

PLANS FOR EXPERIMENT PROTECTION AT LHC

- □ Introduction:
 - Lessons from the past
 - The Large Hadron Collider
- LHC protection strategy
 - Beam interlock system
- Failure scenarios
 - Risks for the Expts
- □ LHC Experiment protection
 - Beam conditions monitors, etc.
- Detectors damage threshold
 - What do we know for silicon ?
- Conclusion and outlook

Note: I won't address heavy ion beams

twepp-09

September 21-25, 2009

Paris France

Special thanks to:

 Antonello di Mauro, Siegfried Wenig, Richard Hall-Wilton, Richard Jacobsson, Jorg Wenninger, Rudiger Schmidt, Rob Appleby, Daniela Macina, etc.

- □ Spp̄S:
 - 198x: electrostatic separators adjusted for 315 GeV, instead of injection energy of 26 GeV
 UA2 gets beam injected repeatedly into detector, no fast feedback from the Expt
- LEP:
 - 1991: Quad polarity switched... consecutive splashes into L3, damage to BGO lumimonitor (later, in 1992, further failures with damage to endcap calorimeter...)
 - 1993: Quad failure ... Aleph loses fraction of VDET due to shorting of AC capacitor chips
- RHIC:
 - 2000: Phobos: several missed aborts, lose 1-2% of their Si pad detector channels (other RHIC experiments affected as well).
- HERA:
 - 2002: damage caused to H1 Si pad and strip detectors (BST) and their electronics.
- Tevatron:
 - 2002: asynchronous dump, CDF loses six ladders of vertex detector due to chip failure

Lessons:

See J. Spalding in <u>TeV4LHC</u> April 2005

- □ it does happen!
- better have a protection system in the experiment to trigger beam abort
- better have some sort of monitor during injection (fast feed back to machine!)

Stored Energy of the LHC

Damage Potential of LHC Beams

- LHC colleagues performed a controlled experiment with 450 GeV beam shot into a stack target to benchmark simulations.
- Copper:
 - melting point reached at $\approx 2.4 \times 10^{12}$ p
 - clear damage at $\approx 4.8 \times 10^{12} \text{ p}$
- Good agreement with simulation

Paris

twepp-09

Topical Workshop on Electronics for Particle Physic

See V. Kain et al., Material damage test with 450 GeV LHC-type beam, Proc. of 2005 Part. Acc. Conf., Knoxville, Tennessee, and PhD Thesis by V. Kain, CERN-Thesis-2005-047

Definition for the LHC of a <u>"safe" beam limit</u> (setup beam, see later):

10¹² protons at 450 GeV

about 3% of a full SPS batch

10¹⁰ protons at 7 TeV (scaled from 450 GeV)

Note: tests as described above do not correspond to the most typical impact of beam, there is a safety margin on the 450 GeV "safe beam" for typical accelerator equipment. But what about experiments/detectors?

The LHC and the Experiments

CMS, ŝ Echenevex CMS/Totem: EPILHC RF Point 5 near dump Point 4 roman pots Verşon Ségny Point 6 ٠ BEAM Chevry BEAM LHCb and Alice: **CLEANING** DUMP 8.5 Collex Bossy Οήρε Point 3 just near injection point - experimental dipole magnets + correctors CERN Point 3.2 Prévessin Site Point 7 BEAM no TAS absorbers CLEANING Prévessin-Moens LHCb VELO, similar to Sergy Point 2/ Ferney-Voltaire "roman pots" S/P S Point 8 31'8. Point 1.8 Point 1 LHCh ********* Meyrin CERN 🕈 ATLAS/LHCf: Meyrin Sife a cool place to be...

twepp-09

September 21-25, 2009

Paris, France

Massimiliano Ferro-Luzzi

Twepp2009

• No TAS

presence of dipole magnet + correctors MBXW...

LHC Machine Protection

Beam modes:

- Outside these two beam modes, movable detectors must be OUT
- In this state, they *should* move OUT (but don't dump if not...)

