

15 October 2010

Future and Prospects for Heavy Flavour Physics at LHC

Pascal Perret

LPC Clermont

On behalf of the ATLAS, CMS & LHCb Collaboration

Content

- The present:
 - LHC & Detector performances highlight
 - First LHC Heavy Flavour Results
- The future (selected topics)
- Prospects: LHCb upgrade
- Conclusions
- Disclaimers:
 - Many topics not cover!
 - More details in other talks
 - LHC: ATLAS, CMS, LHCb
 - Tevatron: CDF, D0
 - Babar, Belle

Charles and a standard and

lake

CMS

.HCb

Gene

CERN

LICE

đ

 $\langle \rangle$

ALICE

ATLAS

B = 8 Tesia (@ 14 TeV) Operating temperature: 1.9K

LHC Performance

Current program

- Data taking at 7 TeV since March 2010
- Alternating periods of machine LHC commissioning and physics data taking
 - Initial collisions with 2×10¹⁰p/bunch
 - Now: 10¹¹p/bunch
 - Last week:
 - N= 248 bunches in trains with 233 bunches colliding (nominal LHC 2808/beam)
 - 48bunches added in LHC beam each week!
 - L^{peak}= 1.03x10³² cm⁻²s⁻¹ yesterday!

Future aims

- L=10³² cm⁻²s⁻¹ by end 2010: Achieved!
 - We should collect ~30-50 pb⁻¹/experiment
- 1 fb⁻¹ by end 2011

2010/10/14

Delivered luminosity increasing exponentially!

4

LHC Performance

LHC experiments will operate at different nominal luminosities:

- ATLAS/CMS: $\mathcal{L}_{Nominal} = \mathcal{L}_{LHC} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- LHCb: *L*_{LHCb}=2x10³² cm⁻²s⁻¹
 - by focusing less than at ATLAS and CMS
 - with $\beta^* = 10 \text{ m} \sim 0.4 \text{ pp}$ visible interactions per bunch crossing

However, the present running conditions are different:

- LHC is reaching *L*=10³² cm⁻²s⁻¹ soon
 - All experiments (but Alice) are running at the same luminosity
 - This is close to LHCb nominal luminosity
 - But with fewer bunches and with β* = 3.5 m ⇒ ~ 2.0 pp visible interactions per crossing
 - LHCb use flexibility of trigger to adapt to actual conditions

Heavy Flavours @ LHC

- ◆ LHC is a B- and D-mesons super factory:
 - Large bb cross section (~300 µb 500 µb @ $\sqrt{s=7}$ 14 TeV):
 - LHC @ 50 pb⁻¹ [delivered per experiment]
 - ~ 1.5 x 10¹⁰ B mesons [all species produced, $B^0,B^+,B_S,...$]
 - ~ 2.5 x10¹¹ D mesons
 - B factories @ Y(4S) full statistics [delivered, Babar+Belle]:
 - ~1.5 x10⁹ B⁺,B⁰ mesons
 - ~2 x 10⁹ D mesons
 - However, there are also challenges:
 - High multiplicity of tracks (~30 tracks per unit of rapidity)
 - High rate of background events ($\sigma_{vis. Inel.} \sim 60$ mb at \sqrt{s} =7 TeV)
 - 1/200 event contains a b quark, typical interesting BR < 10⁻³

Heavy Flavours @ LHC

- LHC is a B- and D-mesons super factory:
 - bb produced mostly forward/backward
 - Detectors have different acceptance:
 - ATLAS/CMS |η|<2.5
 - LHCb forward spectrometer covering η=[2,6]
 - ~30% in LHCb acceptance

An efficient trigger is essential

15/10/2010

Trigger

ATLAS/CMS

- Search for new physics
 - High p_T/E_T trigger or E_{Miss}
 - Try to keep a "low" p_T muon trigger for bphysics: single or dimuon
 - B-Physics is accounted for 5÷10% of total trigger resources
 - Event storage @ 200Hz

Triggers are highly configurable:

 evolve to match LHC luminosity & physics requirements

LHCb

- Dedicated to b-physics!
 - Moderate p_T signals in calorimeter & muon systems
 - Highest $p_T^{\mu} \sim 1 \text{ GeV}$
 - Event storage @ 2kHz (small event size)

