New Results on Charm Spectroscopy in LHCb.

Antimo Palano INFN and University of Bari, Italy JLAB

From the LHCb Collaboration

Outline:

- New results on charm spectroscopy.
- Results on strange charm spectroscopy.

Jefferson LAB, March 28, 2014

Spectroscopy

 \Box In the last years we have observed an increasing interest in spectroscopy.

□ BaBar, Belle, BES, COMPASS, LHCb, CMS, and ATLAS experiments are very active in producing new results on spectroscopy an search for "exotic" particles.

 \square There are observations of multiquark states candidates, charged charmonium and bottomonium resonances, hybrid states ...

 \Box However the quest of the existence of gluonium states still remain to be solved.

Spectroscopy

 \Box The new interest in spectroscopy started in 2003 with the discovery by BaBar of the unexpected narrow $D_{s0}^*(2317) \rightarrow D_s \pi^0$ resonance.

 \Box Recent SPIRES check: the number of citations of the $D_{s0}^*(2317)$ paper is similar to

that of the observation of CP violation in B^0 decays!

Observation of CP violation in the B^0 meson system BaBar Collaboration (Bernard Aubert (Annecy, LAPTH) *et al.*). Jul 2001. 8 pp. Published in Phys.Rev.Lett. 87 (2001) 091801 SLAC-PUB-8904, BABAR-PUB-01-18 DOI: <u>10.1103/PhysRevLett.87.091801</u> e-Print: <u>hep-ex/0107013 | PDF</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service; BaBar Publications Database; BaBar Password Pi

Detailed record - Cited by 662 records 5005

Observation of a narrow meson decaying to $D_s^+ \pi^0$ at a mass of 2.32-GeV/c² BaBar Collaboration (B. Aubert (Annecy, LAPP) *et al.*). Apr 2003. 7 pp. Published in Phys.Rev.Lett. 90 (2003) 242001 SLAC-PUB-9711, BABAR-PUB-03-011 DOI: <u>10.1103/PhysRevLett.90.242001</u> e-Print: <u>hep-ex/0304021 | PDF</u> <u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>CERN Document Server ; ADS Abstract Service; BaBar Publications Database; Balter Detailed record - Cited by 657 records 50000</u>

Charm meson spectroscopy

□ The quark model predicts many states with different quantum numbers in limited mass regions (Godfrey and Isgur, Phys.Rev.D32,189 (1985)).

\Box In red are shown the established states.

 \Box The ground states (D, D^*) , and two of the 1P states, $D_1(2420)$ and $D_2^*(2460)$, are experimentally well established since they have relatively narrow widths (~30 MeV).

Charm meson spectroscopy

 \Box Masses (in GeV) of charmed meson computed by Godfrey and Isgur.

 \Box For a $Q\bar{q}$ system, L: orbital angular momentum between Q and \bar{q} , $j = L + s_{\bar{q}}$.

 \Box Broad states difficult to establish experimentally.

Observation of $D_0^*(2400)$

 \Box The broad L = 1 states, $D_0^*(2400)$ has been established by the Belle and BaBar experiments in a Dalitz analysis of $B^+ \to D^- \pi^+ \pi^+$ (hep-ex/0307021,arXiv:0901.1291v2).

 \Box Data from BaBar.

 $m_{D_0^{*0}} = (2297 \pm 8 \pm 5 \pm 19) \text{ MeV}/c^2, \ \Gamma_{D_0^{*0}} = (273 \pm 12 \pm 17 \pm 45) MeV.$

Recent results from BaBar.

 \Box Study of the $D^+\pi^-$, $D^0\pi^+$, and $D^{*+}\pi^-$ final states in the reaction $e^+e^- \to c\bar{c} \to D^{(*)}\pi X$

(Phys.Rev.D82,111101(2010)).