LHC "Passive, Machine Protection : Collimators / Absorbers

- Almost entirely cryogenic ring
 more than 20 km of superconducting magnets
- Quench limits impose <u>collimation</u>!
 - \Rightarrow Lost protons must be intercepted with high efficiency before **<u>quench</u>**
 - instantaneous loss in a magnet (~10 m) required < 10¹⁰ p at 450 GeV, 10⁶⁻⁷ at 7 TeV
 - Unlike HERA, TEVATRON, RHIC... the LHC cannot be operated without collimators (except at injection with low intensity).
 - At the LHC the collimators must define the aperture (primary + secondary) which has an important impact for Machine Protection: for most multi-turn failures the beam will hit collimators first !
- Monitoring:
 - BLM's on collimators, on magnets
 - BPM's, etc.
 - Try avoiding quenches by setting dump thresholds lower than quench values

Paris,

France

twepp-09

September 21-25, 2009

8

LHC "Active, Machine Protection : Beam Interlocks

- □ General strategy:
 - inject probe bunch (5x10⁹ p)
 - if OK (circulating), inject higher intensity batch
 - on dump trigger => extract beam in < 0.3 ms (1 turn ≅ 0.09 ms)
- Abort gap:
 - continuously monitored, at least 3 us long

- Beam Interlock System
 - Two redundant BeamPermit loops per beam around the ring
 - Beam Interlock Controller:
 - Makes AND of several UserPermit signals
 - More than 3000 LHC user devices of the BICs (BLM's, BPM's, etc.)
 - If UserPermit signal is false, then BeamPermit is false => dump and block injection
- BeamPresence
 - one flag per LHC ring
 - at least 5 uA in the ring (fast AC BCT)
- ProbeBeam
 - True if SPS intensity < limit</p>
 - limit = C x 10^{11} protons (C≤1)
 - if BeamPresence and ProbeBeam are false, then cannot inject into LHC
- SetUpBeam
 - based on LHC current, energy dependent:
 - True if < 10¹² (5x10¹⁰) protons at 0.45 (7) TeV.
 - If True, it allows masking some BIS inputs

Massimiliano Ferro-Luzzi

l wepp2009

For the experiments, these are the worries:

- □ Injection failures:
 - incomplete or unsynchronized kicker fire
 - wrong magnet settings in transfer line
 - wrong magnet settings in the LHC
- => mostly Alice & LHCb
 - => mostly Alice & LHCb
 - => everybody

=> everybody

=> everybody

=> everybody

- \Box Circulating beam failures: \Rightarrow mostly caught by collimators
 - magnet failure / mishap
 - RF failure
 - collimator failure / mishap
 - Extraction failures:
 - underkick, unsynchronized beam dump => mostly CMS
- Expect Expts to be protected by "early" cryomagnet quench protection

We'll see some specific examples later

- In terms of estimating particle rates to a detector, the only simple (though quite unlikely) LHC failure scenario is
 - Suppose a batch is injected with wrong magnet settings near an experiment (remember: a probe beam has < 10¹¹ protons)
 - The batch is shot straight into the detector without traversing much material (little showering, less than x10 multiplication), beam size σ ~ 0.3 mm
 - Potentially, of order ~10¹³ p/cm² (in <1ns) depending on the maximum value for the ProbeBeam and on the local shower multiplication
 - Very high flux density, but very local (could be quite catastrophic if readout chips happen to be on the trajectory)
- Other possible failures (with grazing, showering,...) require detailed MC simulations
 - Work in progress
 - A few examples in the next slides

Example 1: TAS Absorber Grazing Case in ATLAS

ATLAS beam failures simulation:

- Studied wrong settings of MCBX, D1 and D2: due to presence of TAS absorber, pilot beam can never hit directly the Inner Detector.
- Thus, most dangerous case is when wrong magnet setting is such that beam scrapes first TAS and hits second TAS.
- If a 5x10⁹ bunch is lost in ATLAS due to a single wrongly set magnet, the estimated radiation dose delivered to the b-layer is estimated to be