DETECTOR PERFORMANCE HIGHLIGHT & FIRST LHC HEAVY FLAVOUR RESULTS

Pascal Perret - LPC Clermont

9

Detector performances

ECAL calibrated to 1- 2% level

- π^0 resolution close to expectation
 - Even better for LHCb!
 15/10/2010
 Pascal Perret LPC Clermont

10

15/10/2010

Pascal Perret - LPC Clermont

12

• Particle Identification: $\Phi \rightarrow K^+ K^-$ using dE/dx

CMS

First LHC Heavy Flavour Results

First LHC Heavy Flavour Results (cont')

- Charm physics: Huge charm production!
 - From plots to cross-sections: LHCb
 - Open charm production cross-sections are being studied vs y and p_{T} in forward region (2 < y < 5) for D^{*}, D⁰, D⁺ and D_s by LHCb :
 - Used small sub-sample of collected data :~ 2 nb⁻¹ with unbiased trigger
 - Measurement of $\sigma(pp \rightarrow D^+X) / \sigma(pp \rightarrow D_sX) = 2.32 \pm 0.27 \pm 0.26$
 - many systematics drop out in the ratio: in agreement with PDG: 3.1±0.7
- $J/\psi \rightarrow \mu^+\mu^-$ production: ATLAS/CMS/LHCb Roberto's
 - Measurement of the differential (p_{τ}) inclusive cross-section (prompt + from b) and the overall fraction of J/ψ from b
 - b production cross-section from $b \rightarrow D^0 \mu \nu X$ events: LHCb
 - Measure cross-section in four bins of η (admitted to PLB)
 - $\sigma(pp \rightarrow H_bX) = (75.3 \pm 5.4 \pm 13.0) \mu b$ for 2< η <6, any $p_T \sqrt{s}$ =7 TeV
 - Use MC and Pythia to extrapolate to 4π and averaging with prel. Result Theory from $b \rightarrow J/\psi$:
 - $\sigma(pp \rightarrow bbX) = (292 \pm 15 \pm 43)\mu b$

15/10/2010

conor's

talk

Conor

& Rob

talk

Pascal Perret - LPC Clermont

NFMR 254 ub

A.Buras, EPS09, arXiv:0910.1032

♦ Helicity suppressed and in SM: BR(B_s → $\mu^+\mu^-$)=(3.6 0.3)×10⁻⁹

- sensitive to New Physics; could be strongly enhanced in SUSY
- Current best limit from CDF: BR(B_s $\rightarrow \mu^+\mu^-) < 3.6 \times 10^{-8} @90\%$ CL
 - BR(B_s $\rightarrow \mu^+\mu^-$) < 4.2 ×10⁻⁸ from D0 @90%CL

Event selection

- Main issue is background rejection:
 - dominated by $B \rightarrow \mu^+ X$, $B \rightarrow \mu^- X$ decays
- good mass resolution, vertex resolution and PID are essential

$B_s \rightarrow \mu^+ \mu^-$: ATLAS/CMS

- « Easy » for the trigger: hight p_T (di-)muons
- ATLAS/CMS have similar discriminating variables
 - They perform cut based analysis to separate signal from background, using:
 - isolation of the muon pair
 - decay length significance

Valentin's

talk

- angle between di-muon momentum and direction to PV
- mass window around m(B_s)

$B_s \rightarrow \mu^+ \mu^-$: ATLAS/CMS

• Expected results (assuming $\sigma(pp \rightarrow b\overline{b}X) = 500 \ \mu b$) @14TeV:

	N sig	N bkg	90% CL
ATLAS (10 fb ⁻¹)	5.6	14	
CMS (1 fb ⁻¹)	2.4	6.5	<1.6 10 ⁻⁸
 with 10 – 20 fb⁻¹ 3σ evidence after 5σ observation a 	on 2.1 10-		

Uncertainty coming from limited amount of MC

$B_s \rightarrow \mu^+ \mu^-$: LHCb

LHCb approach is philosophically similar to Tevatron's:

- Ioose selection and then construction of global likelihood;
 - Analysis in 3 Parameter Space
 - production fraction is the larger systematic (13%)
- Prospects from Data:

Niels

*alk

- Mass resolution measured on $B \rightarrow \pi \pi$, πK , ... now 24 MeV/c²
 - Getting closer to MC expectation (22 MeV/c²)
 - Nice $B^+ \rightarrow J/\psi K^+$ signal
- IP resolution in agreement to MC for $p_T > 2$ Ge $\prod_{i=1}^{n}$
- Background at the expected level
- no events in sensitive region and general properties of background as expected