□ Observed four new states decaying to $D\pi$ and $D^*\pi$: $D_J(2580)^0$, $D_J^*(2650)^0$, $D_J(2740)^0$, and $D_J^*(2760)^0$.

 \Box Performed a spin-parity analysis.

 \Box Very complex experimental environment which require confirmation.

The LHCb experiment.

 \Box LHCb experiment is collecting very large samples of $c\bar{c}$ and $b\bar{b}$ events.

 $\begin{aligned} \sigma(b\bar{b}) & at \ 7 \ TeV &\approx 290 \ \mu b \\ \sigma(c\bar{c}) &\approx 20 \times \sigma(b\bar{b}) \end{aligned}$

Charmed events candidates are strongly suppressed by the trigger.
Except for a few channels of interest.

 \Box Collected $\approx 3.2 \ fb^{-1}$.

 \Box Precise reconstruction of primary and secondary vertices (resolution = 45 fs for $B_s \rightarrow J/\psi\phi$).

 \Box Excellent K/ π separation (K identification efficiency = 95% with 5% of pion misidentification).

 \Box All type of B hadrons produced: $(B^{\pm}, B^0, B_s^0, b$ -baryons, $B_c^{\pm})$.

 \Box Main issue for B and charm physics is the large vertex separation. Big boost, long-lived particles fly over long distances. Easy secondary vertex separation.

Study of the
$$D\pi$$
 and π^-D^{*+} systems in LHCb
 \square We reconstruct the following final states (arXiv:1307.4556):
 $pp \rightarrow X \quad \pi^-D^+ \rightarrow K^-\pi^+\pi^+$
 $pp \rightarrow X \quad \pi^+D^0 \rightarrow K^-\pi^+$
 $pp \rightarrow X \quad \pi^-D^{*+} \rightarrow \pi^+D^0 \rightarrow K^-\pi^+$
at 7 TeV, where X represents any collection of charged
and neutral particles.
 \square The analysis based on ($\approx 1 \ fb^{-1}$) of data.
 $\square D^+, D^0$, and D^{*+} signals.

The use of charge-conjugate decay modes is implied.

 $m(D^0\pi^+)$ [MeV]

Data selection.

 \Box Reconstructed D and D^* are combined with another hadron pointing to the same primary vertex.

However a large combinatorial problem: events can have more than 100 tracks.
A limited events pile-up is also present.

The $cos\theta$ cut.

 \Box Combinatorial issues are strongly reduced by the use of the angle θ .

 $\Box For \ a \ D^*\pi \ system, \ \theta \ is \ the \ angle \ formed \ by$ the π in the $D^*\pi$ rest frame with the $D^*\pi$ direction in the Lab. frame. $\Box \ For \ an \ unpolarized \ two-body \ decay \ of \ a \ resonance,$ we expect the $cos\theta$ distribution to be symmetric.

 \Box Combinatorial background concentrates at $\cos\theta < 0$. Require $\cos\theta > 0$.

 \square Example from the $D^*\pi$ final state.

□ Signal to background for known resonances largely increases in the $cos\theta > 0$ region.

Optimization.

□ Signal/background ratio for the observed resonances improves with $p_T(D^{(*)}\pi)$. □ For the $D^+\pi^-$ mass spectrum we optimize on the strong $D_2^*(2460)^0$ signal. □ Fit the $D^+\pi^-$ mass spectrum with increasing p_T cut.

 \Box Compute:

Purity(P) = Signal / (Signal + Background),

 $Significance(S) = Signal / \sqrt{Signal + Background},$

 $Product: S \cdot P$

 \Box Choose a cut at $p_T > 7.5$ GeV/c for all final states.220

 \Box After the optimization 7.9×10⁶, 7.5×10⁶ and 2.1×10⁶ $D^{+}\pi^{-}$, $D^{0}\pi^{+}$ and $D^{*+}\pi^{-}$ candidates are obtained.

Experimental resolution and efficiency

 \Box Using MC simulations, we obtain mass resolution ≈ 4 MeV at the $D_2^*(2460)$ mass similar for all the channels.