< 5x10⁻³ Gy or

(Note: in terms of rate this is about 10^7 more than during a nominal bunch crossing, i.e. ~ 10^6 MIP/cm²)

See Dariusz Bocian, LHC Project Note 335

 Specially searched for two-magnet failures could deposit much more, but such failures are considered much less likely

Example 2: Extraction Failure and Effect on IP5

- Simulations for effect on CMS / IP5 due to unsynchronized abort and kicker prefire, see Drozhdin, Mokhov, Huhtinen, 1999 Particle Acc. Conference
 - <u>kicker prefire</u>: one kicker module fires alone; should not happen (system designed such that a firing module fires the other modules)
 - <u>unsynchronized abort</u>: quite likely to happen; kicker rise time ~3us
 > ~120 bunches swept

- Results (for Pixel detector):
 - Integrated doses not so dangerous,

Paris,

France

- but rates are!
- Up to 10⁸ times higher instantaneous rates than during nominal running ⇒ up to 10⁸ x 10⁶ MIP cm⁻² s⁻¹ !!
- These results led to addition of movable and fixed collimators at IP6 (TCDQ, TCDS) to intercept the bulk of the mis-kicked beam

twepp-09

September 21-25, 2009

CMS

Verson

Point 6

Point 7

Trney-Voltair

BEAM DUMP

Point 5

Topical Workshop on Electronics for Particle Physics

÷

ollex-

BEAM

CLEANING

Effect of kicker failures during injection

See B. Pastirčák et al., *Radiation from Misinjected Beam to LHC*, ALICE Internal Note 2001-03

Failure scenarios:

- □ grazing: full batch (4.1x10¹³ p) missing the TDI beam stopper, worst case but very unlikely
- □ <u>sweep</u>: prefire of kicker modules, ≈ 20 bunches escape TDI, expected several times/year (?) → main contribution

Results:

- Accumulated dose during 10 years due to "expected" misinjections is (for Si Pixel Detector and electronics) about 1 krad (1% of total dose from primary collisions)
- Energy deposition maps per accident in Alice detector (vertical section):

Here, for Si, inner tracker: 100 rad ~ 10⁹⁻¹⁰ MIP/cm²

- □ Injected beam does not need to come from nearby injection line!
- □ Here beam 1 in LHCb (after almost one turn)
- Valid for all experiments at LHC

LHC Project Report 1174 "LHCb Injected Beam Accidents" R.B. Appleby LHC Project Report 1175 "ALICE Injected Beam Accidents" R.B. Appleby

Massimiliano Ferro-Luzz

Twepp2009

Example 6: circulating beam D1 failure at 450 GeV (here IP8)

- □ Separation magnet D1 going down at 450 GeV
- Beam mostly caught at primary collimators
- Here, LHCb VELO would have an aperture of 5 mm radius around the beams

LHC Project Report 1176 "LHC circulating beam accidents for near-beam detectors" R.B. Appleby

Paris France twepp-09

September 21-25, 2009

Example 7: Wrong Local Bump

<u> Take again IP8 / LHCb</u>

- Beams separated in Y (vertical) during filling, ramping, etc.
 - Typ. ~ 1 mm between beams at 7 TeV before colliding
 - Max. accessible separation at 7 TeV is a few mm
- Bump can be local, transparent to rest of machine!
 - Example here at 7 TeV with two magnets
- □ The lower the energy, the "easier" to make such a bump
 - At 450 GeV => accessible separation range amplified by factor 15.5, i.e. up to few mm x15.5 !!

LHC Experiment Interlocks

Beam_permit:

- In each experiment, several systems (typically 3 or 4) in "and" mode must be alive and deliver a User_permit
- If one system remove the User_permit, it triggers a beam dump
- Both beams are dumped
- Recovery procedure after post-mortem data analysis

(emergency buttons are also implemented in some experiments...)