Pascarrener- Lru on Geometry Likelihood

22

IP

 $N_{sia} = 688$

 $\sigma_{\rm M}$ = 13 MeV/c²

~3 pb⁻¹

m(J/w K⁺) (MeV/c²

lifetime

Isolation

Mass

t > 0.30 ps

LHCb

№ Preliminary

 $B_s \rightarrow \mu^+ \mu^-$

- ATLAS/CMS & LHCb should be complementary for such a measurement
 - Very soon LHC should be able to approach or surpass world best sensitivity
 - With 50 pb⁻¹ possible already to approach new limit:
 - LHCb alone:
 - BR(B_s $\rightarrow \mu^+\mu^-$) < 3.4 ×10⁻⁸ @90%CL
 - 5 σ observation down to BR = 5 x SM with 1 fb⁻¹ (BR(B_s $\rightarrow \mu^+\mu^-) > 1.7 \times 10^{-8}$)
 - For a 5σ measurement at SM value a combination of all LHC observations will help!

β_s measurements from $B_s \rightarrow J/\psi \phi$

wednesday session The interference between B_s decay to $J/\psi\phi$ with or without B_{s} J/ψφ mixing gives rise to a CP violating phase Φ .

- It is a sensitive probe of New Physics:
 - It is well predicted in the SM: $\Phi = -2\beta_s = -0.0368 \pm 0.0017$
 - New particles can contribute to the B_s-B_s box diagrams and significantly modify the SM prediction $\overline{u}, \overline{c}, \overline{t}$
- It is not a pure CP eigenstate (VV decay)
 - 2 CP even, 1 CP odd amplitude
 - Initial states must be tagged
 - Final states need to be statistically separated through angular analysis
 - Mistag and proper time resolution are crucial...

TEVATRON: CDF and D0 set confidence level bounds on **ΔΓs - φs**

15/10/2010

 \mathbf{B}^0

d,s

u,c,t

d,s

b

 \mathbf{B}^0

β_s measurements from $B_s \rightarrow J/\psi \phi$

ATLAS/CMS:

- use Bs lifetime cuts
 - main background is long-lived
 - main systematics: control of acceptance

LHCb:

- Does NOT use Bs lifetime cuts
 - main background is prompt
 - Main systematics are mistag and proper-time resolution

Expected LHCb sensitivity 10TeV - $\sigma(pp \rightarrow b\overline{b}X) = 292 \ \mu b$

measurements from $B_s \rightarrow J/\psi \phi$ Johan's talk

Prospects at LHCb from Data:

Signal starts to show up

 \succ yield in \approx agreement with expectation

First signal of flavour oscillation from $B_d^0 \rightarrow D^{*-}(D^0 \pi^-)\mu^+\nu$ events. "Out of the box" un-calibrated tagging performance already at 60% of expected performance.

Propertime resolution not yet as in MC :~50-60 fs. Still very good for B_s physics (would give a ~20% decrease in sensitivity). Work on-going on alignment ...

15/10/2010

γ Measurements

♦ B_(s)→Kπ,KK, ππ...

- Two body charmless B decays are core to LHCb programme: γ angle, loop effects etc.
 - Penguin amplitudes:
 - Interference of b \rightarrow u tree & b \rightarrow d(s) penguin diagrams
 - CP time-dependent measurements from $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK$ allow to extract γ relying on U-Spin.

Crucial use of PID from RICH and very good mass resolution

Yields so far ~match expectations. In 2011 running LHCb will get largest world samples both in B⁰ and B_s.

Denis

15/10/2010

y Measurements

Multibody hadronic final states: First look @ LHCb

15/10/2010

PROSPECTS: LHCB UPGRADE

LHCb:	O(6 fb ⁻¹)	O(100 fb ⁻¹)
	2015	2022
ATLAS: CMS	O(30 fb ⁻¹)	O(500 fb ⁻¹)

Very rare decaysCP violationNP studies

LHCb Upgrade

- LHC physics in ~2015
 - New Physics (NP) will hopefully be discovered by ATLAS/CMS and LHCb
 - New Physics will very likely show up in Flavour observables: LHCb should see it!

