

S. Stone

1

New Physics from Flavour **ICHEP2012** Melbourne

Reasons for Physics Beyond the Standard Model

Dark Matter

Gravitational lensing

- Dark Energy: Cosmological constant
- Hierarchy Problem: Divergent quantum corrections to go from Electroweak scale ~100 GeV to Planck scale of Energy ~10¹⁹ GeV without "fine tuning" quantum corrections
- All of the above may only be related to Gravity

Reasons for NP

- Flavor problem: Why 3 replications of quarks & leptons?
- Baryogenesis: The amount of CP Violation observed thus far in the quark sector is too small: (n_B-n_B)/n_γ =~10⁻²⁰ but ~6x10⁻¹⁰ is needed. Thus New Physics must exist to generate needed CP Violation
- To explain the values of CKM couplings, V_{ij}, (both neutrino & quark)
- To explain the masses of fundamental objects. Are they related to the V_{ii}'s?

Why these values? Are the two related? Are they related to masses?

Theorists task

A given theoretical model must explain all the data

Model must thread through all experimental constraints (12 axe handles). One measurement can, in principle, defeat the theorist, but we seek a consistent pattern.

- While measurements of CKM parameters & masses are fun, the main purpose of Flavor Physics is to find and/or define the properties of physics beyond the SM
- FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops are changes in the W mass

•
$$M_w$$
 changes due to $m_t \quad \frac{dM_w}{dm_t} \alpha \frac{m_t}{M_w}$ $w \longrightarrow w$
• M_w changes due to $m_H \quad \frac{dM_w}{dm_H} \alpha - \frac{dm_H}{M_H}$

Limits on New Physics

- It is oft said that we have not seen New Physics, yet what we observe is the sum of Standard Model + New Physics. How to set limits on NP?
- One hypothesis: assume that tree level diagrams are dominated by SM and loop diagrams could contain NP

Already excluded ranges from box diagrams

$$\square \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{C_i}{\Lambda_i} O_i, \text{ take } c_i \sim 1$$

Ways out

- 1. New particles have large masses >>1 TeV
- 2. New particles have degenerate masses
- 3. Mixing angles in new sector are small, same as in SM (MFV)
- The above already implies strong constrains on NP

ICHEP, Melbourne, July 9, See: Isidori, Nir Neubert EPS 2011 talk

Neutral Meson Mixing

 Neutral mesons can transform into their anti-particles via 2nd

order weak interactions

 Short distance transition rate depends on

New particles possible in the loop

mass of intermediate q_i the heavier the larger, favors s & b since t is allowed

Mixing &CPV Definitions

Mixing & Decay:

$$i\frac{d}{dt}\begin{pmatrix} B_{s}^{0} \\ \overline{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M_{11} - \Gamma_{11}/2 & M_{12} - i\Gamma_{12}/2 \\ M_{12}^{*} - i\Gamma_{12}^{*}/2 & M_{22} - i\Gamma_{22}/2 \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \overline{B}_{s}^{0} \end{pmatrix}$$

- $|M_L\rangle = p|M^o\rangle + q|\overline{M}^o\rangle, |M_H\rangle = p|M^o\rangle q|\overline{M}^o\rangle,$
- $mB_s = (M_H + M_L)/2$, $\Delta M = M_H M_L$, $1/\tau_{Bs} = \Gamma = (\Gamma_H + \Gamma_L)/2$, $\Delta \Gamma = \Gamma_L - \Gamma_H$,

• $y \equiv \Delta \Gamma / 2\Gamma$

CPV Time Evolution

• Consider $a[f(t)] = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$ where *f* is a CP eigenstate

Define
$$A_f \equiv A(M \to f), \, \overline{A}_f \equiv A(\overline{M} \to f), \, \lambda_f = \frac{p}{q} \frac{A_f}{A_f}$$

• λ_f is a function of V_{ij} in SM

$$\Gamma(M \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\cosh \frac{\Delta \Gamma t}{2} - \operatorname{Re} \lambda_f \sinh \frac{\Delta \Gamma t}{2} - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$

$$\Gamma(\bar{M} \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\cosh \frac{\Delta \Gamma t}{2} - \operatorname{Re} \lambda_f \sinh \frac{\Delta \Gamma t}{2} + \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$

See Nierste arXiv:0904.1869 [hep-ph]

- Small CPV expected, good place for NP to appear
- B_s→J/ψφ is not a CP eigenstate, as it's a vectorvector final state, so must do an angular analysis to separate the CP+ and CP- components