 \square Resolution effects negligible when compared to the widths of the resonances under study.

 \Box The $D^{*+}\pi^-$ final state gives information on the spin-parity assignment of a given resonance.

 \Box In the rest frame of the $D^{*+}\pi^-$, we define the helicity angle θ_H as the angle between the π^- and the π^+ from the D^{*+} decay.

 $\square \text{ We compute the efficiency as a function of the helicity angle } \theta_H \text{ and find it uniform.}$

• The $D^+\pi^-$ mass spectrum shows a cross-feed from the decay

$$D_1(2420)^0 \text{ or } D_2^*(2460)^0 \to \pi^- D^{*+}(\to D^+ \pi^0 / \gamma) \ (32.3\%)$$

where the π^0/γ is not reconstructed.

- Strong $D_2^*(2460)^0$ signal and weak structures around 2600 and 2750 MeV.
- The wrong-sign $D^+\pi^+$ mass spectrum does not show any structure.

- Strong $D_2^*(2460)^+$ signal and weak structures around 2600 and 2750 MeV.
- The wrong-sign $D^0\pi^-$ mass spectrum shows cross-feeds from:

 $D_1(2420)^0 \text{ or } D_2^*(2460)^0 \to \pi^- D^{*+}(\to D^0 \pi^+)$ (67.7%)

- The $D^{*+}\pi^-$ mass spectrum is dominated by the presence of the $D_1(2420)^0$ and $D_2^*(2460)^0$ signals.
- At higher mass, complex broad structures in the mass region between 2500 and 2800 MeV.
- The wrong-sign $D^{*+}\pi^+$ mass spectrum does not show any structure.
- No cross-feeds in this final state.

Study of the $D^{*+}\pi^-$ angular distributions.

 \Box Expected angular distributions for different spin assignments and MC simulations.

J^P	Helicity Distribution
0^+	decay not allowed
1^{-}	$\propto \sin^2 heta_H$
2^{+}	$\propto \sin^2 heta_H$
3^{-}	$\propto \sin^2 heta_H$
0^{-}	$\propto \cos^2 heta_H$
1^{+}	$\propto 1 + h \cos^2 \theta_H$
2^{-}	$\propto 1 + h \cos^2 \theta_H$

□ States having $J^P = 0^+, 1^-, 2^+, 3^-, ...$ are defined as having "Natural Parity". □ States having $J^P = 0^-, 1^+, 2^-, ...$ are defined as having "Unnatural Parity". □ A resonance decaying to $D\pi$ has "Natural Parity". Labelled with D^* .

Analysis strategy.

 \Box We have to discriminate between "true" resonances and cross-feeds.

 \Box The $D^{*+}\pi^-$ mass spectrum is free from cross-feeds. However it can contain both Natural Parity and Unnatural Parity resonances.

□ We make use of the angular information to produce enriched samples of Natural Parity or Unnatural Parity contributions.

 \Box We use the results from the $D^{*+}\pi^-$ analysis to predict cross-feeds into the $D\pi$ mass spectra.

 \Box We fit the $D\pi$ mass spectra searching for the Natural Parity resonances only.

 \Box Slightly different strategy in BaBar: Natural Parity resonances extracted from the $D\pi$ mass spectra and fixed in the analysis of the $D^*\pi$ mass spectrum.

Fitting model.

 \square Background model:

$$B(m) = P(m)e^{a_1m + a_2m^2} \text{ for } m < m_0$$

$$B(m) = P(m)e^{b_0 + b_1m + b_2m^2} \text{ for } m > m_0$$

where P(m) is the two-body phase space.

 b_0 and b_1 are obtained by imposing continuity on the function and its first derivative.

 \Box Use relativistic Breit-Wigner for $D_2^*(2460)$ and $D_0^*(2400)$ decaying to $D\pi$.