Injection_permit:

- Separate interlock based on same transmission hardware (signals to SPS extraction)
- □ Allows inhibiting injection into LHC, e.g. when
 - Detector not ready for injection
 - Bad injection detected during a fill, requires stopping injection without dumping the stored beam

Typical LHC Experiment Protection System

One set of diamond sensors on each side of IP:

- Stand-alone system using a few polycrystalline CVD diamond pads
- UPS powered, with few minutes autonomy
- Post-Mortem analysis capability
- FPGA-based dump logic:
 - input: measured rates
 - output: UserPermit signal
- Unmaskable input to local BIC
- On trigger, dump both beams
- Expected ready from "day 1"
- Must have high availability, reliability, efficiency

1 MIP ~ 1 fC

twepp-09

September

2009

Paris, France

BCM (beam conditions monitor) must protect detectors against circulating beam failures

At nominal 1e34 cm⁻² s⁻¹

50 nA (?)

Damage

> 1 uA??

Thres.

Noise

~10 pA

Collisions

~15 nA

- Beam Loss Monitors (BLMXD.01L1/R1.CH0N ATLAS)
 - 2 x 6 pCVD diamond detectors (8 x 8 mm²)
 - $z = \pm 345$ cm and r = 65 mm
 - 40 μ s integration time, pA to mA
 - Readout chain of LHC BLM system with modified BLMTC FPGA firmware
 - Abort signal at front panel
 - Receive PM signal
- Beam abort condition
 - 2 in a group of 3 detectors above threshold

Massimiliano Ferro-Luzzi Twepp2009

21

Paris, France

vs collisions

- Beam Conditions Monitors (BCM)
 - 2 x 4 pCVD diamond detectors (8 x 8 mm²)
 - $z = \pm 184$ cm and r = 55 mm
 - Fast readout time
 - − Single MIP sensitivity with sub-ns time resolution → Time of flight measurement
 - → distinguish collisions background ($\Delta T(A/C) = 2d/c$)
- Beam abort condition (not used at start-up)
 - 3 sensors above high threshold (5 MIPS) AND
 - 4 sensors above low threshold (0.5 MIPS)

See M. Mikuz et al., NIMA 579 (2007) 788-794

twepp-09

September 21-25, 2009

d d d/c = 184 cm/c = 12.2 ns = ~ 25 ns / 2Monitor beam halo by out of time signals

22

see L. Fernandez-Hernando et al., NIMA 552 (2005) 183-188

- Initially only 8 diamonds (4 per end) in inner ring on BCM2 will be "active" in asserting BEAM_PERMIT
- BCM1L hardware will be connected to the ABORT from the beginning, however thresholds will NOT be set until after a suitable commissioning period with beam
- BCM1L detectors and inner ring of BCM2 are at ca. 4.5cm radius, approximately the same as innermost layer of pixel detector
- □ Initial threshold for BCM2: RS1 ~ 10 uA (40 us)

- □ Thresholds are per diamond. No coincidence required.
 - Has been running stably for > 6 months, w/o spurious triggers

ALICE (1)

ALICE (2)

- □ The UserPermit is based on BCM-CFC-TELL1 chain as in LHCb.
 - Fast abort on RS2 (2x40µs CFC integration frames) coincidences:
 Dump beam if 3 of 4 adjacent diamond sensors show current > thr_{BS2}
 - Slow abort on ΣRS32 (32x40µs):
 Sorting out the two highest and the lowest of 8 sensors, dump beam if ΣRS32 > thr_{ΣRS32}
- □ Current estimate for dump thresholds (to be x-checked ...):
 - thr_{RS2} ~ 5000 nA , thr_{$\Sigma RS32$} ~ 250 nA

- Each BCM station composed of 4 or 8 CVD diamonds
- Mounted on the beam pipe, about 6 cm away from beam axis
- Asymmetric layout of BCM around IP (space availability)
- Diamonds readout: integrated rates in 40 us (later upgrade to 25 ns ?)
- Use stand-alone readout board for algorithm on dump trigger decision
- Simulations ongoing (relate VELO rates to BCM rates in failure scenarios)