- $\phi_s = -0.019^{+0.173+0.004}_{-0.174-0.003}$ rad
- See || talk of G. Cowan

		ψφ: Tra	nsversity	
$\frac{\mathrm{d}^4\mathrm{l}}{\mathrm{d}t\mathrm{d}}$	$\frac{\Gamma(B_s^0 \to J/\psi\phi)}{\cos\theta \mathrm{d}\varphi \mathrm{d}\cos\psi}$	$\equiv \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}t \mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$	μ^{+} y φ μ^{-} $J_{j\psi}$	
<u>k</u>	$h_k(t)$	$f_k(heta,\psi,arphi)$	J/ψ B_s $K^ B_o$	
1	$ A_0 ^2(t)$	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	μ ⁻ K ⁻ ^φ	
2	$ A_{\parallel}(t) ^2$	$\sin^2\psi\left(1-\sin^2 heta\sin^2\phi ight)$	ψ	
3	$ A_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$		
4	$\Im(A_{\parallel}(t) A_{\perp}(t))$	$-\sin^2\psi\sin2 heta\sin\phi$		
5	$\Re(A_0(t)A_{\parallel}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$		
6	$\Im(A_0(t)A_{\perp}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin 2\theta \cos \phi$		
7	$ A_{s}(t) ^{2}$	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$		
8	$\Re(A_s^*(t)A_{\parallel}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	for S-wave under ϕ predicted	
9	$\Im(A_s^*(t)A_{\perp}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	\sim by Stone & Znang PRD 79,	
10	$\Re(A_s^*(t)A_0(t))$	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$		

Transversity II

$$\begin{split} |A_{0}|^{2}(t) &= |A_{0}|^{2} e^{-\Gamma_{s}t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s} \sin(\Delta m t)], \\ |A_{\parallel}(t)|^{2} &= |A_{\parallel}|^{2} e^{-\Gamma_{s}t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s} \sin(\Delta m t)], \\ |A_{\perp}(t)|^{2} &= |A_{\perp}|^{2} e^{-\Gamma_{s}t} [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s} \sin(\Delta m t)], \\ \Im(A_{\parallel}^{*}(t)A_{\perp}(t)) &= |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t} [-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{\perp}|)\cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m t)], \\ \Re(A_{0}^{*}(t)A_{\parallel}(t)) &= |A_{0}||A_{\parallel}|e^{-\Gamma_{s}t} \cos(\delta_{\parallel} - \delta_{0})[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{\perp})\cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ \Im(A_{0}^{*}(t)A_{\perp}(t)) &= |A_{0}||A_{\perp}|e^{-\Gamma_{s}t} [-\cos(\delta_{\perp} - \delta_{0})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_{0})\cos\phi_{s} \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{0})\cos(\Delta m t)], \\ |A_{s}(t)|^{2} &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t} [\cos\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s} \sin(\Delta m t), \text{ Only term for } f=f_{cp} \\ \Re(A_{s}^{*}(t)A_{\parallel}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t} \sin(\delta_{\perp} - \delta_{s}) \sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_{s}) \cos\phi_{s} \sin(\Delta m t) \\ +\cos(\delta_{\parallel} - \delta_{s})\cos(\Delta m t)], \\ \Im(A_{s}^{*}(t)A_{\perp}(t)) &= |A_{s}||A_{\perp}|e^{-\Gamma_{s}t} \sin(\delta_{\perp} - \delta_{s}) [\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s} \sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\perp}|e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel} - \delta_{s})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s} \sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\perp}|e^{-\Gamma_{s}t}[-\sin(\delta_{\perp} - \delta_{s})\cos\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s} \sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\perp} - \delta_{s})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s} \sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin\phi_{s} \sin(\Delta m t)], \\ \Re(A_{s}^{*}(t)A_{0}(t)) &= |A_{s}||A_{0}|e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\phi_{s} \sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\sin(\delta_{0} - \delta_{s})\cos\phi_{s} \sin(\Delta m t)]. \\ \end{split}$$

• Combining LHCb results: $\phi_s = -0.002 \pm 0.083 \pm 0.027$ rad

- B_s lifetime measurements using fully reconstructed decays
- For $K^+K^- A_{\Delta\Gamma}^{=-1}$
- Ovals show 39% cl, while bands 68% cl
- $\tau_s = 1.509 \pm 0.010 \text{ ps},$ $\Delta \Gamma_s = 0.092 \pm 0.011$ $\text{ps}^{-1}, y_s = \Delta \Gamma_s / 2\Gamma_s =$ $0.07 \pm 0.01 \text{ (from Anna Phan)}$

only full reconstructed B_s decays used

19

• By definition
$$a_{sl} = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to \overline{f})}{\Gamma(\overline{M} \to f) + \Gamma(M \to \overline{f})}$$

