most precise results on
  - − Forward-backward asymmetry in  $B^0 \rightarrow K^* \mu^+ \mu^-$
  - Measurements of the Bs mixing phase  $\phi_s$
  - Limits on the rare decay  $B_s \rightarrow \mu^+ \mu^-$
  - And many more
- But no hint for New Physics yet...
  - .. we've just gotten started: plenty left on the shopping list
  - Increase precision over the next 5 years
  - New observables welcome

![](_page_54_Picture_0.jpeg)

![](_page_54_Picture_1.jpeg)

![](_page_54_Picture_2.jpeg)

![](_page_54_Picture_4.jpeg)

## $A_{SI}$ and the like-sign dimuon anomaly

- Measuring  $A_{Sl}$  on a pp collider is tough: Production asymmetries
- More so at LHCb because we're not symmetric
  - Can't count like-sign muons when one of them isn't in your acceptance

![](_page_55_Figure_4.jpeg)

- LHCb has two independent analyses investigating this
- Time integrated  $A_{Sl}$  in  $B_s^0 \rightarrow D_s^- X \mu^+ \nu_\mu$ 
  - Production asymmetry is washed out by fast  $B_s^0 - \overline{B}_s^0$  mixing
- Time dependent subtraction:
  - $\blacktriangleright \Delta A_{fs}^{s,d} = A_{fs}^s A_{fs}^d$
  - ►  $B_s^0 \rightarrow D_s^- X \mu^+ \nu_\mu$  and
  - B → D<sup>-</sup> $X\mu^+\nu_\mu$  channels ► Production asymmetries cancel out
- The time-dependent analysis benefits from fewer systematics and cancellation of cross-feed backgrounds, while the time-integrated analysis benefits from fewer parameters to constrain
- Both analyses are progressing and can expect preliminary results soon.

![](_page_55_Picture_17.jpeg)

- Radiative  $b \rightarrow s$  penguin decay,  $B^0 \rightarrow K^* \gamma$  first seen by CLEO in 1993.
- Broader signal peak (compared to all-charged final states) implies more work on backgrounds  $(B^0 \rightarrow K^+\pi^-\pi^0, B_s \rightarrow K^+\pi^-\pi^0, B^0 \rightarrow K^{*0}e^+e^-, B_s \rightarrow K^+\pi^-\gamma)$  and cross-feed
- Simultaneous fit to  $B_s \rightarrow \varphi \gamma$  and  $B^0 \rightarrow K^* \gamma$ ;
  - mass difference fixed to PDG
- Largest  $B_s \rightarrow \varphi \gamma$  signal, measure:

 $\frac{\mathcal{B}(B^0 \to K^{*0} \gamma)}{\mathcal{B}(B^0_s \to \phi \gamma)} = 1.52 \pm 0.15 \text{(stat)} \pm 0.10 \text{(syst)} \pm 0.12 (f_s/f_d)$ 

• SCET predicts 1.0 ± 0.2 for this ratio [Ali et al., EPJ C55:577 (2008)]

![](_page_56_Figure_8.jpeg)

• Future steps: measure CP asymmetries

 $V_{tb} = W^- = V_{ts}$ 

![](_page_57_Figure_0.jpeg)

