CERN-FNAL HCP 2009

Experimental Aspects of Heavy Flavour Physics

.... The saga of the penguin and the polar bear....

Valerie Gibson

Disclaimer....

The title "Experimental Aspects of Heavy Flavour Physics" covers an enormous range of topics. Therefore I can only present a very selective personal view. Concentrate on mostly experimental aspects of

The quest to understand the SM picture of Heavy Flavours and the search for New Physics.

Acknowledgements

I have taken my inspiration from many recent results and conference talks....If you would like to know more about the current status of Heavy Flavour Physics, have a look at...

Recontres de Moriond EW/QCD 2009

Heavy Flavor Averaging Group

http://www.slac.stanford.edu/xorg/hfag/

Many thanks to those who (un)knowingly help me: T.Browder, L.Esteve, T.Gershon, G.Hamel de Monchenault,

U.Kerzel, T.Ruf, Y.Sakai, K.Trabelsi, G.Wilkinson and many more....

Overview

- Introduction
- The Standard Model
- B Physics

- Celebrating the B factories
- What have we learnt from the Tevatron ?
- The LHC era
- and beyond....
- Summary

HADRON COLLIDER PHYSICS SUMMER SCHOOL

Role of Heavy Flavour Physics

Heavy flavour physics has led the way to

- The 3 generation Standard Model
- The CKM picture of flavour
- CP Violation
- SM cannot be ultimate theory

- low-energy effective theory of a more fundamental theory at a higher energy scale (TeV range)
- Hierarchy problem: New Physics required to cancel radiative corrections to the Higgs mass but leave the SM EW predictions unaffected
- NP needs to have a special flavour structure
- provide the suppression mechanism for FCNC processes already observed.
- we need to measure the flavour structure to distinguish between the NP models.
- Flavour physics goes hand-in-hand with direct searches

Historical Note

0.5

2.5 Γ_7 [GeV]

1.0

6/83

The Standard Model

Physical quark states in the Standard Model

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \begin{pmatrix} c \\ s \end{pmatrix}_{L} \begin{pmatrix} t \\ b \end{pmatrix}_{L}, \dots, u_{R}, d_{R}, c_{R}, s_{R}, t_{R}, b_{R}$$

Lagrangian for charged current weak decays

$$L_{cc} = -\frac{g}{\sqrt{2}} J^{\mu}_{cc} W^{*}_{\mu} + h.c.$$

where

$$J_{cc}^{\mu} = \left(\overline{u}, \overline{c}, \overline{t}\right)_{L} \gamma^{\mu} V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{L}$$

CKM Matrix

Quarks

weak
statesCKM matrixmass
states
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
 $\begin{pmatrix} V_{ij} \text{ proportional to transition amplitude from quark j to quark i toq quark i to quark i toq$

Antiquarks

 $\begin{bmatrix} \vec{a}' \\ \vec{s}' \\ \vec{b}' \end{bmatrix} = \begin{pmatrix} V_{ud}^* & V_{us}^* & V_{ub}^* \\ V_{cd}^* & V_{cs}^* & V_{cb}^* \\ V_{td}^* & V_{ts}^* & V_{tb}^* \end{pmatrix} \begin{pmatrix} \vec{a} \\ \vec{s} \\ \vec{b} \end{pmatrix}$ $\begin{bmatrix} \vec{b} & \swarrow & V_{ub}^* \\ V_{ub}^* & V_{ub}^* \\ V_{ub}^* & V_{ub}^* \end{pmatrix}$

CPV due to complex phases of CKM matrix elements

CKM Matrix

- CKM matrix is complex and unitary
- 4 independent parameters

$$\hat{V}_{\rm CKM}^{+}\hat{V}_{\rm CKM}=1$$

- These 4 numbers are fundamental constants of nature and must be determined from experiment
- Standard parametrization (PDG)
 - 3 angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 phase δ

$$V_{CKM} = R_{23} \times R_{13} \times R_{12}$$

$$R_{12} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \quad R_{13} = \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

$$s_{ij} = \sin \theta_{ij}$$
 $c_{ij} = \cos \theta_{ij}$

Wolfenstein parameterization (perturbative form)

$$\lambda = s_{12} \quad A = \frac{s_{23}}{s_{12}^2} \quad \rho = \frac{s_{13} \cos \delta}{s_{12} s_{23}} \quad \eta = \frac{s_{13} \sin \delta}{s_{12} s_{23}}$$
$$\lambda = \sin \theta_{12} \approx 0.2$$