 \Box Simple Breit-Wigner are used for the other structures.

 \Box Each Breit-Wigner is multiplied by the phase-space factor.

 \Box The cross-feed lineshapes from $D_1(2420)$ and $D_2^*(2460)$ appearing in the $D^+\pi^-$ and $D^0\pi^+$ mass spectra are described by a Breit-Wigner function fitted to the data.

Fit to the Enhanced Unnatural Parity Sample.

□ We expect Natural Parity consistent with zero. □ $D_2^*(2460)^0$ yield consistent with zero.

 \Box Observe $D_1(2420)^0$.

 \Box Observe three further structures:

 $D_J(2580)^0, D_J(2740)^0, D_J(3000)^0$

 \Box We expect Enhanced Natural Parity contributions.

 \Box Observe $D_1(2420)^0$ and $D_2^*(2460)^0$.

 \Box Fix the $D_J(2580)^0$, $D_J(2740)^0$, and $D_J(3000)^0$ parameters.

 \Box Observe two further structures:

 $D_J^*(2650)^0, D_J^*(2760)^0$

Fit to the Unnatural Parity Sample and Total Sample.

□ Unnatural Parity Sample: fix all resonances parameters except for $D_1(2420)^0$. □ Total: all resonances parameters fixed.

Angular distributions.

□ Divide the $D^{*+}\pi^-$ sample into 10 equally-spaced $\cos\theta_H$ slices. □ Fit the mass spectra with fixed resonances parameters. Obtain yields.

 $\Box D_2^*(2460)^0$ has $J^P = 2^+$. Fitted with $\sin^2\theta_H$. $\chi^2/\text{ndf} = 8.5/9$

 $\square D_J^*(2650)^0$ and $D_J^*(2760)^0$ are consistent with having Natural Parity.

 \Box Fitted with $sin^2\theta_H$. $\chi^2/ndf = 6.8/9$ and $\chi^2/ndf = 5.8/9$ respectively.

(black: natural parity), (dashed red: unnatural parity), (dotted blue: $J^P = 0^-$)

Angular distributions (3).

 $\Box D_J(2580)^0, D_J(2740)^0, \text{ and } D_J(3000)^0 \text{ are consistent with having Unnatural Parity.}$ Fitted with $1 + hcos^2 \theta_H$. $\Box \chi^2/\text{ndf} = 3.4/8, \chi^2/\text{ndf} = 6.6/8 \text{ and } \chi^2/\text{ndf} = 10/8, \text{ respectively.}$ (black: natural parity), (dashed red: unnatural parity), (dotted blue: $J^P = 0^-, \chi^2/\text{ndf} = 23/9$)

Cross-feeds into the $D\pi$ final states.

 \Box We normalize the $D^{*+}\pi^-$ and $D^+\pi^-$ mass spectra using the sum of the $D_1(2420)^0$ and $D_2^*(2460)^0$ signals and obtain:

 $N(D^{+}\pi^{-}) = N(D^{*+}\pi^{-}) \cdot R_{D^{+}\pi^{-}}, \qquad R_{D^{+}\pi^{-}} = 1.41 \pm 0.02$

 \Box Similarly for the $D^0\pi^+$ final state.

$$N(D^{0}\pi^{+}) = N(D^{*+}\pi^{-}) \cdot R_{D^{0}\pi^{+}}, \qquad R_{D^{0}\pi^{+}} = 1.87 \pm 0.02$$

 \Box We compute MC cross-feeds into the $D\pi$ from the new resonances observed in the $D^{*+}\pi^-$ mass spectrum using the above normalizations.

Fit to the $D^+\pi^-$ and $D^0\pi^+$ mass spectra.

 \Box Cross-feeds (in red) produce a distortion of the $D_2^*(2460)$ and $D_J^*(2650)$ lineshapes.