including S-wave: from 6 to 10 terms in angular/time distributions

LHCb-CONF-2011-049

| $ \begin{split} \frac{k}{1} & \frac{h_{k}(i)}{ A_{l} ^{2}(i) } & \frac{f_{k}(0,\psi,\psi)}{ 1-\sin^{2}\theta\cos^{2}\phi } \\ \frac{1}{2} &  A_{l}(i) ^{2} & \sin^{2}\psi(1-\sin^{2}\theta\cos^{2}\phi) \\ \frac{2}{3} &  A_{1}(i) ^{2} & \sin^{2}\psi(1-\sin^{2}\theta\cos^{2}\phi) \\ \frac{3}{3} &  A_{1}(i) ^{2} & \frac{1}{3}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{4}{3} & \Omega(A_{l}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{4}{3} & \Omega(A_{l}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i) ^{2} & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i) ^{2} & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\cos^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\cos^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\cos^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi\sin^{2}\theta\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\cos^{2}\psi\sin^{2}\phi} \\ \frac{7}{3} &  A_{L}(i)A_{\perp}(i)  &  A_{\perp}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\cos^{2}\psi\sin^{2}\phi} \\ \frac{1}{3} &  A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\cos^{2}\psi\sin^{2}\phi} \\ \frac{1}{3} &  A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\cos^{2}\psi\sin^{2}\phi} \\ \frac{1}{3} &  A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)) & \frac{1}{2}\sqrt{2}\cos^{2}\psi\sin^{2}\phi} \\ \frac{1}{3} &  A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp}(i)A_{\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                               |                         |                              |                                                                                  |                                                                                                                                       |                                                                        |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|-------------------------|------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|
| $ \begin{vmatrix} 1 &   A_0 ^2(t) & 2\cos^2 \psi(1-\sin^2 \theta \cos^2 \psi) \\ \frac{2}{2} &   A_1(t) ^2 & \sin^2 \psi(1-\sin^2 \theta \sin^2 \psi) \\ \sin^2 \psi(1-\sin^2 \theta \sin^2 \psi) \\ \sin^2 \psi \sin^2 \theta \sin^2 \psi \\ \frac{2}{3} &   A_1(t) ^2 & \frac{1}{3}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \psi \\ \frac{2}{3} &   A_1(t) ^2 & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \psi \\ \frac{2}{3} &   A_1(t) ^2 & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 7 &   A_1(t) ^2 & \frac{1}{2}(1-\sin^2 \theta \cos^2 \psi) \\ \hline 7 &   A_1(t) ^2 & \frac{1}{2}(1-\sin^2 \theta \cos^2 \psi) \\ \hline 7 &   A_1(t) ^2 & \frac{1}{2}(1-\sin^2 \theta \cos^2 \psi) \\ \hline 8 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_1(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \theta \sin^2 \theta \sin^2 \theta \sin^2 \psi \\ \frac{9 & 0(A_{\bullet}^{\bullet}(1)A_1(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline 1 & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \mathbb{R}(A_{\bullet}^{\bullet}(1)A_0(t)) & \frac{1}{2}\sqrt{2}\sin^2 \theta \sin^2 \theta \sin^2 \theta \cos^2 \psi \\ \hline \ A_0(t)\ ^2 &   A_0 ^2e^{-\Gamma_{\bullet\bullet}}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\theta_{\bullet}\sin(\Delta m_0)],  (4) \\ \ A_1(t) ^2 &   A_1 ^2e^{-\Gamma_{\bullet\bullet}}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\theta_{\bullet}\sin(\Delta m_0)],  (5) \\ \ A_1(t) ^2 &   A_1  ^2e^{-\Gamma_{\bullet\bullet}}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos\theta_{\bullet} \sin(\Delta m_{0})],  (7) \\ \mathbb{R}(A_0(t)A_1(t)) &   A_0   A_1  e^{-\Gamma_{\bullet\bullet}}(-\cos\theta_{\bullet} - \delta_{0})\sinh\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\theta_{\bullet}\sin(\Delta m_{0})],  (10) \\ \mathbb{R}(A_{\bullet}^{\bullet}(t)A_1(t)) &   A_0  A_1  e^{-\Gamma_{\bullet}}[-\sin(\theta_{\bullet} - \delta_{0})\cosh\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\theta_{\bullet}\sin(\Delta m_{0})],  (10) \\ \mathbb{R}(A_{\bullet}^{\bullet}(t)A_1(t)) &   A_0  A_1  e^{-\Gamma_{\bullet}}[-\sin(\theta_{\bullet} - \delta_{0})\sinh\theta_{\bullet}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\theta_{\bullet}\sin(\Delta m_{0})],  (10) \\ \mathbb{R}(A_{\bullet}^{\bullet}(t)A_1(t)) &   A_0  A_1  e^{-\Gamma_{\bullet}}[-\sin(\theta_{\bullet} - \delta_{0})\cosh\theta_{\bullet}(\Delta\Gamma}{2}t) - \sin\theta_{\bullet}\sin(\Delta m_{0})],  (11) \\ \mathbb{Q}(A_{\bullet}^{\bullet}(t)A_1(t)) &   A_0  A_0  e^{-\Gamma_{\bullet}}[-\sin(\theta_{\bullet} - \delta_{0})\cosh\theta_{\bullet}(\Delta\Gamma}{2}t) - \sin\theta_{\bullet}\sin(\Delta m_{0})],  (11) \\ \mathbb{Q}(A_{\bullet}^{\bullet}(t)A_1(t)) &   A_0  A_0  e^{-\Gamma_{\bullet}}[-\sin(\theta_{\bullet} - \delta_{0})\cosh\theta_{\bullet}(\Delta\Gamma}{2}t) - \sin\theta_{$                                                                                                                                                                                                                                                                                                                                                 |                            |                                               |                         | k                            | $h_k(t)$                                                                         | $f_k(\theta, \psi, \varphi)$                                                                                                          |                                                                        |                |
| $ \begin{vmatrix} 2 &  A_{1}(t) ^{2} & \sin^{2}\psi (1 - \sin^{2}\theta)^{2} \theta \\ 4 & \Im(A_{1}(t))^{2} & \sin^{2}\psi \sin^{2}\theta \\ - \sin^{2}\psi \sin^{2}\theta \sin^{2}\theta \\ 5 & \Re(A_{0}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi \sin^{2}\theta \sin^{2}\theta \\ 6 & \Im(A_{0}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\psi \sin^{2}\theta \sin^{2}\theta \\ 6 & \Im(A_{0}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \cos^{2}\theta \\ 8 & \Re(A_{0}^{*}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \cos^{2}\theta \\ 9 & \Im(A_{1}^{*}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \sin^{2}\theta \cos^{2}\phi \\ 10 & \Re(A_{1}^{*}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \sin^{2}\theta \sin^{2}\theta \sin^{2}\phi \\ 10 & \Re(A_{1}^{*}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \sin^{2}\theta \sin^{2}\theta \sin^{2}\phi \\ 10 & \Re(A_{1}^{*}(t)A_{1}(t)) & \frac{1}{2}\sqrt{2}\sin^{2}\theta \sin^{2}\theta \sin^{2}\theta \sin^{2}\theta \sin^{2}\phi \\ 10 & \Re(A_{1}^{*}(t)A_{1}(t)) & -  A_{1} ^{2}e^{-\Gamma_{4}} \cosh\left(\frac{\Delta\Gamma_{1}}{2}\right) - \cos\phi_{4}\sinh\left(\frac{\Delta\Gamma_{1}}{2}\right) + \sin\phi_{4}\sin(\Delta\pi\omega) ,  (6) \\  A_{1}(t) ^{2} & -  A_{1} ^{2}e^{-\Gamma_{4}} \cosh\left(\frac{\Delta\Gamma_{1}}{2}\right) + \cos\phi_{4}\sinh\left(\frac{\Delta\Gamma_{1}}{2}\right) - \sin\phi_{4}\sin(\Delta\pi\omega) ,  (7) \\ \Re(A_{1}(t)A_{1}(t)) & -  A_{1}  A_{1} e^{-\Gamma_{4}^{*}} \cos\theta(A_{1}A_{1}) + \sin(\delta_{1} - \delta_{1})\cos(\Delta\pi\omega) ,  (7) \\ \Re(A_{0}(t)A_{1}(t)) & -  A_{0}  A_{1} e^{-\Gamma_{4}^{*}} \cos(\delta_{1} - \delta_{0}) \sin\phi_{4}\sinh\left(\frac{\Delta\Gamma_{1}}{2}\right) - \sin\phi_{4}\sin(\Delta\pi\omega) ,  (10) \\ \Re(A_{1}(t)A_{1}(t)) & -  A_{0}  A_{1} e^{-\Gamma_{4}^{*}} \cos(\Delta\Omega_{1}A_{1}) + \sin(\delta_{1} - \delta_{0})\cos(\Delta\pi\omega) ,  (11) \\ \Re(A_{1}^{*}(t)A_{1}(t)) & -  A_{1}  A_{1} e^{-\Gamma_{4}^{*}} \cos(\Delta\Omega_{1} - \delta_{0})\sin\phi_{4}\sinh\left(\frac{\Delta\Gamma_{1}}{2}\right) - \sin(\delta_{1} - \delta_{3})\cos\phi_{4}\sin(\Delta\pi\omega) ,  (12) \\ \Re(A_{1}^{*}(t)A_{1}(t)) & -  A_{1}  A_{1} e^{-\Gamma_{4}^{*}} \cos(\Delta\Omega_{1} - \delta_{1})\sin\phi_{4}\sinh\left(\frac{\Delta\Gamma_{1}}{2}t\right) - \sin(\delta_{1} - \delta_{3})\cos\phi_{4}\sin(\Delta\pi\omega) ,  (12) \\ \Re(A_{1}^{*}(t)A_{1}(t)) & -  A_{1}  A_{1} e^{-\Gamma_{4}^{*}} \sin(\delta_{1} - \delta_{3})\cos\phi_{4}\sin(\Delta\omega) ,  (13) \\ \Re(A_{1}^{*}(t)A_{1}(t)) & -  A_{1}  A_{1} e^{-\Gamma_{4}^{*}} \cos(\Delta\Omega_{1} - \delta_{3})\cos\phi_{4}\sin\omega  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                               |                         | 1                            | $ A_0 ^2(t)$                                                                     | $2\cos^2\psi(1-\sin^2\theta\cos^2\phi)$                                                                                               |                                                                        |                |
