First results from the HEPAPS4 Active Pixel Sensor

L. Eklund, L. Jones, A. Laing, D. Maneuski , R. Turchetta, F. Zakopoulos

Presented at the 10th International Conference on Instrumentation for Colliding Beam Physics

February 28 to March 5 2008

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline of the talk

- Active Pixel Sensors an introduction
- The HEPAPS4 sensor
- Basic characterisation
 - Noise components and reset behaviour
 - Photon Transfer Curve
 - Linearity
 - Dark current
 - First test beam plots (very preliminary)
- Summary

- Silicon sensor technology based on industry standard CMOS processes
- Monolithic: Sensing volume and amplification implemented in the same silicon substrate
- Similar 'use case' as CCDs
- Photonic applications:
 - Biological/medical applications, HPDs, digital cameras, ...
- Envisaged HEP applications
 - Linear collider vertex detector (~10⁹ channels)
 - Linear collider calorimeter (Si/W, ~10¹² channels)

Active Pixel Sensors - Principle of Operation

Simplest design of APS: 3MOS pixel

- Photo diode
- Reset MOS (switch)
- Select MOS (switch)
- Source follower MOS

Functional description

- Photo diode: n-well in the p-type epilayer of the silicon
- Charge collection:
 - e-h pairs from ionising radiation
 - Diffusion of charge in epi-layer
 - Collected by the diode by the built-in field in the pn-junction
- In-pixel circuitry built in p-well.
- Collected charge changes the potential on the source follower gate $V_G = Q_{PD}/C_{PD}$
- Gate voltage changes the transconductance
- Pixel selected by the select MOS
- Output voltage = $V_{DD} g_{ds} * I_{Bias}$

Active Pixel Sensor - Cartoon

* Typical values found in different designs

February 29, 2008

Cartoon - array of active pixels

February 29, 2008

(non-judgemental) pros and cons

- Only uses the epi-layer as active volume
 - Quite small signal (compared to hybrid pixel devices)
 - Can be thinned to minimise material
- But S/N is what counts
 - Intrinsically very low noise
 - Fight other noise components
- Radiation hardness
 - Relies on diffusion for charge collection (no bias voltage)
 - No charge shifting (as in e.g. CCDs)
- Compared to LHC style sensors
 - Relatively slow read-out speed
 - Very low power consumption (saves services!)
- Cost
 - Si sensors relatively expensive per m²
 - Standard CMOS process
 - Saves integration costs

The HEPAPS4 - large area sensor for HEP applications

- Fourth in series designed at RAL
- Selected most promising design in HEPAPS2
- Basic parameters
 - 15x15 µm² pixel size
 - 384x1024 pixels
 - 20 µm epi-layer
 - 1 MIP = 1600 e⁻ spread over several pixels

• Three different design variants:

Design	Diode size	From simulations	
		gain	noise
2 diodes in parallel	3x3 μm ²	11 µV/e [.]	45 e [.]
4 diodes in parallel	1.7x1.7 μm ²	10 µV/e ⁻	47 e ⁻
Single diode (enclosed geometry transistors)	1.7x1.7 μm ²	16 μV/e ⁻	37e-

Results presented here are from the single diode design

February 29, 2008

HEPAPS4 operating principle

- 3MOS APS pixel as described previously
- Loop over all rows, select one at a time.
- Sample the signal on to a capacitor for each column
- Loop over columns, read out the value through four independent output drivers
- Reset the row
- Rolling shutter: Continuously cycle through pixels to read-out and reset

Noise components

Fixed Pattern Noise

- Gain Variation
- Pedestal variation
 - 280 ADC or ~1400e⁻ for HEPAPS4
- Removed by subtracting:
 - Pedestal frame from dark measurement
 - Two adjacent frames

Reset noise

- As described on next slide
- Can be removed by Correlated
 Double Sampling
 - Sample the reset value before charge collection
 - Can be done in H/W or (partially) offline