Noise	Collisions	Thres.	Damage
<10 pA	~1 nA	few uA	> ?? uA

27

LHCb's Special: Vertex Locator

0.25 um CMOS ASICs (Beetle)

- Injection: no material at r<27 mm \Rightarrow Velo open (OUT)
- During stable beam \Rightarrow Velo closed (IN)
- Final position adjustable in y and in x to center beam in the hole (axial geometry for RZ trigger !)
- It must be possible to adjust "beyond" nominal beam axis (beam position not guaranteed...)
- Microswitches to detect Velo is OUT (both halves)
- Microswitches and hard stops to prevent crashes

LHCb VELO Protection System

- Microswitches in X on each half to check that VELO is in garage position (OUT)
- Read out by PLC which generates
 Device_out signal
- LHC flag Device_allowed transmitted via reliable network to the Expts. If False, movable devices must be in OUT position
- If both LHC flag Device_allowed and VELO flag Device_out are false, then LHCb UserPermit is false => dump the beam, prevent injection
- VELO motion is "slow", of order 0.1 mm/s
- Can move over nominal beam axis and/or beam can move to the detector!
 - \Rightarrow fast protection needed !

 \Rightarrow BCM must detect increase in rate (over normal minimum bias events) due to a possible beam-velo foil scraping, must work for both beams

29

What are the most exposed / most sensitive detectors ?

What are their damage thresholds ?

Why do we care ?

- Detectors are designed, built and installed: but operation procedures can be changed
 - HV and LV on/off at injection or with "non-physics" circulating beam ?
- Feedback to the machine
 - Definition of intensity limit at injection
 - Currently H/W 10¹¹ protons and S/W 10¹⁰
- □ Improvements on future detectors (at even higher beam intensities...)

Risks for LHC Vertex Detectors

Problems with beam losses for the silicon:

- □ Heat deposit: not a problem ? (for the likely failures)
 - Thermomechanicql effects ? Seeds for crqcks ?
- Extra radiation damage, eating up the "budget"
 - not so critical: LHC Si detectors designed to sustain "huge" doses (few 10¹⁴ n_{eq}/cm² ~ 10 Mrad);
 - but watch out anyway!
- Sudden high rate can induce large voltage in the Si detector
 - becomes essentially conductor => bias voltage boundary moves to another place... zap or no zap ?
 - e.g. SiO₂ breaks at ~ 1V/nm
 - direct hit to FE chip can be even worse (lose full chip, i.e. many channels... see CDF accidents)

The keep-it-always-on-or-not dilemma:

- □ Keep detector always ON for stability ?
 - no charge up effects, no temperature effects, etc.
- Reduce risk during injection by turning OFF HV ? (or even LV off)?
 - unstable at turn-ON

For comparison:

- Atlas/CMS pixel (r=4.3cm): order of 0.02 MIP/cm² per pp interaction
- LHCb VELO: order of 0.5 MIP/cm² per pp interaction
- MIPs through pixel detectors due to pp collisions in IP1/5 in a nominal year ~ 10^{17...18}
- One nominal LHC bunch: 10¹¹ p
- Full nominal LHC beam: 3 x 10¹⁴ p

What do we know about LHC Expt Si detector and resistance to high rates ?

High Particle Rate Tests On LHC Silicon Detectors

ATLAS and CMS tests at CERN PS beam:

- 24 GeV, 1 or few-bunch batch (bunch: 42 ns long, ~10¹¹ p, separation 256 ns), with peak bunch density of ~ 3x10¹⁰ p/cm².
- Detectors biased and FE electronics ON

ATLAS:

 See A. Andreazza, K. Einsweiler, C. Gemme, L. Rossi, P. Sicho, NIM A 565 (2006) 50–54, Effect of accidental beam losses on the ATLAS pixel detector

□ CMS:

- See M. Fahrer, G. Dirkes, F. Hartmann, S. Heier, A. Macpherson, Th. Müller, Th. Weiler, NIM A518 (2004) 328–330, *Beam-loss-induced electrical stress test on CMS Silicon Strip Modules*

