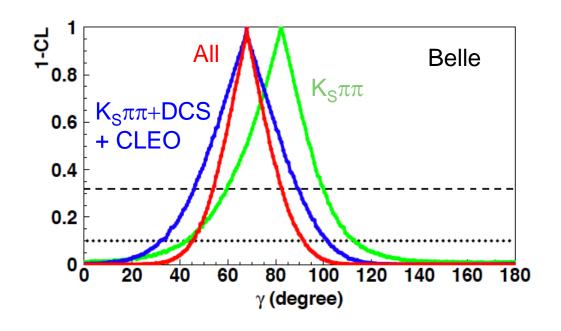


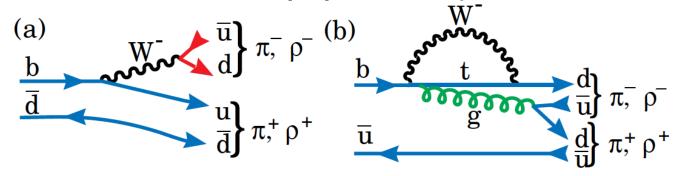
Measuring γ

• γ is the phase of V_{ub} . Can be determined using B[±] decays. These diagrams result in the same final state for $D^0 \rightarrow K^+K^-$, $K_S\pi^+\pi^-$


- \blacksquare $A \propto V_{cb} V_{us} A_T$
- $A \propto V_{ub} V_{cs} A_{CT}$
- Phase differs by γ , Amp by A_{CT}/A_{T}
 - different A's for different final states
 - Can also use doubly Cabbibo suppressed decays

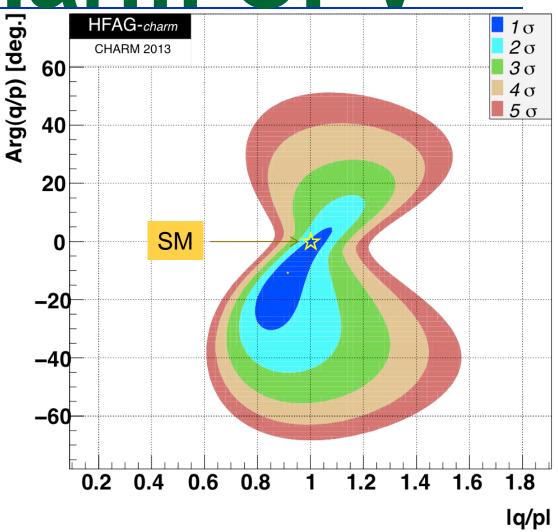
Results

- Analysis is very complicated & sums over many final states (including D⁰π⁻)
- Results for γ


Belle
$$(68^{+15}_{-14})^{\circ}$$

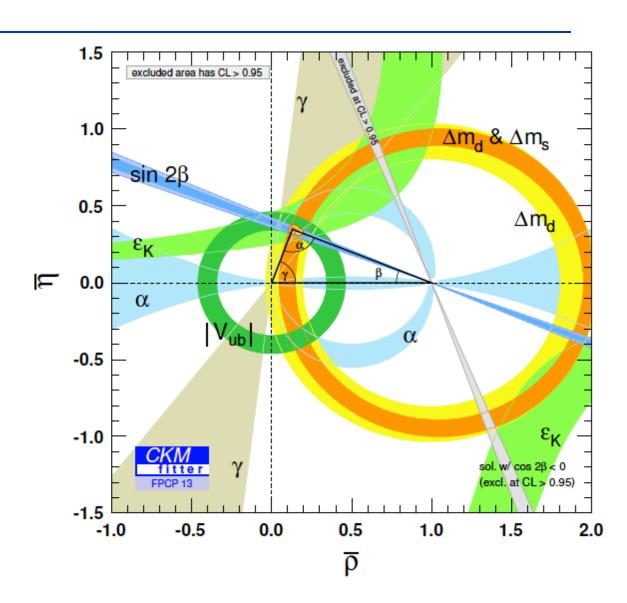
Measuring α

■ The B⁰ $\rightarrow \pi^+\pi^-$ & $\rho^+\rho^-$ decays can occur via

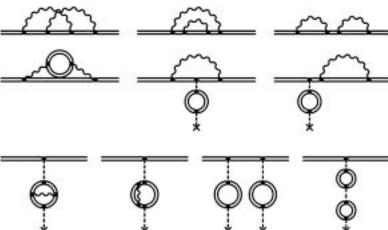


- If (a) is dominant, then by measuring a_{fcp} , we measure $\sin(2(\beta + \gamma)) = \sin(2(180 \alpha)) = -\sin(2\alpha)$
 - □ Can tell by seeing the size of $\pi^0\pi^0$ & $\rho^0\rho^0$.
 - **a** (a) not dominant for $\pi^+\pi^-$, but OK for $\rho^+\rho^-$. However its not a CP eigenstate, but this can be dealt with
- BaBar: $α = (92.4 + 6.0_{-6.5})^\circ$, Belle: $(84.9 \pm 12.9)^\circ$

Charm CPV

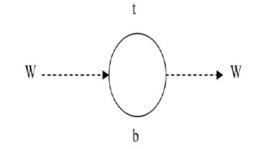

CP Violation in charm is not expected at at a level >~10⁻³, so is an excellent place to look for New Physics

Are these measurements consistent?


- CKM fitter group
- Does a "frequentist" analysis
- Also UT fit group does a "Bayesian analyis

Seeking New Physics

- HFP as a tool for NP discovery
 - While measurements of fundamental constants are fun, the main purpose of HFP is to find and/or define the properties of physics beyond the SM
 - HFP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is the Lamb shift in atomic hydrogen
 - A small difference in energy between $2S_{1/2} \& 2P_{1/2}$ that should be of equal energy at lowest order

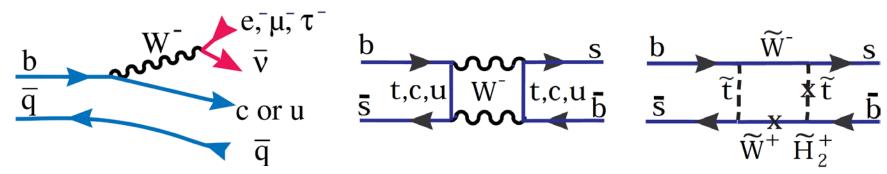


Flavor Physics as a NP discovery tool

- Another example of the importance of such loops are changes in the W mass
 - M_w changes due to m_t

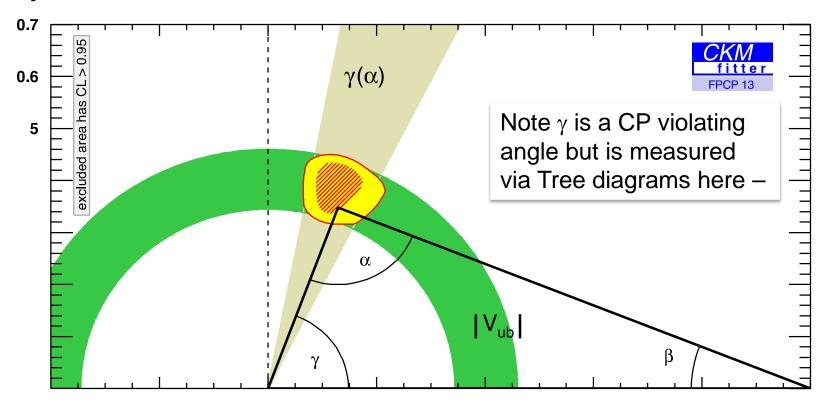
$$\frac{dM_{W}}{dm_{t}} \alpha \frac{m_{t}}{M_{w}} \qquad \text{w} \qquad \qquad$$

M_w changes due to m_H


$$\frac{dM_W}{dm_H}\alpha - \frac{dm_H}{M_H}$$

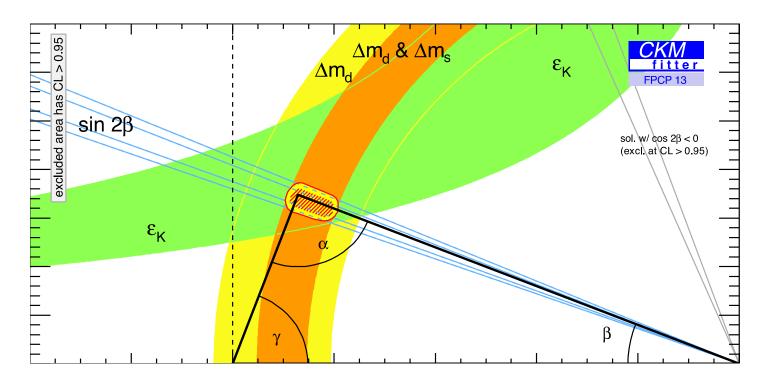
Limits on New Physics

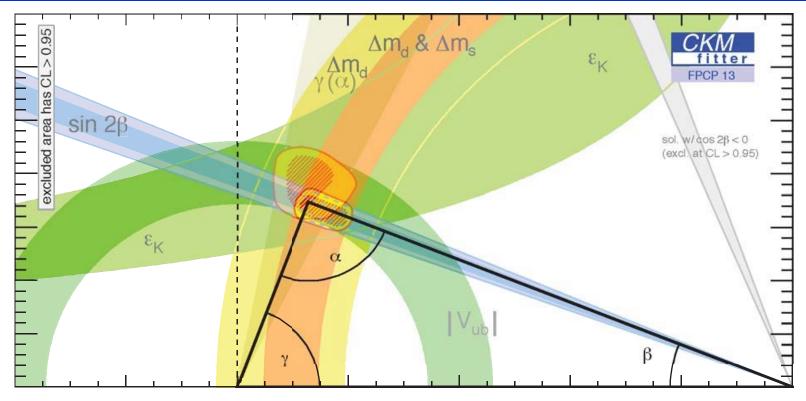
- It is oft said that we have not seen New Physics, yet what we observe is the sum of Standard Model + New Physics. How to set limits on NP?
- One hypothesis: assume that tree level diagrams are dominated by SM and loop diagrams could contain NP