Reflects hierarchy of strengths of quark transitions

ADRON

Wolfenstein parameterization to $O(\lambda^3)$:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

Next-to leading order corrections in λ will be important in LHC era:

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + A^2\lambda^5(\frac{1}{2} - \rho - i\eta) & 1 - \frac{\lambda^2}{2} - \frac{\lambda^4}{8}(1 + 4A^2) & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 + A\lambda^4(1/2 - \rho - i\eta) & 1 - \frac{A^2\lambda^4}{2} \end{pmatrix} + O(\lambda^6)$$

 $(\overline{\rho},\overline{\eta}) \equiv (1-\lambda^2/2)(\rho,\eta)$

HADRON

COLLIDER

Requirements for CP violation

$$\binom{m_t^2 - m_c^2}{m_t^2 - m_u^2} \binom{m_c^2 - m_u^2}{m_c^2 - m_u^2} \times \binom{m_b^2 - m_s^2}{m_b^2 - m_d^2} \binom{m_b^2 - m_d^2}{m_s^2 - m_d^2} \times J_{CP} \neq 0$$

 $J_{CP}^{}$ Jarlskog determinant

where

$$J_{CP} = \left| \operatorname{Im} \left\{ V_{i\alpha} V_{j\beta} V_{i\beta}^* V_{j\alpha}^* \right\} \right| \quad (i \neq j, \alpha \neq \beta)$$

Using parameterizations

$$J_{CP} = s_{12}s_{13}s_{23}c_{12}c_{23}c_{13}\sin\delta = \lambda^6 A^2 \eta = O(10^{-5})$$

CP violation is small in the Standard Model

Unitarity Triangles

CKM matrix is unitary : 12 conditions (6 normalisation, 6 orthoganality)

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \text{ (db)}$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0 \text{ (sb)}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0 \text{ (ds)}$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{ub}V_{tb}^{*} = 0 \text{ (dt)}$$

$$V_{ud}V_{td}^{*} + V_{us}V_{ts}^{*} + V_{ub}V_{tb}^{*} = 0 \text{ (ct)}$$

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{tb}^{*} = 0 \text{ (ct)}$$

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0 \text{ (ct)}$$

$$V_{ud}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0 \text{ (ct)}$$

$$V_{cd}V_{cd}^{*} + V_{us}V_{cs}^{*} + V_{ub}V_{cb}^{*} = 0 \text{ (ct)}$$

All 6 Δ 's have the same area (= $J_{CP}/2$), a measure of CPV in the Standard Model.

15/6/2009

$$\eta \frac{Im}{V_{ud}V_{td}} + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0$$

$$\frac{V_{ub}^*V_{tb}}{A\lambda^3}$$

$$\eta\lambda^2 + \beta \frac{\beta - \beta_s}{\beta - \beta_s} \frac{\beta_s}{1 - \frac{\lambda^2}{2} + \rho\lambda^2}$$

$$\beta_s = \arg\left[-\frac{V_{cb}^*V_{cs}}{V_{tb}^*V_{ts}}\right] \sim \eta\lambda^2 \sim 1^{\circ}$$

2 Δ 's identical to O(λ ³)

The Ultimate Quest...

To discover New Physics

beyond the Standard Model

The Quest...

NP models introduce new particles which could

- be produced and discovered as real particles
- appear as virtual particles in loop processes \rightarrow observable deviations from the SM expectations in flavour physics and CPV

Heavy flavour programme

- Precision measurements of CKM elements
- Compare tree level processes with loop processes sensitive to NP
- Measure all angles and sides in many different ways and look for inconsistencies
- Measure processes very suppressed in SM

The Tools....