Laser tests (not exhaustive):

- □ Atlas silicon strip: 1064 nm LASER (1 W)
 - K. Hara, T. Kuwano, G. Moorhead, Y. Ikegami, T. Kohriki, S. Terada, Y. Unno, NIM A 541 (2005) 15–20, *Beam splash effects on ATLAS silicon microstrip detectors evaluated using 1-w Nd:YAG laser*
- □ Atlas silicon strip sensors: LASER (2 types)
 - T. Dubbs, M. Harms, H. E-W. Sadrozinski, A. Seiden, M. Wilson, IEEE Trans. Nucl. Sci. NS47 (2000) 1902, Voltages on Silicon Microstrip Detectors in High Radiation Fields

- Andreazza et al., NIM A 565
 (2006) 50–54
- ⇒ « The results of the PS experiment therefore indicate that the loss of a LHC "pilot beam" of 5x10⁹ protons should not make any sizeable permanent damage to the performance of the ATLAS pixel detector. This accident will, very likely, require a reloading of the configuration parameters in a large fraction of the pixel detector. »

Fig. 3. Beam profile of a 10^{11} proton bunch extracted from the CERN Proton Synchrotron and measured in the vicinity of the ATLAS pixel module, which is also shown. The beam intensity is of $\approx 3 \times 10^{10} \text{ p/cm}^2$ in a central area of $\approx 5 \times 3 \text{ mm}^2$. The average flux over the module is of $1.5 \times 10^{10} \text{ p/cm}^2$.

CMS High Particle Rates Test

- D M. Fahrer et al., NIM A518 (2004) 328–330
- ⇒ « There is strong evidence that CMS silicon strip modules will survive a beam loss, because the fast breakdown of bias voltage protects electronics and sensors, especially the dielectric layer and the polysilicon resistors. »

Fig. 3. Time behaviour of voltage over dielectric layer.

Fig. 1. Sensor schematics with electrical setup.

A Recent LHCb VELO High Rate Test

Module mounted close to the PS booster (PSB) beam dump

- □ Proton beam of 1.4 GeV kinetic energy
- Intensity from 2e9 to 9e12 p/bunch
- □ 1 to 4 bunches (4 rings), we use a single bunch (ring 3)
- Beam spot size rms ~ 2-4 mm , bunch duration rms ~ 20-60 ns

The Victim: "Module 48"

LHCb/Velo spare from production

- Back-to-back R & Phi sensors
- 2048 AC coupled n-on-n strips / side
- 16 FE chips (IBM 0.25 μm) per side, all configured but only 8 per side read out

twepp-09

September 21-25, 2009

Mounted in the beam line

Paris

France

- Cooled to +1 °C (LV on) with vortex tube (8 bar compressed air)
- Fluorescent screen to view the beam
- Insert/retract from beam line
- Remote control and read-out
- Heavy radiation environment !
 - Backsplash at every beam dump
 - ~ 1 kGy in a few months

- □ Intensity steps: $2x10^9$, $2x10^{10}$, $2x10^{11}$, $2x10^{12}$ & $9x10^{12}$
- □ Each step: LV/HV off, LV on/HV off, LV on/HV 150 V & LV on/HV 300V
- Each beam 'shot' follows the same pattern
 - A set of standard measurements
 - I/V of both sensors
 - Noise & pedestal data
 - Test pulse data at +1.5, 0 and -150 V
 - Insert the module, acquire during the shot
 - 14 consecutive triggers of front-end data
 - Voltage on hybrid GND and sensor bias via oscilloscope
 - Beam spot image via a a camera
 - Repeat the same set of measurements
- □ Shots on two sensor positions
- Shots on five front-end chips (here only LV on/off matters)

twepp-09

Beam images

I/V curves

- I/V curves in-situ between each shot
 - Superimpose temperature corrected I/V curves
 - Small increase probably due to accumulated dose
 - Rough estimate between first and last curve: ~3.5x10¹² 1-MeV-n_{eq} /cm² (~1 kGy)
- Work in progress
 - Correlate with radiation monitoring data