Tree diagram example

Loop diagram example

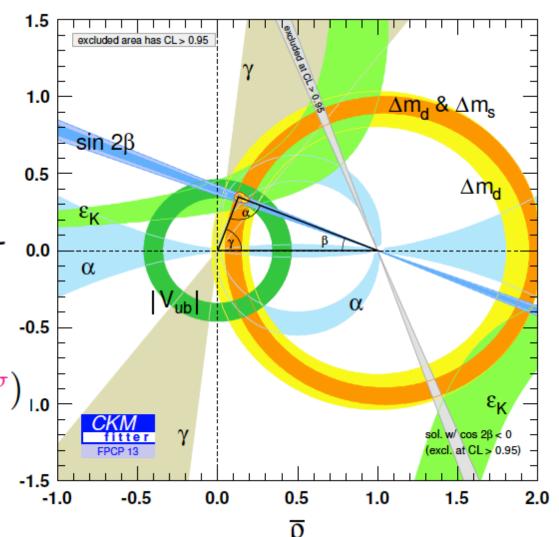
What are limits on NP from quark decays?


 Tree diagrams are unlikely to be affected by physics beyond the Standard Model

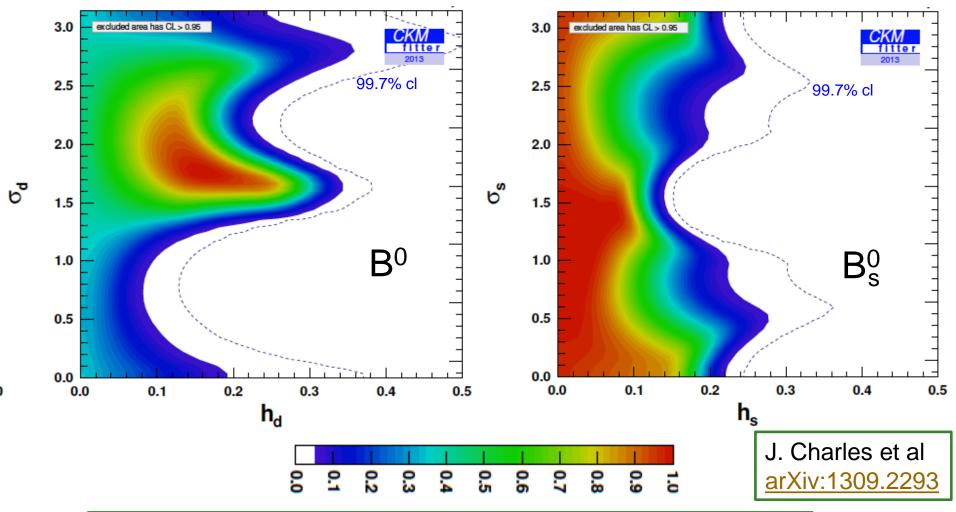

CP Violation in B° & K° Only

 Absorptive (Imaginary) part of mixing diagram should be sensitive to New Physics. Lets compare

They are Consistent

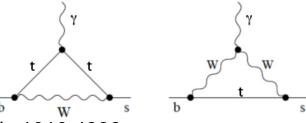

- But consistency is only at the 5% level
- Limits on NP are not so strong

Generic Analyses

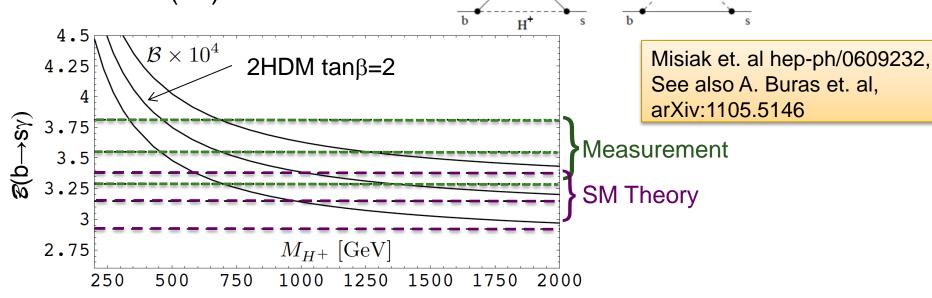

- Compare measurements look for discrepancies
- Bo mixing and CP. Parameterize NP as h & σ

 $M_{12} = M_{12}^{\text{SM}} \times \left(1 + \frac{h}{h} e^{2i\sigma}\right)_{\text{I.0}}$

Limits on New Physics

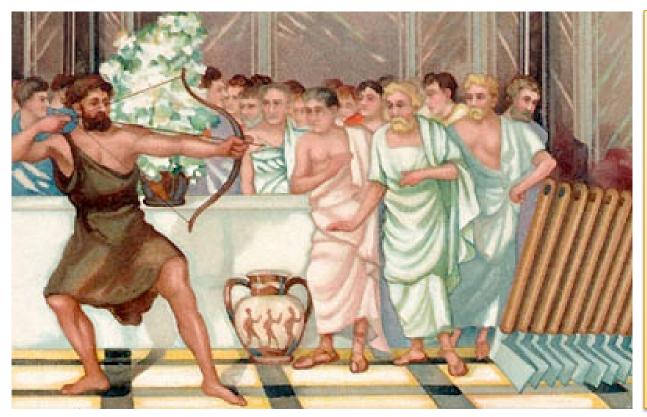


New Physics amplitudes could be ~20% of Standard Model



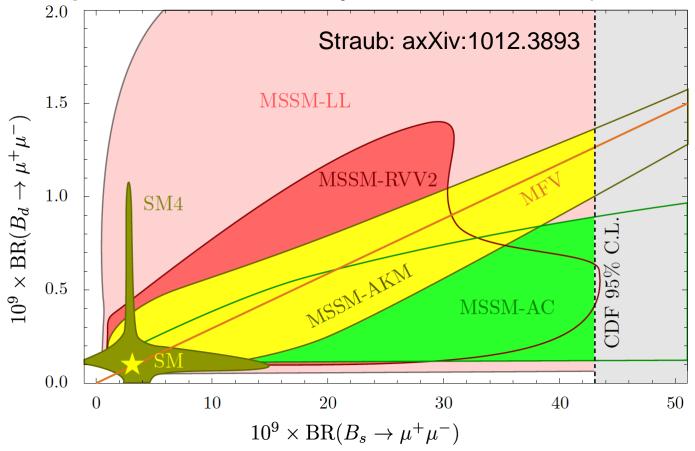
Ex. of Strong Constraints on NP

- Inclusive b \rightarrow s γ , (E γ > 1.6 GeV)
 - Measured (3.55±0.26)x10⁻⁴ (HFAG)


- Theory (3.15±0.23)x10⁻⁴ (NNLL) Misiak arXiv:1010.4896
- Ratio = 1.13±0.11, Limits most NP models
- Example 2HDM
- m(H+) < 316 GeV

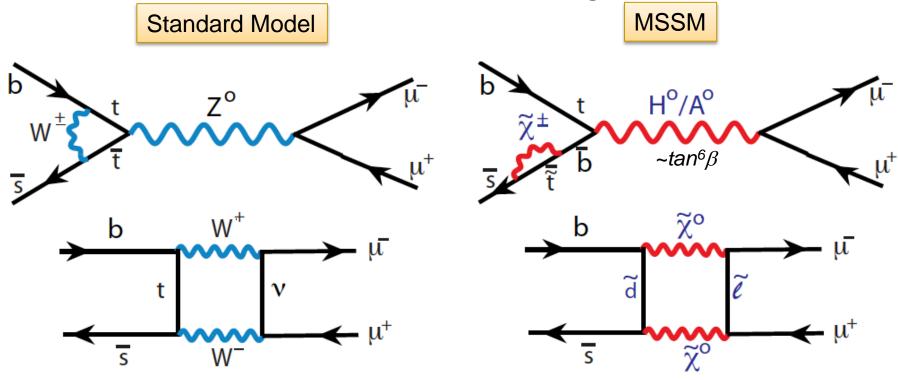
Theorists task

A given theoretical model must explain all the data



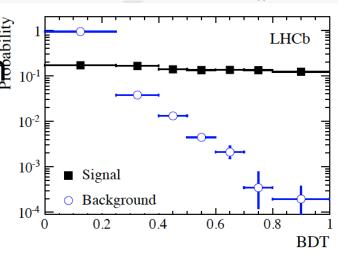
Model must thread through all experimental constraints (12 axe handles). One measurement can, in principle, defeat the theorist, but we seek a consistent pattern.