 \Box For $D_J^*(2650)$ we rely on the results obtained from the $D^{*+}\pi^-$ mass analysis. \Box We observe the $D_J^*(2760)$.

 \Box The fits requires the presence of a broad structure around 3.0 GeV which we label $D_J^*(3000)$.

Systematic uncertainties.

 \Box The following systematic uncertainties have been evaluated on the resonances masses and yields.

- The background model has been modified.
- For each mass spectrum we generate and fit 500 new mass spectra with resonances and background yields fixed to the fit results. The background parameters are allowed to vary within $\pm 1\sigma$ from the fitted values.
- In the $D\pi$ mass spectra the simple Breit-Wigner are replaced by relativistic BW.
- Fixed parameters resonances have been relaxed one by one.
- We test, by MC simulations, the possibility of measuring the parameters of the broad $D_0^*(2400)$ in the $D\pi$ final states, with negative results.

Resulting resonances parameters, yields and significances.

Resonance	Final state	Mass ((MeV)	Wid	th (Me	eV)	Yields $\times 10^3$	Sign.
$D_1(2420)^0$	$D^{*+}\pi^{-}$	2419.6 \pm	0.1 ± 0.7	$35.2~\pm$	0.4	\pm 0.9	$210.2 \pm 1.9 \pm 0.7$	
$D_2^*(2460)^0$	$D^{*+}\pi^{-}$	$2460.4~\pm$	0.4 ± 1.2	$43.2~\pm$	1.2	\pm 3.0	$81.9 \pm 1.2 \pm 0.9$	
$D_{J}^{*}(2650)^{0}$	$D^{*+}\pi^{-}$	$2649.2 \pm$	3.5 ± 3.5	140.2 \pm	17.1	\pm 18.6	$50.7 \pm 2.2 \pm 2.3$	24.5
$D_{I}^{*}(2760)^{0}$	$D^{*+}\pi^{-}$	$2761.1 \pm$	5.1 ± 6.5	74.4 \pm	3.4	\pm 37.0	$14.4~\pm~1.7~\pm~1.7$	10.2
$D_{J}^{o}(2580)^{0}$	$D^{*+}\pi^{-}$	$2579.5~\pm$	3.4 ± 5.5	177.5 \pm	17.8	\pm 46.0	$60.3 \pm \ 3.1 \ \pm \ 3.4$	18.8
$D_J(2740)^0$	$D^{*+}\pi^{-}$	$2737.0 \pm$	3.5 ± 11.2	73.2 \pm	13.4	\pm 25.0	$7.7 \pm 1.1 \pm 1.2$	7.2
$D_J(3000)^0$	$D^{*+}\pi^{-}$	$2971.8~\pm$	8.7	188.1 \pm	44.8		9.5 ± 1.1	9.0
$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm$	0.1 ± 0.1	$45.6~\pm$	0.4	\pm 1.1	$675.0 \pm 9.0 \pm 1.3$	
$D^*_{,I}(2760)^0$	$D^+\pi^-$	$2760.1~\pm$	1.1 ± 3.7	74.4 \pm	3.4	± 19.1	$55.8 \pm 1.3 \pm 10.0$	17.3
$D_{J}^{*}(3000)^{0}$	$D^+\pi^-$	$3008.1 \pm$	4.0	110.5 \pm	11.5		$17.6~\pm~1.1$	21.2
$D_2^*(2460)^+$	$D^{0}\pi^{+}$	$2463.1~\pm$	0.2 ± 0.6	$48.6~\pm$	1.3	\pm 1.9	$341.6 \pm 22.0 \pm 2.0$	
$D_{J}^{\overline{*}}(2760)^{+}$	$D^{0}\pi^{+}$	$2771.7~\pm$	1.7 ± 3.8	66.7 \pm	6.6	± 10.5	$20.1 \pm 2.2 \pm 1.0$	18.8
$D_{J}^{*}(3000)^{+}$	$D^{0}\pi^{+}$	3008.1 (fi	ixed)	110.5	(fixed)	1	$7.6~\pm~1.2$	6.6

 \Box Significances are evaluated as $\sqrt{\Delta \chi^2}$ where $\Delta \chi^2$ is the difference between the χ^2 values when a resonance is included or excluded from the fit. \Box Significances are all above 5σ .