LHCb Sensitivities (2 fb ⁻¹ @14TeV)					
Observable	Sensitivity	SM			
$CPV(B_s \rightarrow J/\psi \phi) (2\beta_s)$	0.03	0.04			
γ tree	5 ⁰	67.2°			
$\mathcal{B}(B_{s}{\rightarrow}\mu^{+}\mu^{-})$	Observed at 3o	3.6×10 ⁻⁹			
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$	0.5 GeV ²	4.36 GeV ²			
CPV(B _s →φγ)	0.22	0.10			

LHCb Upgrade

- Better Flavour Physics will be required to elucidate the NP flavour structure or probe NP at higher mass scale
 - LHC is a Super Flavour factory: 10⁶ Hz of b-quarks produced
 - LHCb exploits only a small fraction of LHC:
 - $\mathcal{L}_{LHCb}=2x10^{32} \text{ cm}^{-2}\text{s}^{-1} / \mathcal{L}_{LHC}=10^{34} \text{ cm}^{-2}\text{s}^{-1}$
 - LHCb Upgrade will be complementary to Super B(Belle) factory!
- LHCb Upgrade Strategy
 - Running at 10 times design luminosity, i.e. at ~ 2x10³³ cm⁻²s⁻¹
 - Upgrade planned in 2 phases matching LHC schedule :
 - Phase 1: ~ 2016 $\mathcal{L} = 10^{33} \text{ cm}^{-2}\text{s}^{-1}$: **R&D has started**
 - Phase 2: $\mathcal{L} = 2x10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - read out full experiment at 40 MHz, currently at 1 MHz
 - Gain a factor 2 in the trigger efficiency for hadronic channels
 - vertex and photon detector needs to be replaced

LHCb Trigger

LHCb Trigger: new scheme

Readout the detector at 40 MHz

- Replace all front-end electronics
- Replace all very front-end ASIC with a readout speed limited to 1 MHz

The high luminosity challenge

- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Average number of interactions per crossing: 0.4
 - Most crossings don't have an interaction

The high luminosity challenge

- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
 - Average number of interactions per crossing: 0.4
 - Most crossings don't have an interaction
- $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - Average number of interactions per crossing: 2.3
 - With 15% of empty crossings
- $\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

15/10/2010

- Average number of interactions per crossing: 4.6
 - With all crossings with at least one interaction

10

LHCb detector evolution in Phase I

Replace all the front-end electronics + DAQ network

15/10/2010

LHCb sensitivities

With 100 fb⁻¹ error in 2β_s decreases to ±0.003 (only L improvement), useful to distinguish among Supersymmetry (or other) models, where the differences are on the order of ~0.02

LHCb Sensitivities (100 fb ⁻¹ @14TeV)					
Observable	Sensitivity	SM			
$CPV(B_s \rightarrow J/\psi \phi) (2\beta_s)$	0.003	0.04			
γ tree	1 ⁰	67.2°			
$\mathcal{B}(B_{s} \rightarrow \mu^{+}\mu^{-})$	5-10% of SM	3.6×10 ⁻⁹			
$A_{FB}(B \rightarrow K^* \mu^+ \mu^-)$	0.07 GeV ²	4.36 GeV ²			
$CPV(B_s \rightarrow \phi \gamma)$	0.02	0.10			

- + many more observables:
 - ϕ_s in $B_s \rightarrow \phi \phi$, γ mediated by loops, cos 2β in $B_d \rightarrow J/\psi K_S$, ...

The upgrade strategy is SLHC independent

■ Letter of Intent → end 2010

CONCLUSIONS

15/10/2010

Conclusions

Excellent LHC & detectors start-up

- Progressing very well to design performances
- LHCb is dedicated to b-physics and designed for it!
 - It has the best performances in terms of: Momentum and mass resolution, PID (π /K separation), Proper time resolution, Trigger
- ATLAS/CMS:
 - will complement the b-physics program of LHCb
 - Fully profit from muon trigger capabilities at high luminosity
- LHC is entering into the game!
 - First data collected are very promising
 - Many significant measurements will be achieved in the b and cquark sectors in a near future
- LHCb is preparing a challenging upgrade aiming at an integrated luminosity of 100 fb⁻¹ complementary to a Super B factory

We are poised for a long and exciting physics program !!!

TANK YOU!

15/10/2010