Top Down Analyses

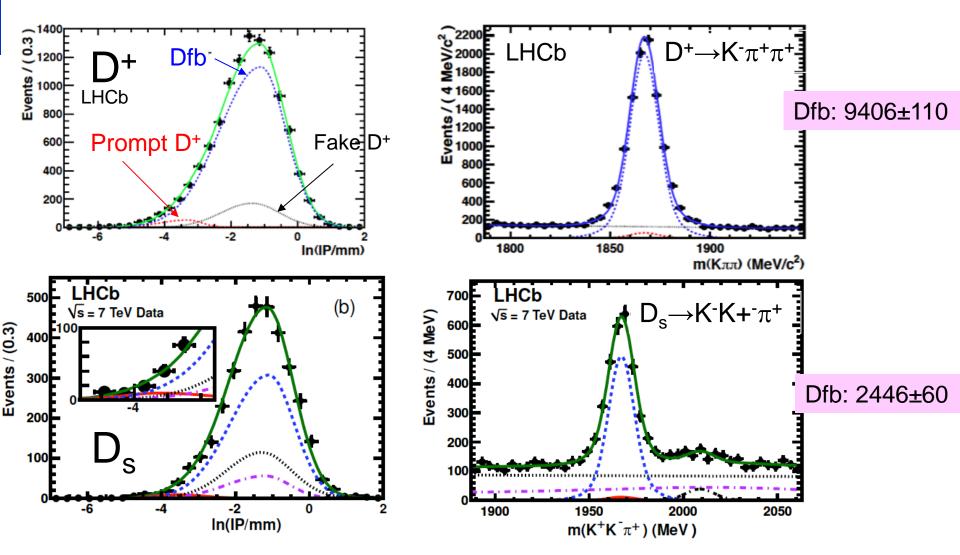

Here we pick models and work out their consequences in many modes. Ex. (circa 2010):

$B_s \rightarrow \mu^+ \mu^-$

■ SM branching ratio is (3.5±0.2)x10⁻⁹ [Buras arXiv:1012.1447], NP can make large contributions.

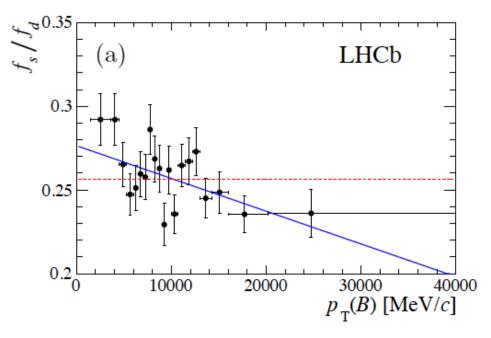

Many NP models possible, not just Super-Sym

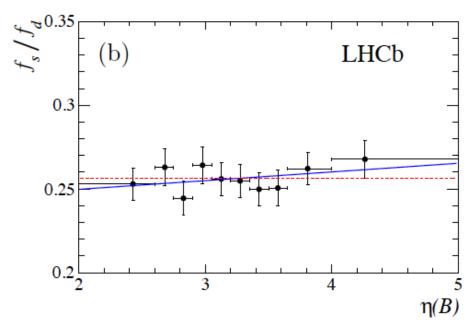
Discrimination


- LHCb uses B→h+h⁻ to tune cuts for a multivariate analysis
- Other variables to discriminate against bkgrd: B impact parameter, B lifetime, B pt, B isolation, muon isolation, minimum impact parameter of muons, ...
- B_s production is measured by using the LHCb measured ratio
 f_s/f_d. New value of 0.259±0.015

Production fractions: $B\rightarrow DX\mu\nu$ use equality of Γ_{sl} & known τ 's

Fermilab Academic Lectures, May, 2014

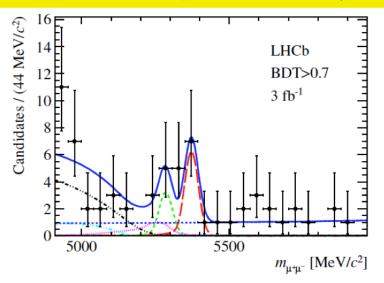

Also Do, Λ_b

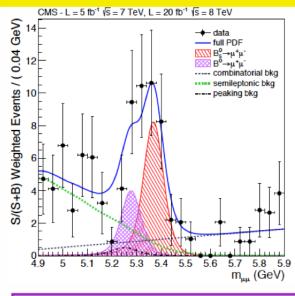


P_T & η dependence

$$\frac{f_s}{f_u + f_d} = \frac{n_{\text{corr}}(\bar{B}_s^0 \to D\mu)}{n_{\text{corr}}(B \to D^0\mu) + n_{\text{corr}}(B \to D^+\mu)} \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\bar{B}_s^0}}$$

- Ncorr($B_s \rightarrow D\mu$) is $D_s\mu + DK\mu$
- Also using hadronic B_s & B⁰ decays find



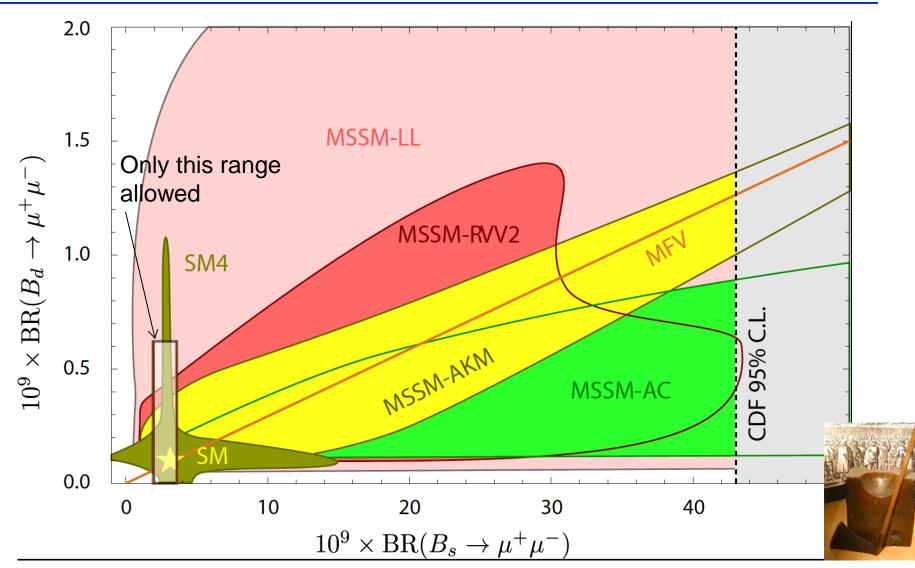

Evidence for $B_s \rightarrow \mu^+ \mu^-$

LHCb: arXiv:1307.5024, PRL.111.101805 (2013)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}) \times 10^{-9}, --> 4.00$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}) \times 10^{-10}$

CMS: arXiv:1307.5025, PRL. 111.101804 (2013)

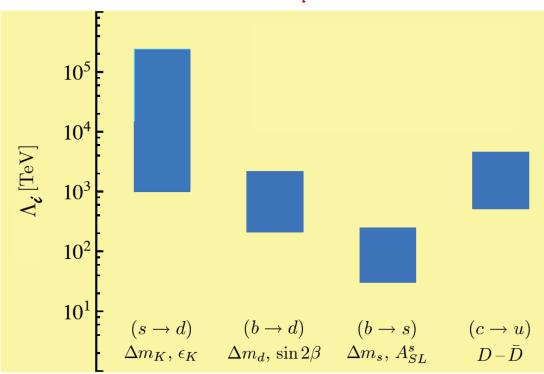


$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}, \longrightarrow 4.36$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.5^{+2.1}_{-1.8}) \times 10^{-10}$

- Avg: B(B_s $\rightarrow \mu^+\mu^-$)=(2.9±0.7)x10⁻⁹
- Avg: $B(B^0 \rightarrow \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$ (not significant)

Implications



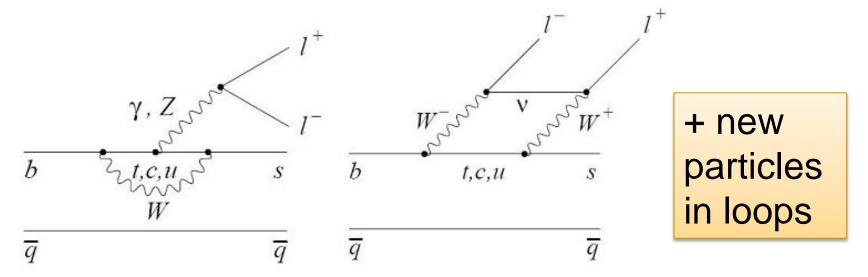
Flavor as a High Mass Probe

Already excluded ranges from box diagrams

$$\square \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda_i^2} O_i \text{ take } c_i \sim 1$$

Ways out

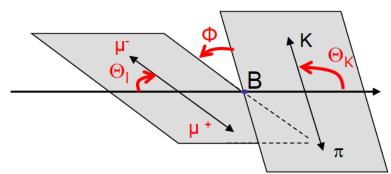
- New particles have large masses >>1 TeV
- 2. New particles have degenerate masses
- 3. Mixing angles in new sector are small, same as in SM (MFV)
- 4. The above already implies strong constrains on NP



Some hints of discrepancies with SM

$B \rightarrow K(*)|+|-$

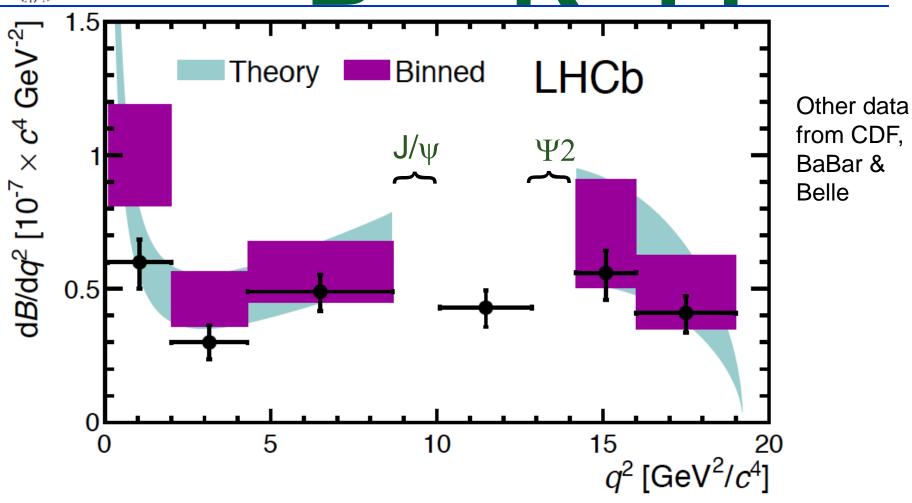
Similar to K*γ, but more decay paths



 Several variables can be examined, e.g. muon forward-backward asymmetry, A_{FB} is well predicted in SM