Thermal image: No hot-spots

twepp-09

September 21-25,

2009

Paris France

Noise & pedestals measured in-situ between each shot

- Plots show date taken towards the end of the program
- No change visible
- Detailed analysis is in progress

Test pulse response – post-zap

Topical Workshop on Electronics for Particle September 21-25, 2009

Paris France twepp-09

Test pulse response

- 'booster': in-situ after a couple shots (module almost fresh)
 - 'lab': lab measurement after the full program
- Gain difference due to different analogue drivers/receivers
- Bad channels identical to production QA
- No significant effect observed due to beam shots

Oscilloscope measurements

- Hybrid GND
- Backplane
- 1 sample / ns
- Ground reference arbitrary
 - Huge ground bounce
 - Large pick-up
 - Plot V_{backplane}-V_{hybridGND}
- Two distinct features
 - Sharp rising edge (50 ns)
 - Slow charge-up

- □ 56 shots on the FE chips: $2x10^9 2x10^{11}$ p/bunch
- □ No destructive latch-up
 - Design rules include structures to prevent latch-up
 - Seems to be effective!
- □ SEU analysis in progress: none observed so far
 - Requires large energy deposited in small volume
 - Nuclear reactions necessary
 - Cross-section very low
 - Triple-redundant registers: corrected every 2 ns

- The PS booster provided beam to emulate specific LHC beam injection failures
 - 200 ns shots (+/-2rms), 2x10⁹ to 9x10¹² protons in $\sim 1 cm^2$
- A VELO strip module was subject to a large number of shots
 - Two positions on the sensor, five FE chips
 - Different conditions on LV and HV
- □ Survived 9x10¹² p on sensor with 0, 150, 300 V bias, LV on or off
- □ Survived $2 \times 10^{11} p$ on the FE chip (LV on or off)
- □ No visible change in performance
 - I/V curves, noise, pedestals, thermal imaging, ...
- □ Saving graces ?
 - The whole sensor responds as a unit
 - Large area sensor many channels
 - $C_{AC} >> C_{RC} (+C_{DET})$
 - Protection diodes on the FE inputs
 - Triple-redundant registers in FE chips
 - Analysis & measurement still in progress

- □ LHC is very different from what has been seen so far:
 - new (total beam) energy domain
 - cannot run without collimation (cryo/quenches)
- □ Machine protection will play a key role (especially at turn-on)
 - passive (collimators) , active (beam interlocks, dump/inject)
- Expts have developed own (to some extent, common) protection system
 - Beam Conditions Monitor (CVD diamonds) + other detectors => dump trigger
 - Should take care of circulating beam failures (redundant with machine protection)
 - Must have high availability, reliability, efficiency
 - Feed-back to stop injection is implemented
 - Close collaboration with machine colleagues
- □ Not all possible failure scenarios for all IP's have been simulated or studied
- □ Not all exposed detectors have been stress-tested with high particle rates...
 - Showed some recent results on LHCb/VELO damage threshold
- □ Full chain tests ongoing (some already done)
- Thresholds to be set and fine tuned with beam

➡ Work in progress

- Deposited energy (in 300 µm Si)
 - $9x10^{12} \times 24000 \times 3.6 \text{ eV} \implies 0.12$ Joule in ~200 ns
 - Temperature increase in 1 cm² x 0.3mm Si < ~ 2 °C
 - Maximum SPS injection train (288x10¹¹): 0.4 Joule / 10 μ s
- □ Local energy store: the RC filter
 - 10 nF @ 300V => 0.5 mJ
 - Absorption volume critical
 - Massive ionisation in biased silicon
 - $Q_{RC}(300V) = 3 \mu C$
 - Deposited charge @ $2x10^9$: 7.5 μ C
- Possible transient damage
 - Current through front-end
 - AC coupling diode
 - Voltage on front-end input
 - Fast HV ramp-down

HV bias reduced to 0 V