B Physics

STORE OF

Why the b-quark ?

- Heaviest quark that forms hadronic bound states (m~4.7 GeV)
- Must decay outside 3rd family
 - All decays are CKM suppressed
 Long lifetime (~1.6 ps)
- High mass: many accessible final states (all Br's are small)
- Dominant decay process: "tree" b→c transition
- Very suppressed "tree" b→u transition
- FCNC: "penguin" b→s,d transition
- Flavour oscillations (b→t "box" diagram)
- CP violation expect large CP asymmetries in some B decays

B Physics

> 25 pages

PDG 1986	BOTTOM MESONS ^a B ⁺ -	$= u\overline{b}, B^0 = d\overline{b}, \overline{B}^0 = \overline{d}b, B^- = \overline{u}b$	PDG 2009
	B^{\pm} $\frac{1}{2}(0^{-})^{p}$ 5271.2 B^{+}	$(\text{ or } B^{-} \rightarrow \text{chg. conj.})$ $^{0}\pi^{+}$ (1.1 ± 0.6)% 2303 $^{2}2009^{-}-^{+}\pi^{+}$ (2.7 ± 1.7)% 2343	
	$m_{B0} - m_{B \pm} = 4.0 \qquad J/$ $\pm 3.4 \qquad - 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	> 25
	$ \frac{B^{0}}{B^{0}} \stackrel{\frac{1}{2}(0^{-})^{p}}{\pm 2.8} \qquad \begin{array}{c} B^{0} \stackrel{1}{\longrightarrow} \\ D^{*} \\ P^{+} \\ e^{+} \\ e^{+} \\ e^{+} \\ e^{+} \end{array} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	$B^{\pm}, B^{0}, \overline{B}^{0} \qquad (14.2 \pm 2.7) \times 10^{-13} e^{\pm}$ (not separated) ^q $C\tau=0.043 \qquad D^{0}$ $\frac{\Gamma(B \rightarrow \overline{B} \rightarrow \ell^{-} \text{ any})}{\Gamma(B \rightarrow \ell^{\pm} \text{ any})} < 0.12 \qquad K$ $\frac{\Gamma(B \rightarrow e^{\pm} \nu \text{ noncharm-hadrons})}{\Gamma(B \rightarrow e^{\pm} \nu \text{ hadrons})} < 0.04 \qquad \mu^{+}$	$ \begin{aligned} & \overset{\pm}{\nu} \text{ hadrons} & (12.3 \pm 0.8)\% \\ & \overset{\pm}{\nu} \text{ hadrons} & (11.0 \pm 0.9)\% \\ & \text{o anything} & (80 \pm 28)\% \\ & \text{anything} & (\text{ seen }) \\ & \text{anything} & (>3.6)\% \\ & \text{anything} & (>2.2)\% \\ & \overset{\pm}{\tau}^{-} \text{ anything} & (<0.6)\% \\ & \overset{\pm}{\tau}^{-} \text{ anything} & (<0.6)\% \\ & \overset{\pm}{\mu}^{-} \text{ anything} & (1.2 \pm 0.3)\% \\ & \overset{\bullet}{\nu}(2010)^{\pm} \text{ anything} & (23 \pm 9)\% \end{aligned} $	
and the second			

- 1992 Evidence for
- 1993 First observation of $B \to K \gamma, B \to \pi^{+}\pi$, time dependent B mixing
 - 1994 Evidence for E B , measurement of exclusive B lifetime
 - 1998 Discovery of B_c
 - 2001 Discovery of CPV in B system
 - 2004 Direct CPV in B system
 - 2006 Measurement of B_s mixing

15/6/2009

HADRON

COLLIDER PHYSICS

B Mixing

Mixing of neutral B mesons governed by

$$i\frac{\partial}{\partial t}\begin{pmatrix}a\\b\end{pmatrix} = H\begin{pmatrix}a\\b\end{pmatrix} = \begin{pmatrix}M_{11} - \frac{i}{2}\Gamma_{11} & M_{12} - \frac{i}{2}\Gamma_{12}\\M_{12}^* - \frac{i}{2}\Gamma_{12}^* & M_{22} - \frac{i}{2}\Gamma_{22}\end{pmatrix}\begin{pmatrix}a\\b\end{pmatrix}$$