 \Box We do not evaluate systematic uncertainties on the parameters of the $D_J^*(3000)/D_J(3000)$ structures because at the edge of the mass spectra.

Discussion (1).

□ The results from this analysis are in fair agreement with BaBar.
□ Some differences on resonances parameters due to a different handling of the cross-feeds.

 \Box In the present analysis:

- We observe, in the $D^{*+}\pi^-$ mass spectrum, $D_1(2420)^0$ and measure its spin-parity consistent with $J^P = 1^+$.
- We observe, in the $D^{*+}\pi^-$ and $D^+\pi^-$ mass spectra, the $D_2^*(2460)^0$ resonance and find its spin-parity consistent with $J^P = 2^+$.
- We also observe the $D_2^*(2460)^+$ resonance in the $D^0\pi^+$ mass spectrum.

• The $D_J^*(2650)^0$ resonance could be identified as a $J^P = 1^-$ state (2S $D_1^*(2618)$).

- The $D_J^*(2760)^0$ could be identified as a $J^P = 1^-$ state (1D $D_1^*(2796)$).
- The $D_J(2580)^0$ could be identified with the (2S $D_0(2558)$) state, although $J^P = 0^-$ does not fit well the data.
- The $D_J(2740)^0$ could be identified as the $J^P = 2^-$ (1D $D_2(2801)$) resonance.
- Broad structures are observed around 3.0 GeV in the $D^{*+}\pi^-$ and $D\pi$ mass spectra. They could be superpositions of several states.

The D_s states.

 \Box Masses (in GeV) of charmed meson computed by Godgrey and Isgur.

$c\overline{s} \ (L=0)$	Mass	$c\overline{s} \ (L=1)$	Mass	$c\overline{s} \ (L=2)$	Mass
$D_{s}(^{1}S_{0})$	1.98	$D_s(^3P_0)$	2.48	$D_s(^3D_1)$	2.90
$D_s(^3S_1)$	2.13	$D_s(^3P_1)$	2.57	$D_s(^3D_3)$	2.92
		$D_s(^3P_2)$	2.59		
		$D_s(^1P_1)$	2.53		

 \Box Properties of $L = 1 D_{sJ}$ mesons.

J^P	Mass (MeV)	Width (MeV)	Observed/decays
$D_{s0}^* 0^+$	2317.8 ± 0.6	< 3.8	$D_s^+\pi^0$
$D'_{s1} \ 1^+$	2459.6 ± 0.6	< 3.5	$D_{s}^{*+}\pi^{0}, D_{s}^{+}\gamma, D_{s}^{+}\pi^{+}\pi^{-}$
$D_{s1} \ 1^+$	2535.12 ± 0.13	0.92 ± 0.05	$D^{*+}K^0, D^{*0}K^+$
$D_{s2}^{*} 2^{+}$	2571.9 ± 0.8	17 ± 4	D^0K^+

 \square Mass of the $J^P = 0^+$ and $J^P = 1^+$ expected to be higher than what measured by 120-160 MeV.

Experimental status of the D_s mesons.

 \Box Experimental status of the D_s mesons.

□ Large discrepancy between theory predictions and experiment for $D_{s0}^*(2317)$ and $D_{s1}(2460)$. □ These two states have masses below the DK and D^*K respectively, therefore very narrow. The D_s states.

 \square BaBar observation of $D_{s0}^*(2317)$ and $D_{s1}(2460)$.

New D_s states observed by BaBar.

 \Box New states: $D_{s1}^*(2710)$ and $D_{sJ}^*(2860)$ observed by BaBar in the DK and D^*K final states (hep-ex/0607082v3, arXiv:0908.0806v2).