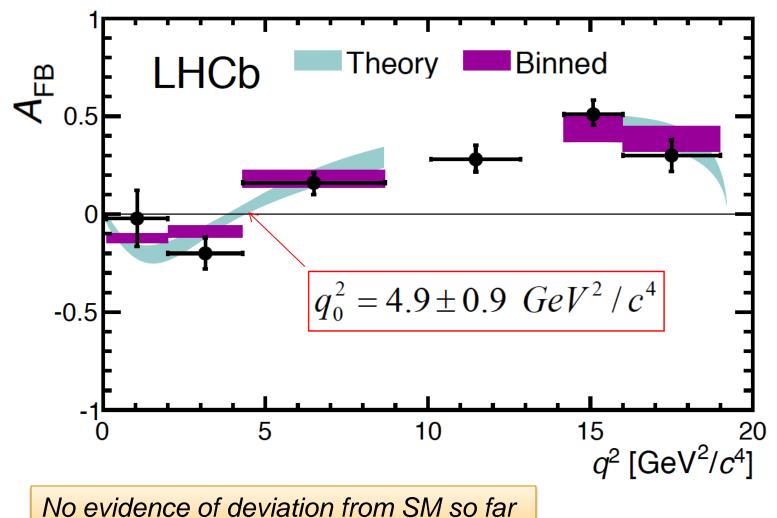
Theory K(*)|+|-

 Decay described by 3 angles & dimuon invariant mass (q²)


For each bin in q²

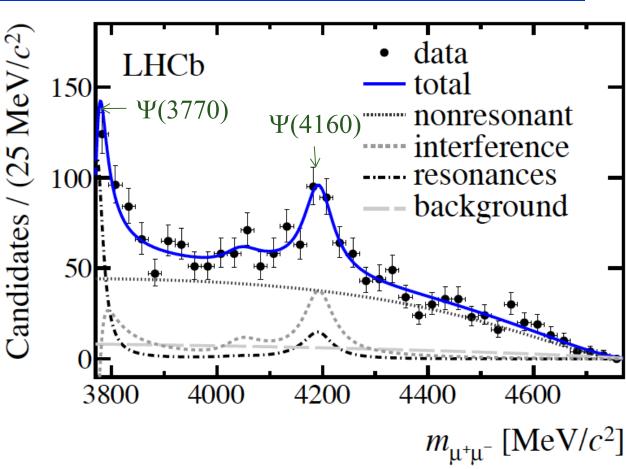
$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi} = & \frac{9}{16\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_L \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_L) A_T^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \, + \\ & \left. \frac{1}{2} (1 - F_L) A_T^{Re} \sin^2\theta_K \cos \theta_\ell + (S/A)_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \, \right] \end{split}$$

- F_I is fraction of longitudinally polarized K*⁰
- A_{FB}^- , forward-backward asymmetry = $\frac{3}{4}(1-F_L)A_T^{Re}$
- SM prediction of q² for A_{FB} crossing 0 is $q_0^2 = 4.36^{+0.33}_{-0.31} GeV^2$ (Beneke)


$B^0 \rightarrow K^{*0} + I^-$

 Conforms to SM predictions by Bobeth et al. & Matias et al

Forward-Backward asymmetry



Fermilab Academic Lectures, May, 2014

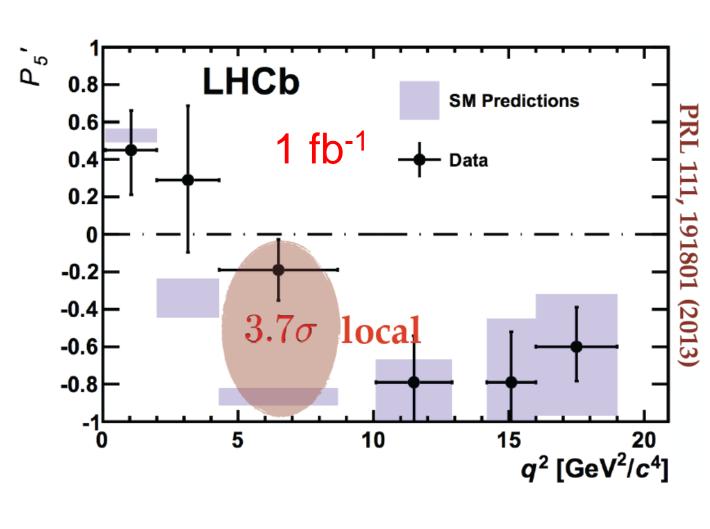
$B \longrightarrow K^{-1+1-}$

- Resonances
 found in high
 q² region
- One would think they would be in K*ol+l- also
- Should affect theory predictions

More Zvariables

 Back to K^(*)I⁺I⁻, new observables in formalism designed to less sensitive to hadronic form-factors

Descotes-Genon et al arXiv:1303.5794


$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_\ell \, \mathrm{d}\cos\theta_K \, \mathrm{d}\phi} &= \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right. \\ &\quad - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + \frac{1}{2} (1 - F_\mathrm{L}) A_\mathrm{T}^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + \\ &\quad \sqrt{F_L (1 - F_\mathrm{L})} P_4' \sin 2\theta_K \sin 2\theta_\ell \cos \phi + \sqrt{F_L (1 - F_\mathrm{L})} P_5' \sin 2\theta_K \sin \theta_\ell \cos \phi + \\ &\quad \left. (1 - F_\mathrm{L}) A_{Re}^\mathrm{T} \sin^2\theta_K \cos \theta_\ell + \sqrt{F_L (1 - F_\mathrm{L})} P_6' \sin 2\theta_K \sin \theta_\ell \sin \phi + \\ &\quad \sqrt{F_L (1 - F_\mathrm{L})} P_8' \sin 2\theta_K \sin 2\theta_\ell \sin \phi + (S/A)_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right] \end{split}$$

Possible deviation

Could be something,

but significance depends on theoretical model, & deviation is only in one place

Rare Decays - Generic

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + \text{h.c.} .$$

• C_iO_i for SM, C_iO_i are for NP. Operators are for P_{R,L} = $(1\pm\gamma_5)/2$

$$O_{7} = \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R}b)F^{\mu\nu}, \qquad O_{8} = \frac{gm_{b}}{e^{2}} (\bar{s}\sigma_{\mu\nu}T^{a}P_{R}b)G^{\mu\nu\,a},$$

$$O_{9} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell),$$

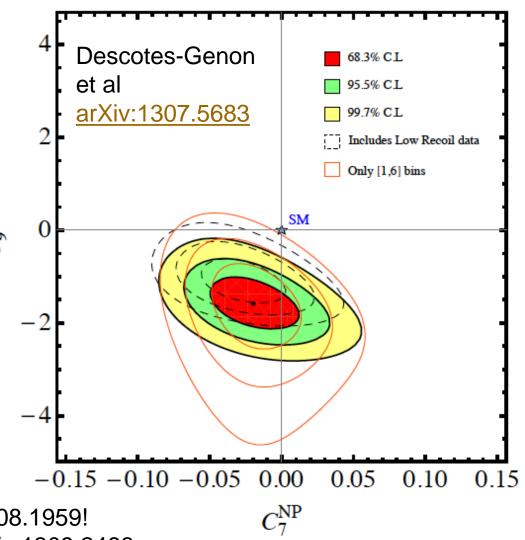
$$O_{S} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), \qquad O_{P} = m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell),$$

- \bullet O'=O with $P_{R,L} \rightarrow P_{L,R}$
- Each process depends on a unique combination

Other Processes

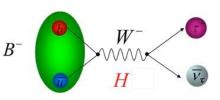
- Other processes probe different operators
- Let $\delta Ci = C_i(NP) C_i(SM)$
- Examples:

$$\mathcal{B}(B \to X_s \mu^+ \mu^-) = 10^{-7} \times \left[\sum_{i,j=0,7,7',9,9',10,10'} b_{(i,j)} \delta C_i \delta C_j \pm \delta_b \right]$$


$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma > 1.6 \text{ GeV}}} = \left[a_{(0,0)} \pm \delta_a + a_{(7,7)} \left[(\delta C_7)^2 + (\delta C_{7'})^2 \right] + a_{(0,7)} \delta C_7 + a_{(0,7')} \delta C_{7'} \right] \cdot 10^{-4}$$

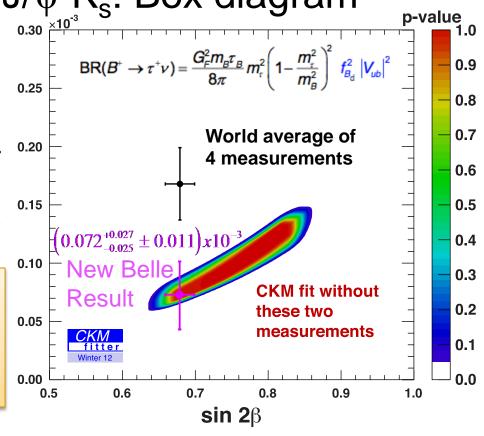
Maximizing deviations

- Filled bands:
 - $B \rightarrow K^* \mu^+ \mu^-, K^* \gamma \& B_s \rightarrow \mu^+ \mu^-$
- Dashed: all q² for K*μ+μ-
- Orange: only
 1<q²<6 GeV² for
 K*μ+μ-
- Some suggest a 7
 TeV Z'


Gauld et al arXiv:1308.1959! Buras, Girrbach arXiv:1309.2466

B⁻→τ⁻⊽ problem?