Physical mass eigenstates

$$\left|B_{L,H}\right\rangle = p\left|B^{0}\right\rangle \pm q\left|\overline{B^{0}}\right\rangle$$

$$\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$

$$\left|p\right|^{2}+\left|q\right|^{2}=2$$

- p and q represent the amount of state mixing

$$\Delta m = m_H - m_L = 2|M_{12}|$$

$$\Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$$

$$\Delta m_s = 17.77 \pm 0.10 \pm 0.007 \text{ ps}^{-1}$$

$$\Delta \Gamma_s \approx 10\%$$

15/6/2009

CP Violation in B System

Decay amplitudes of flavour states \rightarrow final state f

$$A_{f} = \left\langle f \left| H \right| B^{0} \right\rangle \quad \overline{A_{f}} = \left\langle f \left| H \right| \overline{B^{0}} \right\rangle$$

Define

General time dependence of decay rate for initially pure flavour states

 $\sim_f - \frac{1}{p} A_f$

$$\Gamma_{f} \equiv \left| \left\langle f \left| H \right| B^{0}(t) \right\rangle \right|^{2} = \frac{1 + \left| \lambda_{f} \right|^{2}}{2} \left| A_{f} \right|^{2} e^{-t/\tau} \left[\cosh y t / \tau + \Omega_{f} \sinh y t / \tau + C_{f} \cos x t / \tau - S_{f} \sin x t / \tau \right]$$

$$\overline{\Gamma}_{f} \equiv \left| \left\langle f \left| H \right| \overline{B}^{0}(t) \right\rangle \right|^{2} = \frac{1 + \left| \lambda_{f} \right|^{2}}{2} \left| \frac{p}{q} A_{f} \right|^{2} e^{-t/\tau} \left[\cosh y t / \tau + \Omega_{f} \sinh y t / \tau - C_{f} \cos x t / \tau + S_{f} \sin x t / \tau \right]$$

Dominant decays

Rare hadronic decays

Radiative and leptonic decays

15/6/2009

Where to start ?

Υ (4s) Resonance

ADRON

COLLIDER PHYSICS

Υ (4s) Resonance

Symmetric-energy collider : B mesons produced ~ at rest in the CM frame which, combined with a short B lifetime (~1.5 ps), makes flight distance unmeasurably small.

Asymmetric-energy collider : with boost $\beta\gamma \sim 0.6$

Asymmetric B Factories

PEP-II @ SLACHigh Energy Ring : $9.0 \text{ GeV } e^-$ Low Energy Ring : $3.1 \text{ GeV } e^+$ Design luminosity : $3 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ Peak luminosity : $1.207 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

KEK-B @ KEK

High Energy Ring : 8.0 GeV e^- Low Energy Ring : 3.5 GeV e^+ Design luminosity : 1 x 10³⁴ cm⁻²s⁻¹ Peak luminosity : 1.71 x 10³⁴ cm⁻² s⁻¹

Beam crossing angle : 22 mrad

ADRON Luminosity at B Factories COLLIDER PHYSICS Cumulated stats : ~1400 fb⁻¹ Integrated Luminosit 1400 Luminosity Integrated 840 fb⁻¹ 1200 750 fb⁻¹ at Υ(4s) _uminosity (fb⁻¹) 1000 Luminosity Integrated 531 fb⁻¹ 433 fb⁻¹ at Y(4s) 800 600 400 200 0 BaBar : 465M BB pairs = final sample 2000/1 2002/1 : 657M BB pairs = max current sample Belle (final sample expected ~800M BB pairs) K.Trabelsi, Moriond 2009

15/6/2009

BELLE and BABAR

3/4 layers DSSD silicon detector Threshold Cherenkov + TOF Central drift chamber EM Cal Csl RPCs 1.5T solenoid

5 layers DSSD silicon detector Ring-Imaging Cherenkov DIRC

Drift chamber EM Cal Csl RPCs

1.5T SC solenoid

Kinematics at the Υ (4s)

Precise knowledge of CM energy used to constrain kinematics of B system.