Dark Current

- Leakage current in the photo diode
- Depends on the Average offset = I_{leak}
 - Shot Noise = sqrt(I_{leak})

Common mode noise

Can be partially subtracted

Read noise

The fundamental noise of the chip

February 29, 2008

Pixel Reset Behaviour

- Pixels are reset by asserting a signal on the Reset Switch
- The charge collecting node is set to the reset voltage V_{RST}
- Soft Reset: $V_{RST} = V_{DD}$
 - Less reset noise
- Hard Reset: $V_{RST} < V_{DD}$
 - Less image lag
 - Decreases dynamic range
- Plot shows HEPAPS4 reset from fully saturated with soft reset operation (V_{RST}=V_{DD}).

February 29, 2008

HEPAPS4 as imaging sensor

- APS sensor also used in digital cameras
- HEPAPS4 becomes a B/W 400 kpix camera
- Plots show visually the effects of pedestal subtraction

February 29, 2008

Photon Transfer Curve (PTC) - Basic Principle

Shine light on the sensor and increase the illumination gradually

- Plot signal variance vs. mean
- Read noise will dominate for low intensities, but:

Mean:

$$G_{ADC} = G \cdot n_e$$

Variance: $\sigma_{ADC}^2 = (G \cdot \sigma_e)^2$

- # of photons per pixel is a Poisson process $\sigma_{e}^{2} = n_{e}$
- Hence in the region dominated by photon noise

$$\frac{\sigma_{ADC}^2}{S_{ADC}} = G$$

Photon Transfer Curve - Results

- Read out a region of 200x200 pixels
- Subtract pedestal frame
 - Calculate mean signal per pixel
- Subtract two adjacent frames:
 - Removes fixed pattern noise
 - Calculate variance per pixel

Assume constant gain 1000-5000 ADC

- Slope gives gain = $5.1 e^{-}/ADC$
- Noise floor not shown, since it is dominated by systems noise
- Saturation starts after 6000 ADC

Average variance vs. average mean for 40000 pixels

Expected value from design: 7.8 e⁻/ADC

Photon Transfer Curve - Gain Distributions

February 29, 2008

Linearity

- Non-linearity arises from
 - Change in sense node capacitance when charged
 - Non-linearity of source follower
- Measurement method:
 - Constant, low illumination
 - Continuous acquisition of frames
 - No reset between frames

- Relative gain is the derivative of this curve, normalised to the gain at 0 ADC
- Relative gain > 90%
 - 0-1640 ADC
 - 0-8360 e⁻
- Relative gain > 80%
 - 0-3780 ADC
 - 0-19300 e-

February 29, 2008

Dark Current

- Dark current is leakage current in the photo diode
- Method:
 - Readout two consecutive frames without reset between the frames
 - Subtract the two frames to remove pedestal and fixed pattern noise
 - Vary the integration time

Linear fit to the curve

- Slope 530 ADC/s = 2700 e⁻/s
- Pixel size 15x15 µm²
- $I_{dark} = 0.2 \text{ nA/cm}^2$

First Test Beam Plots

- Test beam at DESY: 6GeV electrons
- Combined with ISIS pixel sensor
- Configuration of sensor slightly different from photonic measurements in the lab
- Analysis in progress
- Two 'muse-bouche' plots:
 - Hit map: accumulation of reconstructed clusters
 - Landau: Cluster charge in ADC values

Summary

- Active Pixel Sensors are an attractive technology for certain applications in HEP
 - The principle of operation
- HEPAPS4 a large area APS designed for HEP applications
- First results from the characterisation:
 - Gain 5.1 e-/ADC with an RMS of 0.5 e⁻/ADC over 40k pixels
 - 90% of gain up to 8400 e^{-1}
 - 80% of gain up to 19300 e-
 - Dark current 2700 e⁻/s per pixel
- Two preliminary plots from the beam test