| $\begin{vmatrix} \mathbf{s} &  A_{\perp}(t) ^{2} & \sin^{2}\psi \sin^{2}\theta \\ -\sin^{2}\psi \sin^{2}\psi \sin^{2}\theta \\ -\sin^{2}\psi \sin^{2}\theta \\ -\sin^{2}\psi \sin^{2}\theta \\ -\sin^{2}\psi \sin^{2}\theta \\ -\sin^{2}\psi \\ -\sin^{2}\psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                               |                         | 2                            | $ A_{\parallel}(t) ^2$                                                           | $\sin^2\psi \left(1-\sin^2\theta\sin^2\phi\right)$                                                                                    |                                                                        |                |
| $ \begin{vmatrix} 4 & \Im(A_{1}(1), A_{1}(1)) & -\pi in^{2}\psi \sin 2\theta \sin \phi \\ \frac{5}{8} & \Re(A_{0}(1)A_{1}(1)) & \frac{1}{2}\sqrt{2} \sin 2\psi \sin^{2}\theta \sin 2\phi \\ \frac{6}{9} & \Im(A_{0}(1)A_{1}(1)) & \frac{1}{2}\sqrt{2} \sin 2\psi \sin^{2}\theta \cos \phi \\ \frac{7}{8} & \Re(A_{0}^{*}(1)A_{1}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos \phi \\ \frac{9}{9} & \Im(A_{0}^{*}(1)A_{1}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos \phi \\ \frac{9}{9} & \Im(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos \phi \\ \frac{9}{9} & \Im(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos \phi \\ \frac{9}{10} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos \phi \\ \frac{9}{10} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{2} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{2} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{2} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{2} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin \psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{2} & \Re(A_{0}^{*}(1)A_{0}(1)) & \frac{1}{2}\sqrt{5} \sin^{2}\phi \sin^{2}(1) \\ \frac{1}{2}\sqrt{2} \sin^{2}\phi \sin$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                               |                         | 3                            | $ A_{\perp}(t) ^{2}$                                                             | $s \ln^2 \psi s \ln^2 \theta$                                                                                                         |                                                                        |                |
| $ \begin{vmatrix} 5 & \Re(A_0(t)A_1(t)) & \frac{1}{2}\sqrt{2} \sin 2\psi \sin^2 \theta \tan 2\phi \\ \frac{1}{2}\sqrt{2} \sin 2\psi \sin^2 \theta \tan^2 \theta \\ \frac{1}{2}\sqrt{2} \sin 2\psi \sin^2 \theta \\ \frac{1}{2}\sqrt{2} \sin 2\psi \sin 2\theta \\ \frac{1}{2}\sqrt{2} \sin 2\psi \\ \frac{1}{2}\sqrt{2} \sin $                                                                                                                                                                        |                            |                                               |                         | 4                            | $\Im(A_{\parallel}(t) A_{\perp}(t))$                                             | $-\sin^2\psi\sin 2\theta\sin\phi$                                                                                                     |                                                                        |                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                               |                         | 5                            | $\Re(A_0(t)A_{\parallel}(t))$                                                    | $\frac{1}{2}\sqrt{2} \sin 2\psi \sin^2 \theta \sin 2\phi$                                                                             |                                                                        |                |
| $\begin{bmatrix} 7 &  A_{n}(t) ^{2} & \frac{2}{3}(1 - \sin^{2}\theta \cos^{2}\phi) \\ \frac{1}{3}\sqrt{5}(3\pi\psi \sin^{2}\theta \sin^{2}\theta \sin^{2}\phi) \\ \frac{1}{3}\sqrt{5}\sin\psi \sin^{2}\theta \cos^{2}\phi) \\ \frac{1}{3}\sqrt{5}\sin\psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\sin\psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\sin\psi \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\theta \sin^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\theta \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\sin^{2}\theta \cos^{2}\phi \sin^{2}\theta \sin^{2}\theta \cos^{2}\phi \\ \frac{1}{3}\sqrt{5}\cos^{2}\theta \sin^{2}\theta \cos^{2}\phi \sin^{2}\theta \cos^{2}\phi \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin^{2}\theta \cos^{2}\theta \sin$                                                                                                                                       |                            |                                               |                         | 6                            | $\Im(A_0(t)A_{\perp}(t))$                                                        | $\frac{1}{2}\sqrt{2} \sin 2\psi \sin 2\theta \cos \phi$                                                                               |                                                                        |                |
| $ \begin{split} \left  \begin{array}{c} \frac{1}{9} \int_{\Omega} \langle \overline{Q}_{1}(t)A_{1}(t) \rangle \\ \frac{1}{9} \int_{\Omega} \langle \overline{Q}_{1}(t)A_{1}($                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                               |                         | 7                            | $ A_{s}(t) ^{2}$                                                                 | $\frac{2}{3}(1 - \sin^2\theta \cos^2\phi)$                                                                                            |                                                                        |                |