Estimate background from sidebands

Continuum background suppressed using event shape

$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}} \quad E_{beam}^{*} = \sqrt{S/2}$$

HADRON

COLLIDER

What to measure first ?

$Sin(2\beta) \equiv Sin(2\phi_1)$

$$\beta = \tan^{-1} \frac{\overline{\eta}}{1 - \overline{\rho}}$$

β : b \rightarrow ccs modes

Golden decay mode: $B^0 \rightarrow J/\psi K^0$, final state CP eigenstate Method:

Count number of signal events reconstructed with B^0 and \overline{B}^0 tags as a function of Δt Observed asymmetry depends on time resolution and tagging purity of sample.

 $A_{CP}(t) = \frac{N(B_{tag} = B^{0}) - N(B_{tag} = \overline{B}^{0})}{N(B_{tag} = B^{0}) + N(B_{tag} = \overline{B}^{0})}$

$$\begin{split} \lambda_f &= \left(\frac{q}{p}\right)_{B^0} \left(\frac{q}{p}\right)_{K^0} \left(\frac{A}{A}\right)_{J/\Psi K^0} \\ &= -\left(\frac{V_{tb}^* V_{td}}{V_{tb} V_{td}^*}\right) \left(\frac{V_{cs} V_{cd}^*}{V_{cs}^* V_{cd}}\right) \left(\frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}\right) \end{split}$$

$$\approx \pm \{(1-2\omega) \times \sin 2\beta \times \sin(\Delta m\Delta t)\} \otimes \mathsf{R}(\Delta t)$$

$$= \pm \{(1-2\omega) \times \sin 2\beta \times \sin(\Delta m\Delta t)\} \otimes \mathsf{R}(\Delta t)$$

$$= \lim\{\lambda_f\} = \lim\{-e^{-2i\beta}\} = \sin 2\beta$$

$$= \lim\{-e^{-2i\beta}\} = \sin 2\beta$$

15/6/2009

ADRON

OLLIDER

And now...

Belle : 535M BB; PRL98 (2007) 031802 BaBar : 465M BB; PRD79 (2009) 072009

CERN/FNAL Summer School

β : b \rightarrow ccs modes

Other measurements sensitive to $cos(2\beta)$ remove ambiguity

HADRON

COLLIDER PHYSICS

β_{eff} in other modes

Increasing tree diagram amplitude

Increasing sensitivity to new physics

ADRON

15/6/2009

β_{eff} : b \rightarrow sqq modes

Time-dependent Dalitz plot analyses sensitive to $sin(2\beta_{eff})$ and $cos(2\beta_{eff})$

ADRON

COLLIDER PHYSICS

Non-zero β_{eff} is observed in b-sqq penguin transition Smaller error is required to see any deviation between sin(2 β_{eff}) and sin(2 β)

Angle $\alpha \equiv \phi_2$

$$\alpha = \pi - \beta - \gamma$$

$$\beta = \tan^{-1} \frac{\overline{\eta}}{1 - \overline{\rho}}$$

$$\gamma = \tan^{-1} \frac{\eta}{\rho}$$

$$\beta = \tan^{-1} \frac{\eta}{1 - \overline{\rho}}$$

$$\gamma = \tan^{-1} \frac{\eta}{\rho}$$

5

Strangeless-charmless two-body decay; $b \rightarrow uud$ transition, final state

CP eigenstate.