at t=0 \overline{M} \rightarrow f is zero as is M \rightarrow \overline{f}

• Here f is by construction flavor specific, $f \neq \overline{f}$

- Can measure eg. $\overline{B}_{s} \rightarrow D_{s}^{+}\mu^{-}\nu$, versus $B_{s} \rightarrow D_{s}^{-}\mu^{+}\nu$,
- Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at μ⁺μ⁺ vs μ⁻μ⁻
- a_{sl} is expected to be very small in the SM, $a_{sl}=(\Delta\Gamma/\Delta M) \tan\phi_{12}$, where $\tan\phi_{12}=Arg(-\Gamma_{12}/M_{12})$
- In SM (B°) $a_{sl}^{d} = -4.1 \times 10^{-4}$, (B_s) $a_{sl}^{s} = +1.9 \times 10^{-5}$

- Find $a_{sl}^{s} = (-1.08 \pm 0.72 \pm 0.17)\%$
- Also measure a_{sl}^{d} using $D^{+}\mu^{-}\nu, D^{+}\rightarrow K\pi^{+}\pi^{+}$
- $a_{sl}^{d} = (0.93 \pm 0.45 \pm 0.14)\%$

23

LHCb measurement

■ Use D_sµ⁻ν, D_s→φπ[±], magnet is periodicaly reversed. For magnet down:

- Effect of B_s production asymmetry is reduced to negligible level by rapid mixing oscillations
- Calibration samples (J/ψ, D*+) used to measure detector trigger, track & muon ID biases

CPV in Charm

- Expect largest effects in Cabibbo Suppressed Decays. COULD REVEAL NP (see Grossman Kagan & Nir <u>arXiv:1204.3557</u>)
- Define: $A_{CP}(D \to f) = \frac{\Gamma(D \to f) \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$, if f is a CP eigenstate then $f = \overline{f}$
- Current data mainly from LHCb, CDF & Belle show $\Delta A_{CP} \equiv A_{CP} \left(K^+ K^- \right) - A_{CP} \left(\pi^+ \pi^- \right) = (-0.74 \pm 0.15)\%$
- A 4.9 σ effect (|| talks Tico, Tonelli) & Ko
- Both SM & NP explanations are prolific
- Choose to treat this as a limit on NP: $1\% > -\Delta A_{CP} > 0\%$

Similar to K*γ, but more decay paths

 Several variables can be examined, e.g. muon forward-backward asymmetry, A_{FB} is well predicted in SM

Forward-Backward asymmetry

ICHEP, Melbourne, July 9, 2012

Other Processes

- Other processes probe different operators
 - □ Time dependent CPV in B°→K*γ, K*→K_s π^{o} , is given by

 $\frac{\Gamma(\bar{B}^0(t) \to \bar{K}^{*0}\gamma) - \Gamma(B^0(t) \to K^{*0}\gamma)}{\Gamma(\bar{B}^0(t) \to \bar{K}^{*0}\gamma) + \Gamma(B^0(t) \to K^{*0}\gamma)} = S_{K^*\gamma}\sin(\Delta M_d t) - C_{K^*\gamma}\cos(\Delta M_d t)$

where $S_{K^*\gamma}$ = -2.3% in SM

• For Generic NP $S_{u^*} \simeq$

$$S_{K^*\gamma} \simeq \frac{2}{|C_7|^2 + |C_7'|^2} \operatorname{Im}\left(e^{-2i\beta}C_7C_7'\right)$$

Data, BaBar & Belle (-16±22)%, still useful even with the large error

Rare Decays - Generic

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + h.c. .$$

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts} V_$$

combination ICHEP, Melbourne, July 9, 2012

Many NP models possible, not just Super-Sym

MeV/c²) • LHCb & CDF use $B \rightarrow h^+h^-$ to Events / (50 tune cuts. They use a multivariate analysis

Other variables to discriminate against bkgrd : B impact parameter, B lifetime, B p_t, B isolation, muon isolation, minimum impact parameter of muons, ...