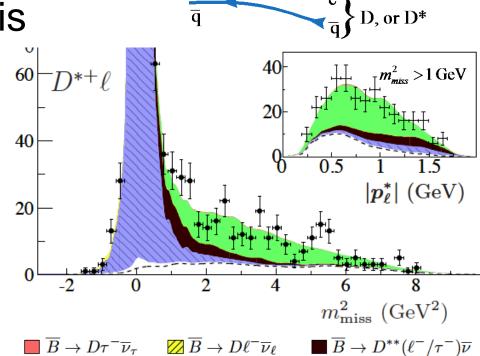
■ $B^- \rightarrow \tau^- \nu$, tree process:



Can be new particles instead of W⁻ but why not also in $D_{(s)}^+ \rightarrow \ell^+ \nu$?

sin2β, CPV in e.g. B°→J/ψ K_s: Box diagram

 Measurement not in good agreement with SM prediction based on CKM fit


New Belle measurement in using 1 method. Discrepancy may be resolved, but 3 other determinations need to be checked

$B \rightarrow D^{(*)} \tau \nu$

- Also, tree level BaBar result
- Similar to B⁻→τ⁻ν analysis
- Fully reconstruct
 one B, keep events with
 an additional D^(*) plus
 an e⁻ or μ⁻.
- Signal is wide,background, especially

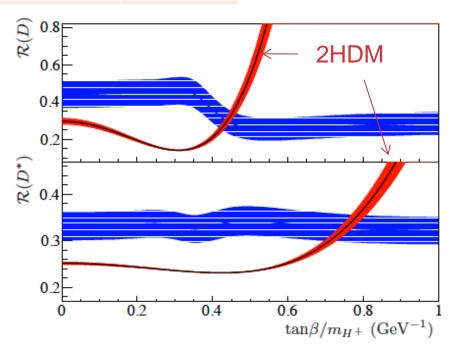
 $\overline{B} \to D^* \tau^- \overline{\nu}_{\tau} \quad \overline{B} \to D^* \ell^- \overline{\nu}_{\ell}$

 W, H^{2}

D**I v, needs careful estimation

- Background

or μ^-

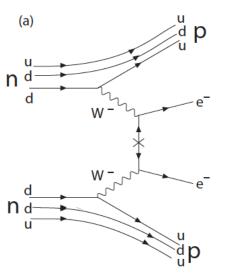


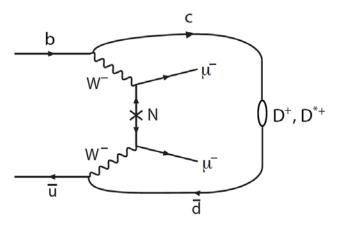
$B \rightarrow D^{(*)} \tau \nu II$

Results given in terms of ratio to B→D(*)Iv

	SM Theory	BaBar value	Diff.
R(D)	0.297±0.017	0.440±0.058±0.042	+2.0σ
R(D*)	0.252±0.003	0.332±0.024±0.018	+2.7σ

- Sum is 3.4σ above SM
- Also inconsistent with type II 2HDM


Other searches

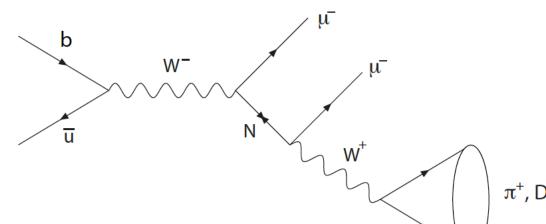

Fermilab Academic Lectures, May, 2014

<u>Majorana v's</u>

- Several ways of looking for presence of heavy v's (N) in heavy quark decays if they Majorana (their own anti-particles) and couple to "ordinary" v's
- Modes analogous to ν-less nuclear β decay

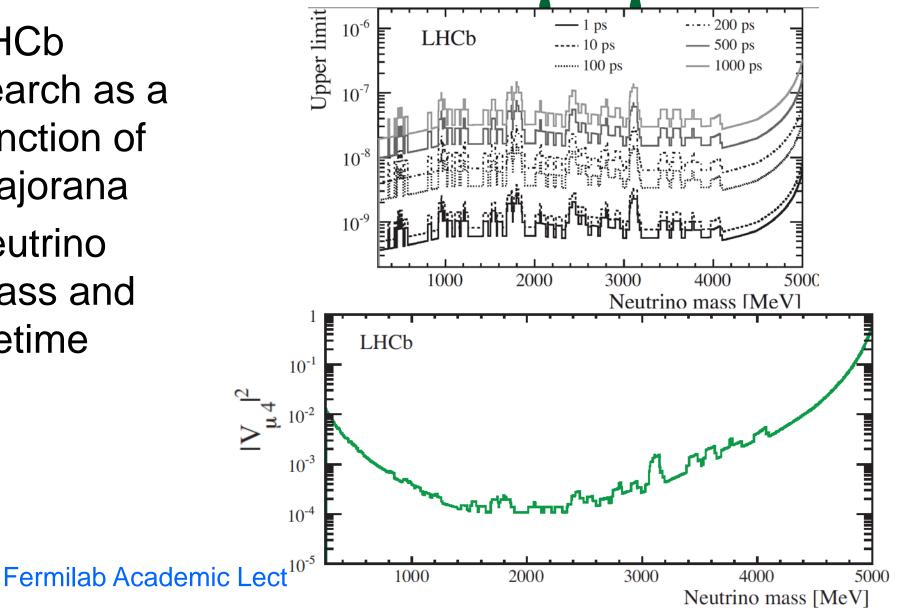
Simplest Channels: $B^- \rightarrow D^+ I^- I'^- \& B^- \rightarrow D^{*+} I^- I'^ I^- \& I'^- can be e^-,$ $\mu^- or \tau^-.$

Limits on D(*)+I-I'-


- Upper limits in e⁻e⁻ mode not competitive with nuclear β decay
- Others unique since measure coupling of
 Majorana ν to μ⁻

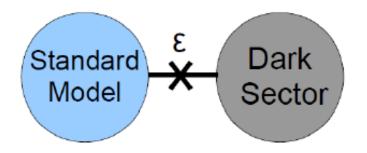
Mode	Exp.	u. l. x 10 ⁻
$B^- \rightarrow D^+ e^- e^-$	Belle	< 2.6
$B^- \rightarrow D^+ e^- \mu^-$	Belle	< 1.8
$B^- \rightarrow D^+ \mu^- \mu^-$	Belle	< 1.0
$B^- \rightarrow D^+ \mu^- \mu^-$	LHCb	< 0.69
$B^- \rightarrow D^{*+} \mu^- \mu^-$	LHCb Belle I	< 3.6 [arXiv:1107.064]

On-Shell v

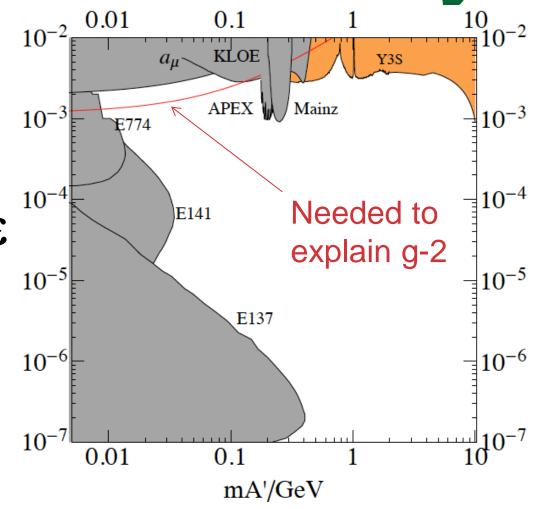

Can also look for Majorana v (N), where N→W+µ⁻

- A. Atre, T. Han,
- S. Pascoli, & B. Zhang [arXiv:0901.3589]
- Many other ways of searching:
 - \square K $^-\square\pi^-$ N
 - μ⁻□ e⁻γ
 - $lue{}$ $au^-\Box \mu^+\pi^-\pi^-$
 - ...