| $ \begin{array}{ c c c c c } \hline & \frac{1}{20} \sqrt{\frac{1}{8}(t_{*}^{*}(t)A_{\perp}(t))} & \frac{1}{2}\sqrt{\frac{1}{8} \operatorname{sch} \psi \sin 2\theta \cos \phi} \\ \hline & \frac{1}{20} & \frac{1}{8}(A_{*}^{*}(t)A_{0}(t)) & \frac{1}{4}\sqrt{\frac{1}{8} \operatorname{sch} \psi (1 - \sin^{2}\theta \cos^{2}\phi)} \end{array} \end{array} \\ \end{array} \\ The terms 7-10 are related to the description of the S-wave component, which has been added to this analysis. Expressed in terms of the size  A_{4}(0)  and phase \delta_{4} of the transversity and S-wave amplitudes at t = 0, the time dependent amplitudes are given by  A_{0} ^{2}(t) -  A_{0} ^{2}e^{-\Gamma_{*}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{*}\sin(\Delta m t) , \qquad (4) \\  A_{1}(t) ^{2} -  A_{1} ^{2}e^{-\Gamma_{*}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{*}\sin(\Delta m t) , \qquad (5) \\  A_{1}(t) ^{2} -  A_{1} ^{2}e^{-\Gamma_{*}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sin(\Delta m t) , \qquad (6) \\ \Im(A_{1}(t)A_{\perp}(t)) -  A_{1}  A_{\perp} e^{-\Gamma_{*}t}[-\cos(\delta_{\perp} - \delta_{1})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{1})\cos\phi_{*}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{1})\cos(\Delta m t) , \qquad (7) \\ \Re(A_{0}(t)A_{1}(t)) -  A_{0}  A_{1} e^{-\Gamma_{*}t}[-\cos(\delta_{\perp} - \delta_{0})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{0})\cos\phi_{*}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{1})\cos(\Delta m t) , \qquad (9) \\  A_{*}(t) ^{2} -  A_{*} ^{2}e^{-\Gamma_{*}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sin(\Delta m t), \qquad (10) \\ \Re(A_{0}(t)A_{1}(t)) -  A_{0}  A_{1} e^{-\Gamma_{*}t}  - \sin(\delta_{1} - \delta_{*})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sin(\Delta m t), \qquad (10) \\ \Re(A_{*}(t)A_{1}(t)) -  A_{*}  A_{1} e^{-\Gamma_{*}t}  - \sin(\delta_{1} - \delta_{*})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sin(\Delta m t), \qquad (11) \\ \Re(A_{*}^{*}(t)A_{1}(t)) -  A_{*}  A_{1} e^{-\Gamma_{*}t}  - \sin(\delta_{1} - \delta_{*})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sin(\Delta m t), \qquad (11) \\ \Re(A_{*}^{*}(t)A_{1}(t)) -  A_{*}  A_{1} e^{-\Gamma_{*}t}  - \sin(\delta_{1} - \delta_{*})\sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{*}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ - \sin\phi_{*}\sin(\Delta m t)], \qquad (12) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                               |                         | 8                            | $\Re(A_{s}^{*}(t)A_{\parallel}(t))$                                              | $\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$                                                                                   |                                                                        |                |
| $\frac{10}{\Re(A_{s}^{*}(t)A_{0}(t))} + \frac{1}{2}\sqrt{3} \operatorname{cosw}(1 - \sin^{2}\theta \cos^{2}\theta)$ The terms 7-10 are related to the description of the S-wave component, which has been added to this analysis. Expressed in terms of the size $ A_{t}(0) $ and phase $\delta_{t}$ of the transversity and S-wave amplitudes at $t = 0$ , the time dependent amplitudes are given by $ A_{0} ^{2}(t) -  A_{0} ^{2}e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta\pi\omega) ,  (4)$ $ A_{1}(t) ^{2} -  A_{1} ^{2}e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta\pi\omega) ,  (5)$ $ A_{1}(t) ^{2} -  A_{1} ^{2}e^{-\Gamma_{s}t} \cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (6)$ $\Im(A_{1}(t)A_{1}(t)) -  A_{1}  A_{1} e^{-\Gamma_{s}t}  - \cos(\delta_{1} - \delta_{1})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (7)$ $\Re(A_{0}(t)A_{1}(t)) -  A_{0}  A_{1} e^{-\Gamma_{s}t}  - \cos(\delta_{1} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (9)$ $\frac{\Im(A_{0}(t)A_{1}(t)) -  A_{0}  A_{1} e^{-\Gamma_{s}t}  - \cos(\delta_{1} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (9)$ $\frac{\Im(A_{0}(t)A_{1}(t)) -  A_{0}  A_{1} e^{-\Gamma_{s}t}  - \cos(\delta_{1} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (9)$ $\frac{\Im(A_{0}(t)A_{1}(t)) -  A_{1}  A_{1} e^{-\Gamma_{s}t}  - \cos(\delta_{1} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (10)$ $\frac{\Re(A_{s}^{*}(t)A_{1}(t)) -  A_{s}  A_{1} e^{-\Gamma_{s}t}  - \sin(\delta_{1} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (11)$ $\frac{\Re(A_{s}^{*}(t)A_{1}(t)) -  A_{s}  A_{1} e^{-\Gamma_{s}t}  - \sin(\delta_{1} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (11)$ $\frac{\Re(A_{s}^{*}(t)A_{1}(t)) -  A_{s}  A_{1} e^{-\Gamma_{s}t}  - \sin(\delta_{1} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (11)$ $\frac{\Re(A_{s}^{*}(t)A_{1}(t)) -  A_{s}  A_{1} e^{-\Gamma_{s}t}  - \sin(\delta_{1} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (12)$ $\frac{\Re(A_{s}^{*}(t)A_{0}(t)) -  A_{s}  A_{0} e^{-\Gamma_{s}t}  - \sin(\delta_{1} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta\pi\omega) ,  (12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                                               |                         | 9                            | $\Im(A_s^*(t)A_{\perp}(t))$                                                      | $\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$                                                                                     |                                                                        |                |
| The terms 7–10 are related to the description of the S-wave component, which has been added to this analysis. Expressed in terms of the size $ A_t(0) $ and phase $\delta_t$ of the transversity and S-wave amplitudes at $t = 0$ , the time dependent amplitudes are given by $ A_0 ^2(t) =  A_0 ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) ,  (4)$ $ A_1(t) ^2 =  A_1 ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) ,  (5)$ $ A_1(t) ^2 =  A_1 ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (5)$ $ A_1(t) ^2 =  A_1 ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (7)$ $\Re(A_0(t)A_1(t)) =  A_1  A_1 e^{-\Gamma_* t}(-\cos(\delta_1 - \delta_0)) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) ,  (7)$ $\Re(A_0(t)A_1(t)) =  A_0  A_1 e^{-\Gamma_* t} \cos(\delta_1 - \delta_0) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t) ,  (9)$ $ A_s(t) ^2 =  A_s ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (10)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (10)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (10)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (10)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (11)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (11)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (11)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (12)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (12)$ $\Re(A_s(t)A_1(t)) =  A_s  A_1 e^{-\Gamma_* t}  -\sin(\delta_1 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t) ,  (12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                               |                         | 10                           | $\Re(A_{s}^{*}(t)A_{0}(t))$                                                      | $\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$                                                                               |                                                                        |                |
| $\begin{split}  A_0 ^2(\mathbf{t}) &=  A_0 ^2 e^{-\Gamma_* \mathbf{t}} [\cosh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) + \sin\phi_s \sin(\Delta m u)],  (4) \\  A_{\parallel}(\mathbf{t}) ^2 &=  A_{\parallel} ^2 e^{-\Gamma_* \mathbf{t}} [\cosh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) + \sin\phi_s \sin(\Delta m u)],  (5) \\  A_{\perp}(\mathbf{t}) ^2 &=  A_{\perp} ^2 e^{-\Gamma_* \mathbf{t}} [\cosh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) - \sin\phi_s \sin(\Delta m u)],  (6) \\ \Im(A_{\parallel}(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_{\parallel}  A_{\perp} e^{-\Gamma_* \mathbf{t}}  - \cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m u) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m u)],  (7) \\ \Re(A_0(\mathbf{t})A_{\parallel}(\mathbf{t})) &=  A_0  A_{\parallel} e^{-\Gamma_* \mathbf{t}} \cos(\delta_{\parallel} - \delta_{\parallel}) \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &+ \sin\phi_s \sin(\Delta m u)],  (8) \\ \\ \Im(A_0(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_0  A_{\perp} e^{-\Gamma_* \mathbf{t}} \cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m u) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m u)],  (10) \\ \Re(A_0(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_0  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m u) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m u)],  (10) \\ \Re(A_s(\mathbf{t}) ^2 &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &+ \cos(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sin\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &+ \cos(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sin\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &+ \cos(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sin\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (11) \\ \Im(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (11) \\ \Im(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (12) \\ \Re(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (12) \\ \Re(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (12) \\ \Re(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}\mathbf{t}\right) \\ &- \sin\phi_s \sin(\Delta m u)],  (12) \\ \Re(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m t) \\ \\ \Re(A_s(\mathbf{t})A_{\perp}(\mathbf{t})) &=  A_s  A_{\parallel} A_{\parallel} e^{-\Gamma_* \mathbf{t}} [-\sin(\delta_{$ | The te<br>added<br>sity an | rms 7–10 are<br>to this analys<br>d S-wave am | rela<br>sis. 1<br>plita | ated t<br>Expre<br>ides s    | to the descript<br>sed in terms<br>at $t = 0$ , the t                            | tion of the S-wave com<br>of the size $ A_t(0) $ and<br>ime dependent amplitu                                                         | ponent, which has<br>phase $\delta_i$ of the tran<br>ides are given by | been<br>nsver- |
| $\begin{split}  A_{\parallel}(t) ^2 &=  A_{\parallel} ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)],  (5) \\  A_{\perp}(t) ^2 &=  A_{\perp} ^2 e^{-\Gamma_* t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)],  (6) \\ \Im(A_{\parallel}(t)A_{\perp}(t)) &=  A_{\parallel}  A_{\perp} e^{-\Gamma_* t} [-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t)],  (7) \\ \Re(A_{0}(t)A_{\parallel}(t)) &=  A_{0}  A_{\parallel} e^{-\Gamma_* t} \cos(\delta_{\parallel} - \delta_{0})[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &+\sin\phi_s \sin(\Delta m t)],  (8) \\ \\ \Im(A_{0}(t)A_{\perp}(t)) &=  A_{0}  A_{\perp} e^{-\tau_* t} [-\cos(\delta_{\perp} - \delta_{0})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\cos(\delta_{\perp} - \delta_{0})\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)],  (9) \\ \\ \Im(A_{0}(t)A_{\perp}(t)) &=  A_{0}  A_{\perp} e^{-\tau_* t} [-\cos(\delta_{\perp} - \delta_{0})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\cos(\delta_{\perp} - \delta_{0})\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)],  (10) \\ \Re(A_{\bullet}^{*}(t)A_{\parallel}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &+\cos(\delta_{\parallel} - \delta_{\bullet})\cos(\Delta m t)],  (11) \\ \Im(A_{\bullet}^{*}(t)A_{\perp}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\sin\phi_s \sin(\Delta m t)],  (11) \\ \Im(A_{\bullet}^{*}(t)A_{\perp}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\sin\phi_s \sin(\Delta m t)],  (12) \\ \Re(A_{\bullet}^{*}(t)A_{0}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\sin\phi_s \sin(\Delta m t)],  (12) \\ \Re(A_{\bullet}^{*}(t)A_{0}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\sin\phi_s \sin(\Delta m t)],  (12) \\ \Re(A_{\bullet}^{*}(t)A_{0}(t)) &=  A_{\bullet}  A_{\parallel} e^{-\Gamma_* t} [-\sin(\delta_{\parallel} - \delta_{\bullet})\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &-\sin(\delta_{\parallel} - \delta_{\bullet})\cos\phi_s \sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_{\bullet})\cos(\Delta m t)].  (13) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | $ A_0 ^2(t)$                                  | -                       | $ A_0 ^2 e$                  | $-\Gamma_{s}t \left[ \cosh \left( \frac{\Delta \Gamma}{2} t \right) \right]$     | $-\cos \phi_s \sinh \left(\frac{\Delta \Gamma}{2}t\right) + \sin \phi_s \sin \phi_s$                                                  | $n(\Delta mt)$ ],                                                      | (4)            |
| $\begin{split}  A_{\perp}(t) ^2 &=  A_{\perp} ^2 e^{-\Gamma_{t}t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta mt) ,  (6) \\ \Im(A_{\parallel}(t)A_{\perp}(t)) &=  A_{\parallel}  A_{\perp} e^{-\Gamma_{t}t}  - \cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta mt) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta mt) ,  (7) \\ \Re(A_0(t)A_{\parallel}(t)) &=  A_0  A_{\parallel} e^{-\Gamma_{t}t} \cos(\delta_{\parallel} - \delta_{0}) [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & +\sin\phi_s \sin(\Delta mt) ,  (8) \\ \\ \Im(A_0(t)A_{\perp}(t)) &=  A_0  A_{\perp} e^{-\tau_{t}t}  - \cos(\delta_{\perp} - \delta_{0}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\cos(\delta_{\perp} - \delta_{0}) \cos\phi_s \sin(\Delta mt) + \sin(\delta_{\perp} - \delta_{0}) \cos(\Delta mt) ,  (9) \\  A_s(t) ^2 &=  A_s ^2 e^{-\Gamma_{t}t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta mt), \\ & +\cos(\delta_{\parallel} - \delta_{s}) \cos\phi_s \sin(\Delta mt)],  (10) \\ \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_{s}) \cos\phi_s \sin(\Delta mt) \\ & +\cos(\delta_{\parallel} - \delta_{s}) \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (11) \\ \Im(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (12) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (12) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (12) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (12) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (12) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta mt) ,  (13) \\ \Re(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{s}) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin(\delta_{\parallel} - \delta_{s}) \cos\phi_s \sin\left(\Delta mt\right) + \cos(\delta_{\parallel} - \delta_{s}) \cos\phi(\Delta mt) .  (13) \\ \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} A_{\parallel} E^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi(\Delta mt) + \cos(\delta_{\parallel} - \delta_{\parallel}) \cos\phi(\Delta mt) .  (13) \\ \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} A_{\parallel} E^{-\Gamma_{t}t}  - \sin(\delta_{\parallel} - \delta_{\parallel}) \sin\phi(\Delta mt) + \cos(\delta_{\parallel} - \delta_{\parallel}) \cos\phi(\Delta mt) .  (13) \\ \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{$                                                                                                                                                                                                                                                                                                                                                                                      |                            | $ A_{\ }(t) ^{2}$                             | -                       | $ A_{\parallel} ^2 \epsilon$ | $-\Gamma_{s}t \left[ \cosh\left(\frac{\Delta\Gamma}{2}t\right) \right]$          | $-\cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin$                                                             | $n(\Delta mt)$ ],                                                      | (5)            |
| $\begin{split} & \Im(A_{\parallel}(t)A_{\perp}(t)) =  A_{\parallel}  A_{\perp} e^{-\Gamma_{*}t}  - \cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh(\frac{\Delta\Gamma}{2}t) \\ & -\cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t) ,  (7) \\ & \Re(A_{0}(t)A_{\parallel}(t)) =  A_{0}  A_{\parallel} e^{-\Gamma_{*}t}\cos(\delta_{\parallel} - \delta_{0})[\cosh(\frac{\Delta\Gamma}{2}t) - \cos\phi_{s}\sinh(\frac{\Delta\Gamma}{2}t) \\ & +\sin\phi_{s}\sin(\Delta m t) ,  (8) \\ & \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | $ A_{\perp}(t) ^2$                            | -                       | $ A_{\perp} ^2$              | $t^{-\Gamma_{a}t} \left[ \cosh \left( \frac{\Delta \Gamma}{2} t \right) \right]$ | $+\cos\phi_a \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_a \sin$                                                             | $in(\Delta mt)]$ ,                                                     | (6)            |