CMS & ATLAS use f_s/f_d from LHCb

See || talk of M. Perrin-Terrin

ATLAS+CMS+LHCb

 CLs for bkgrnd only, dashed line is the expectation, blue curve show the measurement, red the 95% cl limit
 LHCb data show slight excess consistent with SM

Also

 $\mathcal{B}(B_d \rightarrow \mu^+ \mu^-) < 8.1 \times 10^{-10}$

Implications

- "LHC" limit
 - □ <4.2x10⁻⁹@95% CL
 - This is 1.2 times SM value
- Set serious limits in NUHM1 SUSY model
- Other LHCb results
- $\mathcal{B}(B_s \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8}$
- $\mathcal{B}(B_d \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-9}$

Predicted via "portals" see arXiv:0911.4938

ICHEP, Melbourne, July 9, 2012

38

The 125 GeV Higgs observations kills off 4^{th} generation models as the production cross-section would be 9x larger & decays to $\gamma\gamma$ suppressed

40

Since $e^+e^- \rightarrow B^+B^-$, analysis uses reconstruction of B⁺, detection of $\tau^- \rightarrow$ one track & small extra E

ICHEP, Melbourne, July 9, 2012

See || talk of Y. Yook

$B \rightarrow D^{(*)} \tau v$

- Also, tree level –new BaBar result
- Similar to B⁻→τ⁻ν analysis: fully reconstruct one B, keep events with an additional D^(*) plus an e⁻ or μ⁻.

 Signal is wide, background, especially D** v, needs careful estimation

BaBar results

Results given in terms of ratio to $B \rightarrow D^{(*)} \ell v$

	SM Theory	BaBar value	Diff.
R(D)	0.297±0.017	0.440±0.058±0.042	+2.0σ
R(D*)	0.252±0.003	0.332±0.024±0.018	+2.7σ

- Sum is 3.4σ above SM
- Also inconsistent with type II 2HDM

(see De Nardo || talk)

The Dark Sector

- Could it be that there are 3 classes of matter?
 - SM particles with charges [SU(3)xSU(2)xU(1)]
 - Dark matter particles with "dark" charges
 - Some matter having both ("mediators")
- Searches for "dark photons"
 - □ A mediator, couples to b-quarks (see arXiv:056151 hep/ph)
 - BaBar 𝔅(Y(1S)→invisible)<3x10⁻⁴ @ 90% cl
 - Other experiments

From B. Echenard arXiv:1205.3505

Dark Higgs

- BaBar search for $e^+e^- \rightarrow h'A'$, $h' \rightarrow A'A'$
- A' is looked for in e⁺e⁻, $\mu^+\mu^-$, $\tau^+\tau^-$ & hadrons
- Limits parameterized in terms of mixing ϵ & dark matter coupling α_{D}

 Majorana v's
 Several ways of looking for presence of heavy v's (N) in heavy quark decays if they Majorana (their own anti-particles) and couple to "ordinary" v's

Modes analogous to ν–less nuclear β decay

Simplest Channels: $B^{-} \rightarrow D^{+}\ell^{-}\ell^{\prime -} \& B^{-} \rightarrow D^{*+}\ell^{-}\ell^{\prime -}$ $\ell^{-} \& \ell^{\prime -} \text{ can be}$ $e^{-}, \mu^{-} \text{ or } \tau^{-}.$

Limits on D(*)+e-e-

- Upper limits in
 e⁻e⁻ mode not
 competitive with
 nuclear β decay
- Others unique since measure coupling of Majorana v to µ⁻

Mode	Exp.	u. l. x 10 ⁻⁶
B⁻→D⁺e⁻e⁻	Belle	< 2.6
B⁻→D⁺e⁻µ⁻	Belle	< 1.8
$B^- \rightarrow D^+ \mu^- \mu^-$	Belle	< 1.0
$B^- \rightarrow D^+ \mu^- \mu^-$	LHCb	< 0.69
$B^- \rightarrow D^{*+} \mu^- \mu^-$	LHCb	< 3.6

Belle [arXiv:1107.064]

On-Shell v

- Can also look for Majorana v(N), where $N \rightarrow W^+\mu^-$
- Several ways
- A. Atre, T. Han,
- S. Pascoli, & B. Zhang [arXiv:0901.3589]
- N. Quintero, G.
 Lopez & Castro,
 [arXiv:1108.6009]

W

Ν

 π^+

Conclusions

- Although there is no compelling evidence yet for NP, Heavy Flavor physics is very sensitive to potential effects at high mass scales. All NP theories must satisfy stringent experimental constraints
- Experiments have been very effective at dispelling effects with marginal statistical significance, although a few remain.
 Will some stand when precision improves?
- Improving measurements such as $B_s \rightarrow \mu^+ \mu^-$, $B \rightarrow K \mu^+ \mu^-$, CPV: ϕ_s , etc.., may show NP effects, & need to be aggressively pursued
- We are looking forward to new flavor physics discoveries from the LHC & its upgrades, BESIII, and Super B factories
- We are looking forward to defining the next theory beyond the SM

Thanks!

- To my scientific secretary Antonio Limosani
- Conference organizers:
 - Geoffrey TAYLOR

Paul HOGAN

Raymond VOLKAS

Apologies for all the interesting results, I left out