LHCb search as a function of Majorana neutrino mass and lifetime


The Dark Sector

- Could it be that there are 3 classes of matter?
 - SM particles with charges [SU(3)xSU(2)xU(1)]
 - Dark matter particles with "dark" charges
 - Some matter having both ("mediators")
- Searches for "dark photons"
 - □ A mediator, couples to b-quarks (see arXiv:056151 hep/ph)
 - BaBar ℰ(Y(1S)→invisible)<3x10⁻⁴ @ 90% cl
 - Other experiments

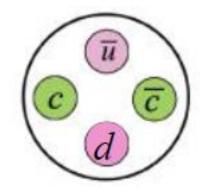


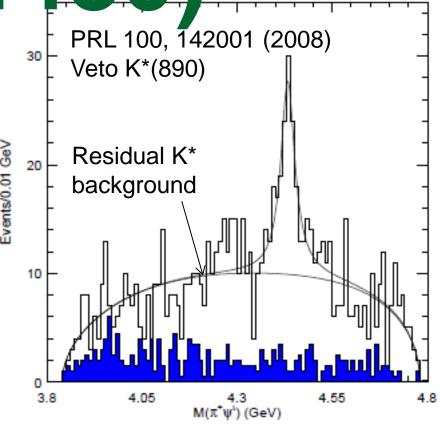
Search Summary

Parameterize by mixing ε

Dark photon mass mA´

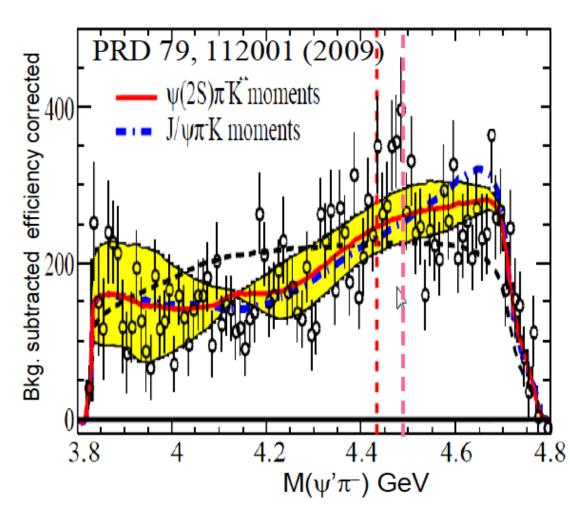
From B. Echenard arXiv:1205.3505



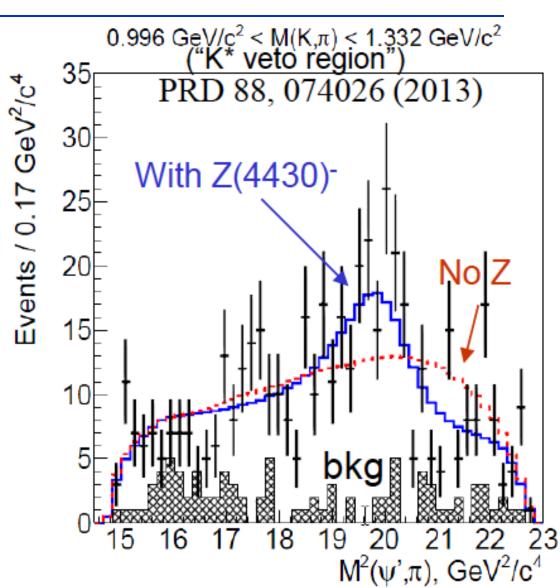

Tetraquarks, both heavy & light

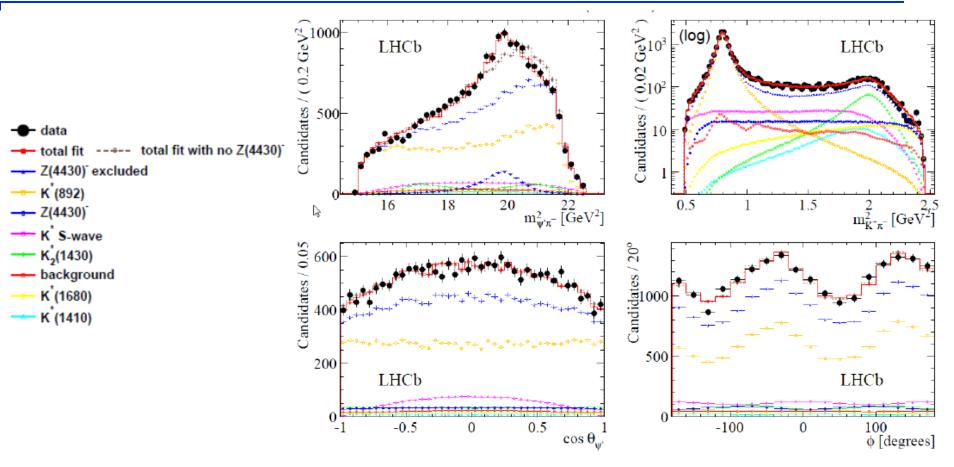
Z(4430)

- Belle 2008: B⁰→J/ψπ⁻K⁺.
 Claimed resonant signal decaying into J/ψπ⁻ at 4430 MeV ⇒ a charged "charmonium" state, not possible with only cc
- Tetraquark candidate



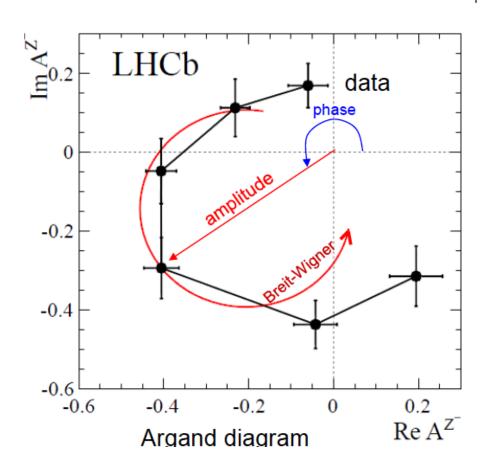
But not BaBar


- BaBar shows that moments of K⁺π⁻ resonances can reflect in mass peak
- Data are compatible with Belle
- Difference is in interpretation


Belle does 4D amplitude fit

 New fit confirms observation, but questions remain

LHCb full fit for 1+ Z



p value of 12% <u>arXiv:1404.1903</u>

Argand diagram

• Replace the Breit-Wigner amplitude for $Z(4430)^-$ by 6 independent amplitudes in $m_{\psi'\pi^-}^2$ bins in its peak region

Rapid phase transition at the peak of the amplitude → resonance!

First time ever the resonant character of the four-quark candidate has been demonstrated this way!

arXiv:1404.1903

Scalar octet problem

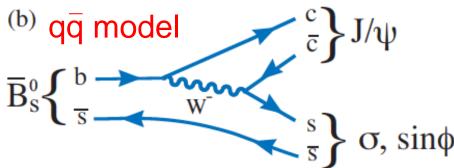
0+ vs 1⁻ meson masses (charge = 0)

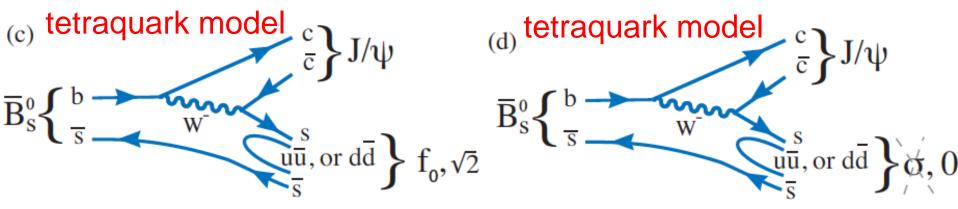
```
I = 0 : m[f_0(600)] \approx 500 \text{ MeV} I = 1 : m[\rho(776)] \approx 776 \text{ MeV}

I = 1/2 : m[\kappa] \approx 800 \text{ MeV} I = 0 : m[\omega(783)] \approx 783 \text{ MeV}

I = 0 : m[f_0(980)] \approx 980 \text{ MeV} I = 1/2 : m[K^*(892)] \approx 892 \text{ MeV}

I = 1 : m[a_0(980)] \approx 980 \text{ MeV} I = 0 : m[\phi(1020)] \approx 1020 \text{ MeV}
```


- For 1⁻, adding an s quark increases meson mass
- Suggestions that 0+ mesons are tetraquarks
- For $q\overline{q}$, $\sigma \equiv f_0(500)$ & $f_0(980)$ are mixed with $f_0(980)$ mostly $s\overline{s}$
- As tetraquarks $|f_0\rangle = \frac{1}{\sqrt{2}} \left([su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}] \right), \quad |\sigma\rangle = [ud][\bar{u}\bar{d}]$


Suggested B_s test

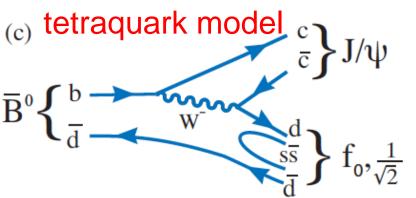
• Here $f_0 \equiv f_0 (980)$,

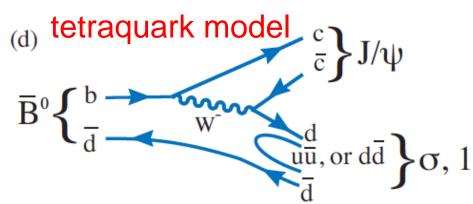
$$\sigma = f_0 (500)$$

Stone & Zhang, Phys.Rev.Lett. 111 (2013) 6, 062001

Large f_0 expected in $q\bar{q}$, no σ rate for tetraquark

Suggested B⁰ test

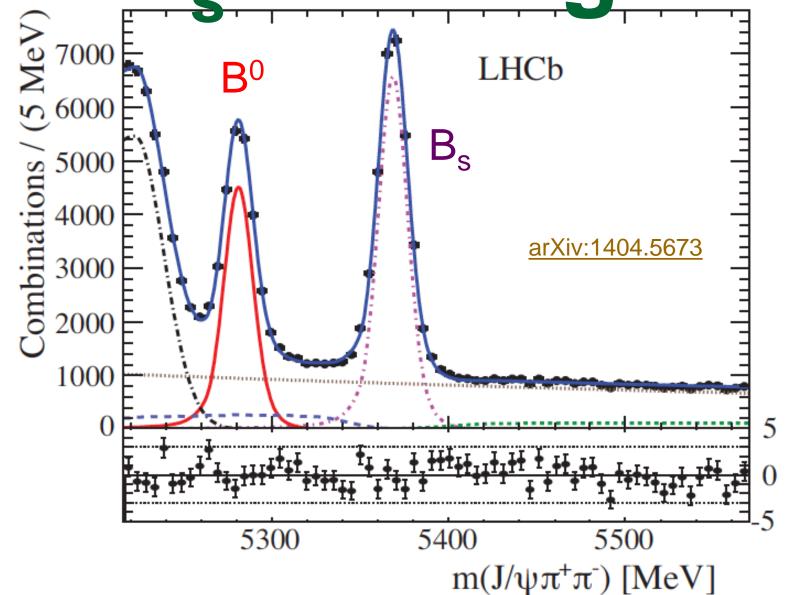

• Here $f_0 \equiv f_0$ (980),


$$(a) \quad q\overline{q} \text{ model} \quad \begin{pmatrix} c \\ \overline{c} \end{pmatrix} J/\psi$$