| $-\cos(\delta_{\perp} - \delta_{\perp}])\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t)],  (7)$ $\Re(A_0(t)A_{\parallel}(t)) =  A_0  A_{\parallel} e^{-\Gamma_s t}\cos(\delta_{\parallel} - \delta_0)]\cosh\left(\frac{\Delta \Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ +\sin\phi_s \sin(\Delta m t)],  (8)$ $\frac{\Im(A_0(t)A_{\perp}(t)) =  A_0  A_{\perp} e^{-\tau_s t}] - \cos(\delta_{\perp} - \delta_0)\sin\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_0)\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0)\cos(\Delta m t)],  (9)$ $ A_s(t) ^2 =  A_s ^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta \Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t),  (10)$ $\Re(A_s(t)A_{\parallel}(t)) =  A_s  A_{\parallel} e^{-\Gamma_s t}  - \sin(\delta_{\parallel} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s \sin(\Delta m t) \\ + \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)],  (11)$ $\Im(A_s^*(t)A_{\perp}(t)) =  A_s  A_{\parallel} e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s) \cosh\left(\frac{\Delta \Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ - \sin\phi_s \sin(\Delta m t)],  (11)$ $\Re(A_s^*(t)A_{\perp}(t)) =  A_s  A_{\parallel} e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s) \cosh\left(\frac{\Delta \Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ - \sin\phi_s \sin(\Delta m t)],  (12)$ $\Re(A_s^*(t)A_{0}(t)) =  A_s  A_{\parallel} e^{-\Gamma_s t} = \sin(\delta_0 - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ - \sin(\delta_0 - \delta_s)\cos\phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].  (13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | $\Im(A_{\parallel}(t)A_{\perp}(t))$           | -                       | A <sub>  </sub>   A          | $_{\perp} e^{-\Gamma_{a}t} -\cos(\delta_{\perp}$                                 | $-\delta_{\parallel}$ sin $\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right)$                                                          |                                                                        |                |
| $\begin{split} \Re(A_0(t)A_{\parallel}(t)) &=  A_0  A_{\parallel} e^{-\Gamma_* t}\cos(\delta_{\parallel} - \delta_0) \cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &+ \sin\phi_s \sin(\Delta \pi u) , \end{split} \tag{8}$ $\begin{aligned} & \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                               |                         | - cos(e                      | $\delta_{\perp} = \delta_{\parallel} \cos \phi_s \sin \phi_s$                    | $(\Delta mt) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta mt)$                                                             | 1,                                                                     | (7)            |
| $\begin{aligned} \Re(\iota_{0}(t)A_{\parallel}(t)) &=  \iota_{0} _{1}\Re[t^{-1} - \cos(\iota_{0} - \delta_{0})\sin(\iota_{2} t) - \cos(\iota_{2} t) + \sin(\iota_{2} t) \\ &+ \sin\phi_{s}\sin(\Delta m s) , \end{aligned} \tag{8} \\ & \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | $\overline{W}(A_{n}(t) A_{n}(t))$             | _                       | Ide IId                      | sla <sup>−Γ</sup> s <sup>‡</sup> cos(δ <sub>1</sub> − δ <sub>2</sub>             | $V \cosh\left(\frac{\Delta\Gamma}{t}\right) = \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{t}\right)$                                  | Ar,                                                                    |                |
| $\frac{+ \sin \phi_s \sin (\Delta m c)]_{\tau}}{\Im (A_0(t) A_{\perp}(t))} = \frac{ A_0   A_{\perp}  e^{-t_x t}  -\cos(\delta_{\perp} - \delta_0) \sin \phi_s \sinh \left(\frac{\Delta t + 1}{2} t\right)}{-\cos(\delta_{\perp} - \delta_0) \cos(\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0) \cos(\Delta m t)]_{\tau}} $ (9)<br>$ A_s(t) ^2 =  A_s ^2 e^{-\Gamma_s t} [\cosh \left(\frac{\Delta \Gamma}{2} t\right) + \cos\phi_s \sinh \left(\frac{\Delta \Gamma}{2} t\right) - \sin\phi_s \sin(\Delta m t), $ (10)<br>$\Re (A_s^*(t) A_{\parallel}(t)) =  A_s   A_{\parallel}  e^{-\Gamma_s t} [-\sin(\delta_{\parallel} - \delta_s) \sin\phi_s \sinh \left(\frac{\Delta \Gamma}{2} t\right) - \sin(\delta_{\parallel} - \delta_s) \cos\phi_s \sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s) \cos\phi_s \sin(\Delta m t)]_{\tau} $ (11)<br>$\Im (A_s^*(t) A_{\perp}(t)) =  A_s   A_{\perp}  e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s) [\cosh \left(\frac{\Delta \Gamma}{2} t\right) + \cos\phi_s \sinh \left(\frac{\Delta \Gamma}{2} t\right) - \sin(\delta_{\parallel} - \delta_s) \cos\phi_s \sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s) \cos\phi_s \sin(\Delta m t)]_{\tau} $ (12)<br>$\Re (A_s^*(t) A_0(t)) =  A_s   A_0  e^{-\Gamma_s t} [-\sin(\delta_0 - \delta_s) \sin\phi_s \sinh \left(\frac{\Delta \Gamma}{2} t\right) - \sin(\delta_0 - \delta_s) \cos\phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s) \cos(\Delta m t)]_{\tau} .$ (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | a(au(e) a f(e))                               |                         | paulla.                      | The control - of                                                                 | Mean ( 2 ) - conder min (                                                                                                             | 2 *)                                                                   | (              |
| $\begin{aligned} & \Re(A_0(t)A_{\perp}(t)) &=  A_0  A_{\perp} e^{-\Gamma_* t}[-\cos(\delta_{\perp} - \delta_0)\sin\phi_s \sinh(\frac{1}{2}t) \\ & -\cos(\delta_{\perp} - \delta_0)\cos\phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0)\cos(\Delta m t)], \\ &  A_s(t) ^2 &=  A_s ^2 e^{-\Gamma_* t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t), \\ & (10) \\ & \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_* t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s \sin(\Delta m t) \\ & +\cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)], \\ & \Im(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\perp} e^{-\Gamma_* t}\sin(\delta_{\perp} - \delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\phi_s \sin(\Delta m t)], \\ & \Re(A_s^*(t)A_{0}(t)) &=  A_s  A_{0} e^{-\Gamma_* t}[-\sin(\delta_{0} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin(\delta_{0} - \delta_{s})\cos\phi_s \sin(\Delta m t) + \cos(\delta_{0} - \delta_s)\cos(\Delta m t)]. \end{aligned}$ (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                                               |                         | + sin ¢                      | $sin(\Delta mt)$ ,                                                               | (40)                                                                                                                                  |                                                                        | (8)            |