 \Box A new state: $D_{sJ}(3040)$ observed in the D^*K final state.

Excited D_s states.

 \Box Angular distributions. Curves are for natural-parity.

 \Box BaBar measures the following branching fraction ratios:

$$r = \frac{\mathcal{B}(D_{s1}^{*}(2710)^{+} \to D^{*}K)}{\mathcal{B}(D_{s1}^{*}(2710)^{+} \to DK)} = 0.91 \pm 0.13 \pm 0.12$$
$$r = \frac{\mathcal{B}(D_{sJ}^{*}(2860)^{+} \to D^{*}K)}{\mathcal{B}(D_{sJ}^{*}(2860)^{+} \to DK)} = 1.10 \pm 0.15 \pm 0.19$$

Excited D_s states.

 $\Box D_{s1}^*(2710)$ observed by Belle in a Dalitz plot analysis of $B^+ \to D^0 \overline{D}^0 K^+$ (arXiv:0707.3491).

 $\Box J^P = 1^-$ preferred.

Study of excited D_s states in LHCb.

 \Box We reconstruct the following final states $(1.0 \text{ fb}^{-1} \text{ of data})_{(\text{JHEP1210(2012)151})}$:

$$\mathbf{pp} \to \mathbf{X} \quad \mathbf{K_S^0 D^+} \\ \to K^- \pi^+ \pi^+ \quad , \mathbf{pp} \to \mathbf{X} \quad \mathbf{K^+ D^0} \\ \to K^- \pi^+$$

□ Similar strategy as in the $D^{(*)}\pi$ analysis. □ Select events with $\cos\theta > 0$. □ D^+ and D^0 signals.

□ Require $cos\alpha > 0.9999$, where α is the angle formed by the K_S^0 vector and the direction defined by the positions of the primary and the meson decay vertex. □ The pions 3-momenta are added and the K_S^0 energy is computed using the PDG mass.

 \Box Similar $D^+K_S^0$ mass resolutions (≈ 5 MeV) for the two modes.

Study of Excited D_s states in LHCb.

 \Box Obtain $0.36 \times 10^6 D^+ K_S^0$ and $3.15 \times 10^6 D^0 K^+$ candidates.

 \Box First observation of $D_{s1}^*(2710)^+$ and $D_{sJ}^*(2860)^+$ in hadronic collisions.

$D_{s1}^{*}(2710)^{+}$ and $D_{sJ}^{*}(2860)^{+}$ parameters.

$$m(D_{s1}^{*}(2710)^{+}) = 2709.2 \pm 1.9(\text{stat}) \pm 4.5(\text{syst}) \text{ MeV}/c^{2},$$

$$\Gamma(D_{s1}^{*}(2710)^{+}) = 115.8 \pm 7.3(\text{stat}) \pm 12.1(\text{syst}) \text{ MeV}/c^{2},$$

$$m(D_{sJ}^{*}(2860)^{+}) = 2866.1 \pm 1.0(\text{stat}) \pm 6.3(\text{syst}) \text{ MeV}/c^{2},$$

$$\Gamma(D_{sJ}^{*}(2860)^{+}) = 69.9 \pm 3.2(\text{stat}) \pm 6.6(\text{syst}) \text{ MeV}/c^{2}.$$

 \Box Resonances observed in BaBar and Belle have been confirmed. All results are in agreement.

 \Box The statistical uncertainties for all parameters are improved by an overall factor of two with respect to the BaBar measurements in the same decay modes.

 \Box An angular analysis of D^*K samples is needed.

Discussion.