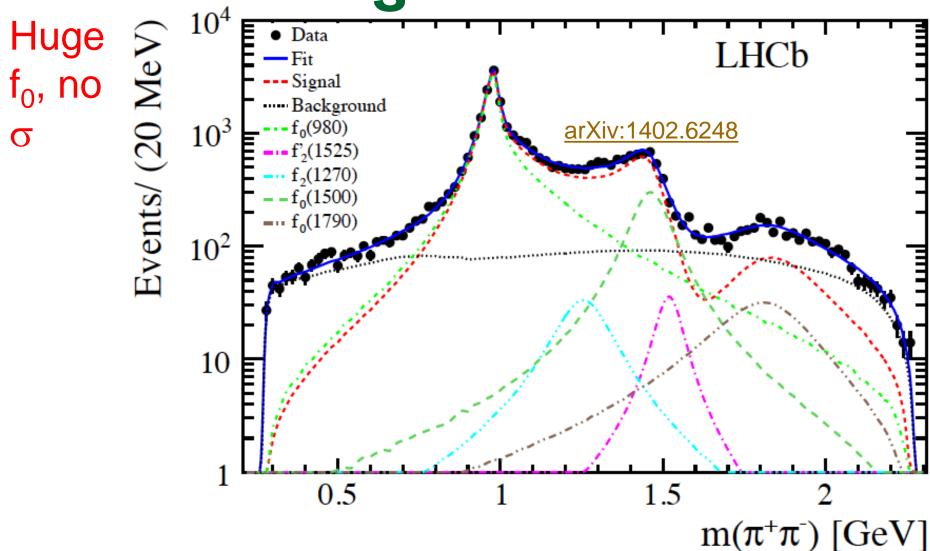
$$\overline{B}^0 \left\{ \begin{matrix} b \\ \overline{d} \end{matrix} \quad \begin{matrix} w \end{matrix} \quad \begin{matrix} d \\ \overline{d} \end{matrix} \right\} f_0, \underbrace{\sin \phi}_{\sqrt{2}}$$

$$\overline{B}^{0} \left\{ \begin{array}{c} b \\ \overline{d} \end{array} \right\} \sigma, \quad \frac{\cos \phi}{\sqrt{2}}$$

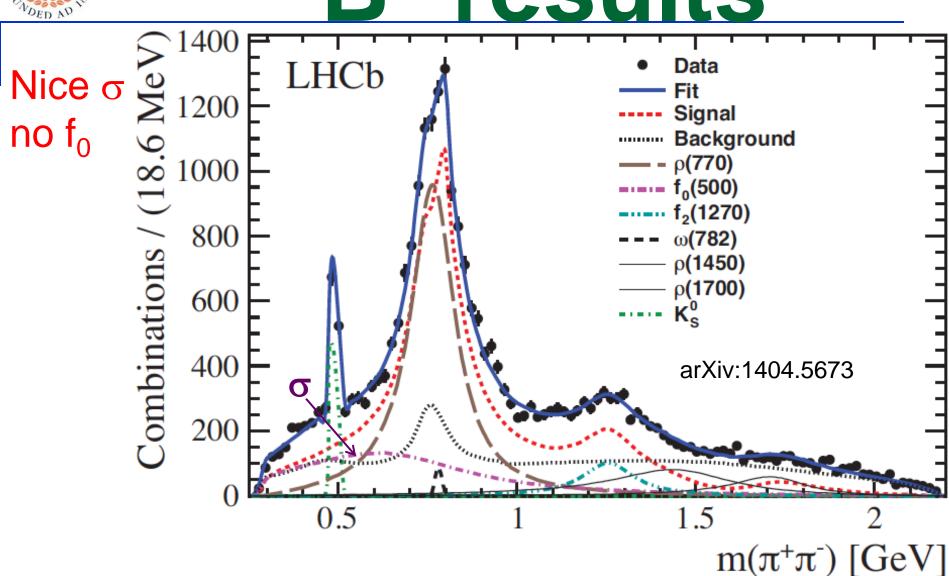
Stone & Zhang, Phys.Rev.Lett. 111 (2013) 6, 062001



Small f_0 expected in $q\bar{q}$, half of σ rate in tetraquark



B. & B⁰ signals



B_s results

B⁰ results

Not tetraquarks

$$\tan^{2} \varphi_{m} \equiv r_{\sigma}^{f} = \frac{\mathcal{B}\left(\overline{B}^{0} \to J/\psi f_{0}(980)\right)}{\mathcal{B}\left(\overline{B}^{0} \to J/\psi f_{0}(500)\right)} \frac{\Phi(500)}{\Phi(980)}$$

$$\frac{\mathcal{B}\left(\overline{B}^{0} \to J/\psi \, f_{0}(980), \ f_{0}(980) \to \pi^{+}\pi^{-}\right)}{\mathcal{B}\left(\overline{B}^{0} \to J/\psi \, f_{0}(500), \ f_{0}(500) \to \pi^{+}\pi^{-}\right)} = (0.6^{+0.7+3.3}_{-0.4-2.6})\%$$

$$\tan^2 \varphi_m \equiv r_\sigma^f = \left(1.1_{-0.7-0.7}^{+1.2+6.0}\right) \times 10^{-2} < 0.098$$
 at 90% C.L

- In qq model mixing $\angle |\varphi_m| < 17^\circ$ at 90% CL
- Tetraquark prediction of 0.5 ruled out at 8σ

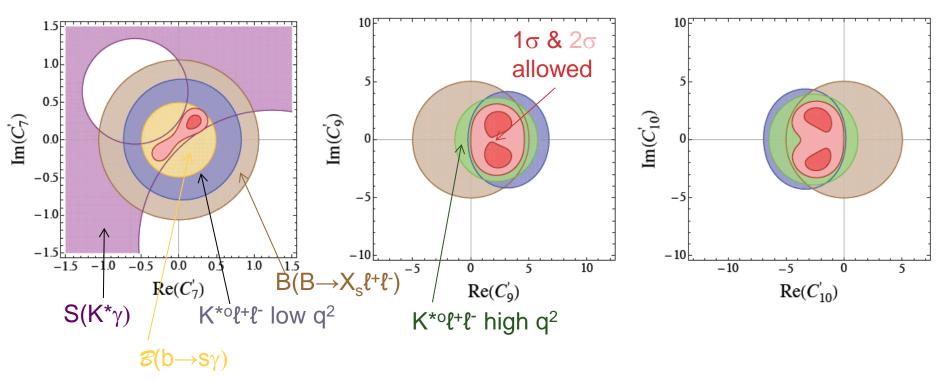
Future Acts

- LHCb Upgrade: run at 10³³ cm⁻²/s (x5), & double trigger efficiency on purely hadronic final states. Much improved sensitivities to New Physics at higher mass
 - Implemented by having a purely software trigger
 - Requires entire detector to be read-out at 40 MHz
- e⁺e⁻ Super Belle
- Time scales are on the order of 5 years

Conclusions

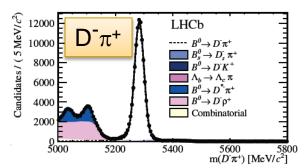
- Heavy Flavor physics is very sensitive to potential New Physics effects at high mass scales
- LHCb has started to make world class measurements of flavor physics.
- We hope to find physics beyond the Standard Model or derive limits that strongly constrains theories of New Physics.
- The LHCb upgrade is necessary to improve sensitivities.
- Many other interesting results have not been mentioned

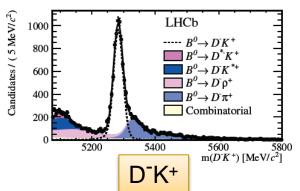
Theory conquers

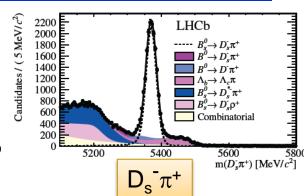


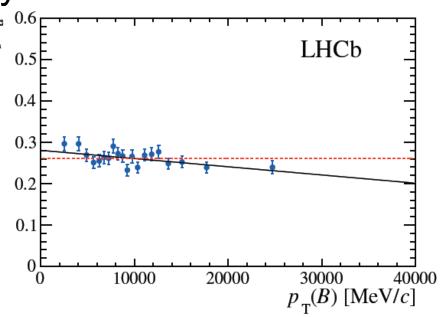
EMC

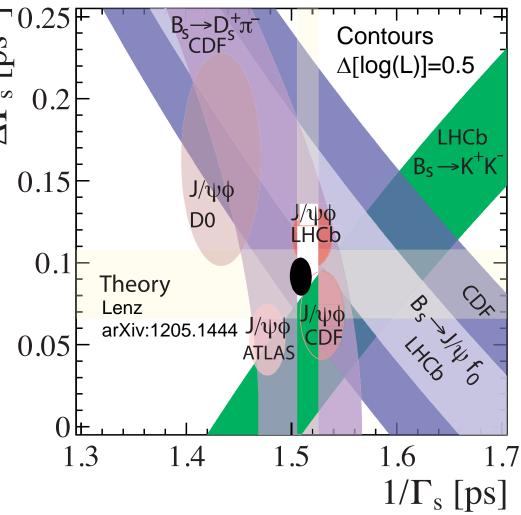
Common Analysis


APS ≡ W. Altmannshofer, P. Paradisi & D. M. Straub arXiv:1111.1257v2




Many more such generic constraints


Also B→Dh


- Take ratios, use theory
- P_t dependence now \$\bigset^{0.6}_{0.5}\$ evident, implications \$\begin{align*}
 0.4 \\
 0.5 \\
 0.6 \\
 0.5 \\
 0.7 \\
 0.8 \\
 0.8 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.3 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1 \\
 0.2 \\
 0.1

results Solve S

- B_s lifetime results here use only fully reconstructed decays
- K+K⁻ is taken as CP even $(A_{\Lambda\Gamma}=-1)$
- Ovals show 39% cl, while bands 68% cl
- τ_s =1.509±0.010 ps, $\Delta\Gamma_s$ = 0.092±0.011 ps⁻¹, y_s = $\Delta\Gamma_s$ /2 Γ_s = 0.07±0.01 (from Anna Phan)