| $\begin{aligned} & -\cos(\delta_{\perp} - \delta_{0})\cos\varphi_{s}\sin(\Delta m i) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m i)],  (9) \\ &  A_{s}(t) ^{2} = - A_{s} ^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\varphi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\varphi_{s}\sin(\Delta m i),  (10) \\ & \Re(A_{s}^{*}(t)A_{\parallel}(t)) =  A_{s}  A_{\parallel} e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel} - \delta_{s})\sin\varphi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_{s})\cos\varphi_{s}\sin(\Delta m i) \\ & +\cos(\delta_{\parallel} - \delta_{s})\cos(\Delta m i)],  (11) \\ & \Im(A_{s}^{*}(t)A_{\perp}(t)) =  A_{s}  A_{\perp} e^{-\Gamma_{s}t}\sin(\delta_{\perp} - \delta_{s}) \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\varphi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin\varphi_{s}\sin(\Delta m i)],  (12) \\ & \Re(A_{s}^{*}(t)A_{0}(t)) =  A_{s}  A_{0} e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\varphi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ & -\sin(\delta_{0} - \delta_{s})\cos\varphi_{s}\sin(\Delta m t) + \cos(\delta_{0} - \delta_{s})\cos(\Delta m i)].  (13) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | $\Im(A_0(t)A_\perp(t))$                       | -                       | A <sub>0</sub>   A           | $T[e_{-,*}] = \cos(qT \cdot$                                                     | $-\delta_0 \sin \phi_s \sinh \left(\frac{1}{2}t\right)$                                                                               |                                                                        |                |
| $\begin{split}  A_s(t) ^2 &=  A_s ^2 e^{-\Gamma_s t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sinh(\Delta m t),  (10) \\ \Re(A_s^*(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_s t} [-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s \sin(\Delta m t) \\ &+ \cos(\delta_{\parallel} - \delta_s)\cos\phi(\Delta m t)],  (11) \\ \Im(A_s^*(t)A_{\perp}(t)) &=  A_s  A_{\perp} e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s) [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin\phi_s \sin(\Delta m t)],  (12) \\ \Re(A_s^*(t)A_{0}(t)) &=  A_s  A_{0} e^{-\Gamma_s t} [-\sin(\delta_{0} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin(\delta_{0} - \delta_s)\cos\phi_s \sin(\Delta m t) + \cos(\delta_{0} - \delta_s)\cos(\Delta m t)].  (13) \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                               |                         | - cos(e                      | $\delta_{\perp} - \delta_0 \cos \phi_s \sin($                                    | $\Delta mt$ ) + sin( $\delta_{\perp} - \delta_0$ ) cos( $\Delta mt$ )]                                                                | ,                                                                      | (9)            |
| $\begin{aligned} & \Re(A_s^{\bullet}(t)A_{\parallel}(t)) &=  A_s  A_{\parallel} e^{-\Gamma_s t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s \sin(\Delta m t) \\ &+ \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)], \end{aligned} \tag{11} \\ & \Im(A_s^{\bullet}(t)A_{\perp}(t)) &=  A_s  A_{\perp} e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s) \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin\phi_s \sin(\Delta m t)], \end{aligned} \tag{12} \\ & \Re(A_s^{\bullet}(t)A_0(t)) &=  A_s  A_0 e^{-\Gamma_s t} -\sin(\delta_0 - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin(\delta_0 - \delta_s)\cos\phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)]. \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | $ A_s(t) ^2$                                  | -                       | $ A_s ^2 c$                  | $-\Gamma_{st} \left[ \cosh \left( \frac{\Delta \Gamma}{2} t \right) \right]$     | $+\cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin$                                                             | $n(\Delta mt]$ ,                                                       | (10)           |
| $+ \cos(\delta_{\parallel} - \delta_{s}) \cos(\Delta m t)], \qquad (11)$ $\Im(A_{s}^{*}(t)A_{\perp}(t)) =  A_{s}  A_{\perp} e^{-\Gamma_{s}t} \sin(\delta_{\perp} - \delta_{s}) \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ - \sin\phi_{s} \sin(\Delta m t)], \qquad (12)$ $\Re(A_{s}^{*}(t)A_{0}(t)) =  A_{s}  A_{0} e^{-\Gamma_{s}t}  - \sin(\delta_{0} - \delta_{s}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ - \sin(\delta_{0} - \delta_{s}) \cos\phi_{s} \sin(\Delta m t) + \cos(\delta_{0} - \delta_{s}) \cos(\Delta m t)]. \qquad (13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | $\Re(A^*_s(t)A_{\parallel}(t))$               | -                       | $ A_s  A$                    | $ e^{-\Gamma_{a}t}  - \sin(\delta_{\parallel} - \delta_{\parallel}) $            | $\delta_s \sin \phi_s \sinh \left(\frac{\Delta \Gamma}{2} t\right) - \sin(\delta_{\parallel})$                                        | $-\delta_s \cos \phi_s \sin(\Delta m t)$                               |                |
| $\begin{aligned} &\Im(A_s^*(t)A_{\perp}(t)) =  A_s  A_{\perp} e^{-\Gamma_s t} \sin(\delta_{\perp} - \delta_s) \cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin\phi_s \sin(\Delta m t) , \end{aligned} (12) \\ &\Re(A_s^*(t)A_0(t)) =  A_s  A_0 e^{-\Gamma_s t}  - \sin(\delta_0 - \delta_s) \sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &- \sin(\delta_0 - \delta_s) \cos\phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s) \cos(\Delta m t) . \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                               |                         | + cos(                       | $\delta_{\parallel} - \delta_s \cos(\Delta m t)$                                 | 1                                                                                                                                     |                                                                        | (11)           |
| $= -\sin \phi_s \sin(\Delta m t)], \qquad (12)$ $\Re[A_s^*(t)A_0(t)) =  A_s  A_0 e^{-\Gamma \star t}[-\sin(\delta_0 - \delta_s)\sin \phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) \\ -\sin(\delta_0 - \delta_s)\cos \phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)]. \qquad (13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | $\Im(A^*_s(t)A_{\perp}(t))$                   | -                       | $ A_s  A$                    | $_{\perp} e^{-\Gamma_{a}t}\sin(\delta_{\perp}-\delta) $                          | $\delta_s \left( \cosh \left( \frac{\Delta \Gamma}{2} t \right) + \cos \phi_s \sinh \left( \frac{\Delta \Gamma}{2} t \right) \right)$ | $\frac{\Delta \Gamma}{2}$ I)                                           |                |
| $\Re[A_s^*(t)A_0(t)) -  A_s  A_0 e^{-\Gamma \star t}[-\sin(\delta_0 - \delta_s)\sin\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin(\delta_0 - \delta_s)\cos\phi_s \sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].$ (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                               |                         | — sin ¢                      | $sin(\Delta mt)$ ,                                                               |                                                                                                                                       |                                                                        | (12)           |
| $-\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta mt) + \cos(\delta_0 - \delta_s)\cos(\Delta mt)]. \qquad (13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | $\Re(A^*_{s}(t)A_0(t))$                       | -                       | $ A_{\theta}  A$             | $_0 e^{-\Gamma st} -\sin(\delta_0-$                                              | $\delta_s \sin \phi_s \sinh \left(\frac{\Delta \Gamma}{2}t\right)$                                                                    |                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                               | _                       | — sin(à                      | $\delta_0 - \delta_s \cos \phi_s \sin(2$                                         | $\Delta mt$ ) + cos( $\delta_0 - \delta_s$ ) cos( $\Delta mt$ )].                                                                     |                                                                        | (13)           |