 \square We remind that $r = \frac{\mathcal{B}(D_s \to D^*K)}{\mathcal{B}(D_s \to DK)}$

□ (Colangelo et al.(Phys.Rev.D77:014012,2008)) For a $J^P = 1^- D_{s1}^*(2710)$: assuming a radial excitation with l=0 2^3S_1 expects $r(D_{s1}^*(2710)) = 0.91 \pm 0.04$

 \square BaBar finds $r(D_{s1}^*(2710)) = 0.93 \pm 0.13_{stat} \pm 0.10_{sys}$, therefore $D_{s1}^*(2710)$ is likely to be a radial excitation.

 $\Box J^P = 0^+$ forbidden for D^*K , therefore $D^*_{sJ}(2860)$ cannot be a scalar.

 \Box Colangelo et al.(Phys.Lett.B642:48-52,2006), propose $J^P = 3^-$ assignment. However the predicted $r(D_{sJ}^*(2860))$ is 0.39, a 3 s.d. difference with respect to the BaBar measurement $r(D_{sJ}^*(2860) = 0.93 \pm 0.13_{stat} \pm 0.10_{sys})$.

 $\Box D_{sJ}(3050)$ seen in D^*K and not in DK: unnatural parity: $J^P = 0^-, 1^+, 2^-, \dots$ Confirmed by the angular analysis.

Discussion

 \Box Recent calculation of the $c\bar{s}$ spectrum from S. Godfrey and I.T. Jardine

(arXiv:1312.6181).

 \square See also P. Colangelo et al., arXiv:1207.6940.

 \Box Expect several other states in this mass region.

 \Box It is possible that more than one state is contributing in both $D_{s1}^*(2710)$ and $D_{sJ}^*(2860)$ mass regions.

 \Box The possible existence of charm-strange hadronic molecules has been proposed (F. Guo et al.arXiv:1403.4032).

Summary and outlook.

 \Box Charm spectroscopy has made important progress at LHCb.

 \Box In the sector of the D_J spectroscopy we observe two new natural parity and two new unnatural parity resonances to be compared with previous measurements from BaBar.

 \Box We also observe further structures in the 3000 MeV mass region.

 \Box In the sector of the D_{sJ} spectroscopy we confirm, with higher statistics, results obtained at B factories and therefore $D_{s1}^*(2710)$ and $D_{sJ}^*(2860)$ are now "established".

 \Box Other analyses are in progress, in particular the study of the $D^{*+}K_S^0$ system. A trigger line is being built for this channel.

 \Box In the near future, we expect new results from the study of B and B_s decays.

 \Box In these exclusive decays will be possible to perform spin analysis and measurements of branching fractions.

Fits quality, cross checks and systematic uncertainties

\Box Summary of the fits to the different mass spectra.

Final state	Selection	Fit Range	Number	Candidates	χ^2/ndf
		$({ m MeV})$	of bins	$(\times 10^{6})$	
$D^+\pi^-$	Total	2050-3170	280	7.90	551/261
$D^{0}\pi^{+}$	Total	2050-3170	280	7.50	351/262
$D^{*+}\pi^{-}$	Total	2180 - 3170	247	2.04	438/234
$D^{*+}\pi^{-}$	Natural			0.98	263/229
	$parity \ sample$				
$D^{*+}\pi^{-}$	Unnatural			1.06	364/234
	parity sample				
$D^{*+}\pi^{-}$	Enhanced unnatural parity			0.55	317/230
	sample				

□ Cross checks on the fits results and stability have been performed.

- The p_T cut has been lowered to 7.0 GeV/c: results are in agreement within the statistical errors.
- For each mass spectrum we generate and fit 500 new mass spectra obtained by Poisson fluctuations of each bin content.

□ The following systematic uncertainties have been evaluated on the resonances masses and yields.

- We make use of different background models.
- For each mass spectrum we generate and fit 500 new mass spectra with resonances and background yields fixed to the fit results. The background parameters are allowed to vary within $\pm 3\sigma$ from the fitted values.
- In the $D\pi$ mass spectra the simple Breit-Wigner are replaced by relativistic BW.
- Fixed parameters resonances have been relaxed one by one.