Fermilab Academic Lectures, May only full reconstructed B_s decays used

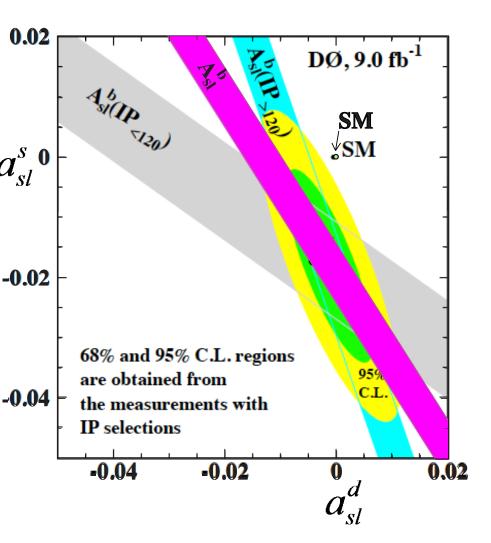
as

By definition

$$a_{sl} = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to \overline{f})}{\Gamma(\overline{M} \to f) + \Gamma(M \to \overline{f})}$$

at t=0 $\overline{M} \rightarrow f$ is zero as is $M \rightarrow \overline{f}$

- Here f is by construction flavor specific, $f \neq f$
- Can measure eg. $B_s \rightarrow D_s^+ \mu^- \nu$, versus $B_s \rightarrow D_s^- \mu^+ \nu$,
- Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at μ+μ+ vs μ-μ-
- a_{sl} is expected to be very small in the SM, $a_{sl} = (\Delta \Gamma / \Delta M) \tan \phi_{12}$, where $\tan \phi_{12} = Arg(-\Gamma_{12} / M_{12})$
- In SM (B°) a_{sl}^d =-4.1x10⁻⁴, (B_s) a_{sl}^s =+1.9x10⁻⁵ Fermilab Academic Lectures, May, 2014 arXiv:1205.1444 [hep-ph]

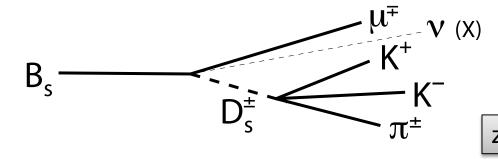


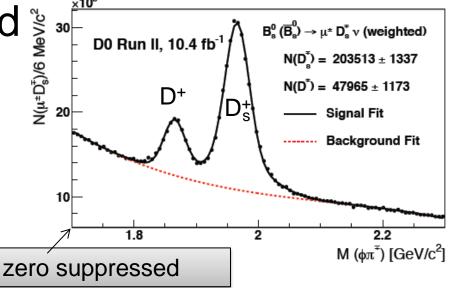
D° a_{sl}

• Using dimuons (3.9σ)

$$A_{sl}^b = (-0.787 \pm 0.172 \pm 0.093)\%$$

- Indication from D0 that its B_s
- Separate dimuons into B_d and B_s samples using muon impact parameter
- Find $a_{sl}^d = (-0.12 \pm 0.52)\%$ $a_{sl}^s = (-1.81 \pm 1.06)\%$

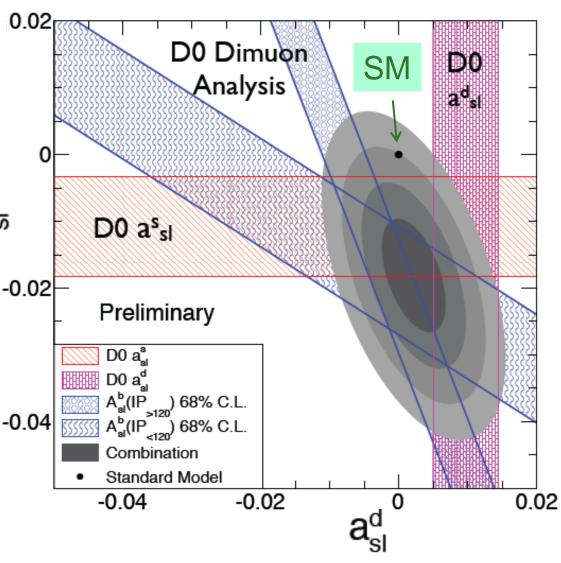




New Do Analysis

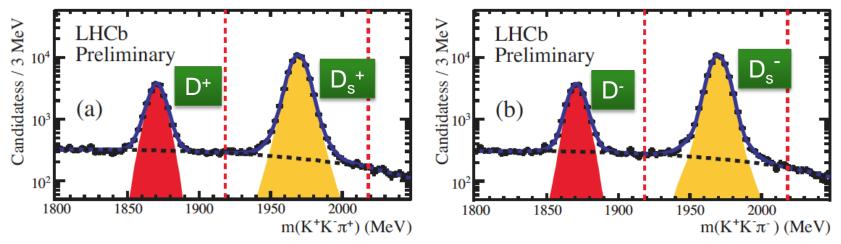
- Measure a_{sl}^s using $D_s\mu^-\nu$ events, $D_s \rightarrow \phi \pi^{\pm}$
- Measure as using 5.

 Detect a μ associated γονο θου ο σου ο σου



- Find $a_{sl}^{s} = (-1.08 \pm 0.72 \pm 0.17)\%$
- Also measure a_{sl}^d using $D^+\mu^-\nu$, $D^+ \rightarrow K\pi^+\pi^+$
- $a_{sl}^{d} = (0.93 \pm 0.45 \pm 0.14)\%$

a_{sl} according to D0


- $a_{sl}^{s} = (-1.81 \pm 0.56)\%$
- $a_{sl}^{d} = (-0.22 \pm 0.30)\%$
- 3σ from SM
- arXiv:1208.5813 🚜 👨

LHCb measurement

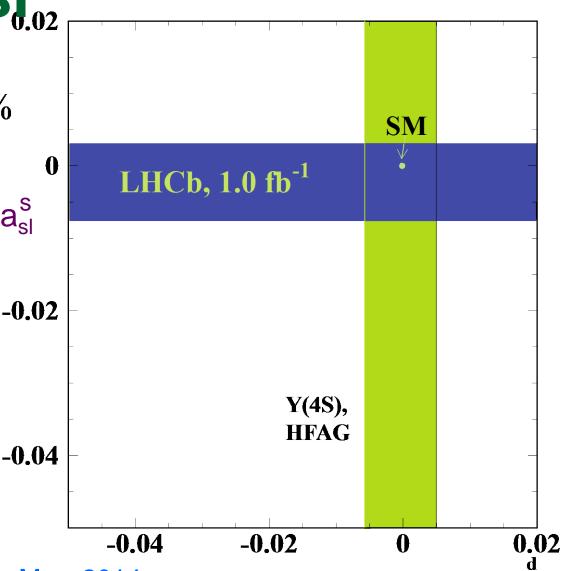
■ Use $D_s\mu^-\nu$, $D_s\rightarrow\phi\pi^\pm$, magnet is periodicaly reversed. For magnet down:

- Effect of B_s production asymmetry is reduced to a negligible level by rapid mixing oscillations
- Calibration samples (J/ψ, D*+) used to measure detector trigger, track & muon ID biases

not D0

 a_{sl}^{s}

LHCb finds

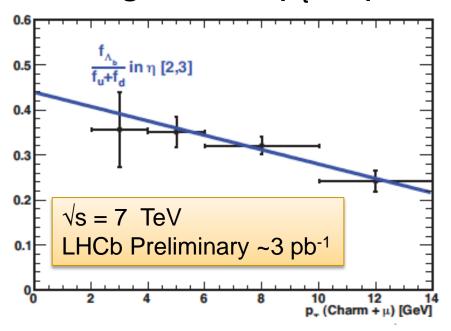

$$a_{sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%$$

B-factory

$$a_{sl}^d = (-0.05 \pm 0.56)\%$$

Results consistent with SM

 Expect φ_s to grow as $sin[2|\beta_s|+arg(M_{12})]$ for finite as



Fermilab Academic Lectures, May, 2014

Λ_b Fraction

Significant p_t dependence

$$[f_{\Lambda_b}/(f_u+f_d)] = 0.401 \pm 0.019 \pm 0.106 - (0.012 \pm 0.0025 \pm 0.0012) \times p_t(\text{GeV})$$

In general agreement with CDF measured at $< p_t > \sim 10 \text{ GeV/c}$ $f_{\Lambda_b}/(f_u + f_d) = 0.281 \pm 0.012^{+0.011}_{-0.056}^{+0.011}_{-0.056}^{+0.011}$