where we have chosen a phase convention such that  $\delta_0 = 0$ . The decay time dependent decay rates for an initial  $\overline{B}_{a}^{0}$  decaying to  $J/\psi\phi$  can be obtained from those above by inserting a factor -1 in front of the terms involving mixing  $(sin(\Delta m_s t) and cos(\Delta m_s t))$ .

#### accounts for ~4% "non-resonant" KK in 12 MeV mass window around phi

![](_page_57_Figure_7.jpeg)

note: S-wave contribution identified by angular distribution, not by KK mass

7. Oktober 2011

add sity

![](_page_58_Picture_0.jpeg)

![](_page_58_Figure_1.jpeg)

7. Oktober 2011

![](_page_58_Picture_4.jpeg)

![](_page_59_Picture_0.jpeg)

#### Flavour tagging

- To measure  $\phi_s$  we need to know the  $B_s^0$  flavour at the production vertex
- ► B<sup>0</sup><sub>s</sub> flavour is determined by **tagging** algorithms LHCb-CONF-2011-003:
  - Opposite Side (**OS**): Decay products of the other b-meson
  - Same Side (SS): particles produced in fragmentation alongside signal B

![](_page_59_Figure_6.jpeg)

- ► Results shown here use OS tagging only. This is optimised and calibrated using the control channel B<sup>+</sup> → J/ $\psi$ K<sup>+</sup>  $\epsilon_{eff}$ (J/ $\psi\phi$ ) =  $\epsilon$ (1 2 $\omega$ )<sup>2</sup> = 2.08 ± 0.41%
- Future analyses will also use the SS tagger.

![](_page_59_Picture_11.jpeg)

![](_page_60_Picture_0.jpeg)

Half of the bandwidth (~1 kHz) given to the muon lines  $p_T$  cuts on muon lines kept very low  $\rightarrow$  trigger efficiency very high Trigger rather stable during the whole period (despite L increased by ~10<sup>5</sup>)

![](_page_60_Figure_3.jpeg)

![](_page_61_Picture_0.jpeg)

- Events are classified in 2D plane: invariant mass, GL
- Evaluate the compatibility of measurement with
  - B only hypothesis [CL<sub>B</sub>]
     → quote observation
  - S+B hypothesis
     [CL<sub>s</sub>=CL<sub>S+B</sub>/CL<sub>B</sub>]
     →quote exclusion limit

![](_page_61_Figure_6.jpeg)

- Calculate **expected limit** using toy MC techniques
  - Shows reach of the measurement, independent of stat. fluctuations
  - Errors of normalization factors and PDF parameters are included as nuisance parameters in limit calculation
- Use pattern of events to calculate **observed limit**

![](_page_61_Picture_13.jpeg)

![](_page_62_Picture_0.jpeg)

- LHCb: maximize B acceptance @ LHC
  - $\rightarrow$  forward spectrometer, 1.9< $\eta$ <4.9
    - B hadrons produced at low angle
    - B pairs are produced in same forward or backward cone → single arm ok

![](_page_62_Figure_6.jpeg)

![](_page_62_Picture_7.jpeg)

![](_page_63_Picture_0.jpeg)

(CDF: |n|<1 ;

D0: |n|<2; CMS/ATLAS:|n|<2.4

## LHCb acceptance

- LHCb: maximize B acceptance @ LHC •  $\rightarrow$  forward spectrometer, 1.9< $\eta$ <4.9
  - B hadrons produced at low angle
  - B pairs are produced in same forward or backward cone  $\rightarrow$  single arm ok

Rough estimate for B acceptance: compare  $B^{\pm} \rightarrow J/\psi K^{\pm}$  yield with CDF / D0

**LHCb**  $(0.037 \text{fb}^{-1})$ Nsignal-12,366±403<sup>stat+syst</sup> CDF<sub>(CMU-CM(U+X))</sub> 19,762±203stat+syst (3.7fb<sup>-1</sup>) Nsignal D0<sub>(Runlla+b)</sub>  $(6.1 \text{ fb}^{-1})$ 

46,803±1099stat+syst Nsignal

![](_page_63_Figure_8.jpeg)

 $m_{J/\psi K^{+}}$  [GeV]

64/54

![](_page_64_Picture_0.jpeg)

## LHCb acceptance

- LHCb: maximize B acceptance @ LHC → forward spectrometer, 1.9<η<4.9</li>
  - B hadrons produced at low angle
  - B pairs are produced in same forward or backward cone → single arm ok

Rough estimate for B acceptance: compare  $B^{\pm} \rightarrow J/\psi K^{\pm}$  yield with CDF / D0

- LHCb N<sup>signal</sup>: 12,366±403<sup>stat+syst</sup> (0.037fb<sup>-1</sup>)
- CMS (from 5.8pb-1)
   N<sup>signal</sup>: 5,818
- ATLAS (from 3.4pb-1)
   N<sup>signal</sup>: 3,080

![](_page_64_Figure_9.jpeg)

scaled

scaled

65/54 **Hich** 

![](_page_65_Picture_0.jpeg)

### Likelihood scan in K\*mm

Κ\*μμ

![](_page_65_Figure_3.jpeg)

![](_page_65_Figure_4.jpeg)

 $A_{FB}$ 

(e)  $14.18 < q^2 < 16 \,\mathrm{GeV}^2$ 

(f)  $16 < q^2 < 19 \,\text{GeV}^2$ 

LHCb-CONF-2011-038

Figure 6: Profile-likelihood contour (profiling the background parameters and the signal fraction) showing the difference in log-likelihood between the global minimum and the likelihood at each value of  $A_{FB}$  and  $F_L$  for the seven  $q^2$  bins used in the analysis. Points outside the physical region are not included resulting in the triangular boundary visible in the figures. 11

 $\mathbf{A}_{\mathsf{FB}}$ 

#### 7. Oktober 2011

#### **Johannes Albrecht**

66/54 Hich