OLLIDE

If tree amplitude dominates

 $\lambda^t{}_{\pi^+\pi^-}=+e^{-2i(eta+\gamma)}=e^{2ilpha}$

S

$$S_{\pi^{+}\pi^{-}} = sin 2\alpha$$
 $C_{\pi^{+}\pi^{-}} = 0$
 $S_{f} = \frac{2 \operatorname{Im} \lambda_{f}}{1 + |\lambda_{f}|^{2}}$ $C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}$

... but penguin contributions cannot be neglected

$$\lambda_{\pi^+\pi^-}^{t+p} \approx e^{2i\alpha} \left[1 + 2i \Big| \frac{P}{T} \Big| \sin \alpha e^{i(\delta_P - \delta_T)} \right]$$

 $\alpha e^{i(\delta_P - \delta_T)} \int S_{\pi^+ \pi^-} = \sin 2\alpha - 2 \left| \frac{P}{T} \right| \sin \alpha \cos 2\alpha \cos \left(\delta_P - \delta_T \right) + O\left(\left| \frac{P}{T} \right|^2 \right)$

 $\left|\frac{P_{T}}{T}\right| \sim 30\%$

In general let $\lambda_{\pi^{+}\pi^{-}} \equiv |\lambda_{\pi^{+}\pi^{-}}| e^{2i\alpha_{eff}}$ and fit time-dependent CP asymmetry $A_{CP}(t) = \sqrt{1 - C_{\pi\pi}^{2}} \sin 2\alpha_{eff} \sin (\Delta mt) - C_{\pi\pi} \cos(\Delta mt)$

$\alpha: B \rightarrow \pi^+\pi^-$

 $\frac{1}{\sqrt{2}}$ A(B° $\rightarrow \pi^+\pi^-)$)

Ambiguities: 4 triangle orientations \rightarrow 4-fold ambiguity for $\Delta \alpha$ $\alpha \Leftrightarrow (\pi - \alpha) \Rightarrow 8$ -fold ambiguity for α

Need to measure $Br(B^0 \to \pi^0 \pi^0)$ and $Br(\overline{B}^0 \to \pi^0 \pi^0)$ $\sigma(\Delta \alpha)$ determines $\sigma(\alpha)$

6-98 64 18 A3

15/6/2009

 $B^0 \rightarrow \pi^0 \pi^0$

 $B^+ \rightarrow \pi^+ \pi^0$

 $A_{+-} + \sqrt{2}A_{00} = \sqrt{2}A_{0+}$

 $\overline{A}_{+-} + \sqrt{2}\overline{A}_{00} = \sqrt{2}\overline{A}_{0-}$

 $\frac{1}{\sqrt{2}} \widetilde{A}(\overline{B}^{\circ} \to \pi^{+} \pi^{-}) \qquad A(B^{\circ} \to \pi^{\circ} \pi^{\circ}$

 $\widetilde{A}(\overline{B} \rightarrow \pi^{-}\pi^{\circ}) = A(B^{+} \rightarrow \pi^{+}\pi^{\circ})$

 $\widetilde{A}(\overline{B}^{\circ} \rightarrow \pi^{\circ}\pi^{\circ})$

Neglecting EWP

 $|A_{0+}| = |\overline{A}_{0+}|$

48/83

$\alpha: B \to \rho \rho$

- $B \to \rho\rho \text{ similar to } B \to \pi\pi$ $\bigcup Br(B^0 \to \rho^+ \rho^-) \sim 5 \times Br(B^0 \to \pi^+ \pi^-) \text{ and } Br(B^0 \to \rho^0 \rho^0) \sim 4\% \times Br(B^0 \to \rho^+ \rho^-)$
- \lor |P/T| smaller ~ 4%
- $\underbrace{ \\ \hline \\ } \text{Time-dependent measurement for } B^0 \rightarrow \rho^0 \rho^0 \text{ possible} \rightarrow S_{00} \\ \text{lifts 4-fold ambiguity} }$
- $\begin{array}{ccc} & \rho & \text{has spin 1} \rightarrow 3 \text{ polarization states} \\ & \text{Mixture CP odd and CP even} \end{array}$

1 longitudinal $\propto \cos \theta_1 \cos \theta_2$ 2 transverse $\propto \sin \theta_1 \sin \theta_2 e^{\pm i\phi}$

Integrate over ϕ

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d\cos\theta_1 d\cos\theta_2} = \frac{9}{16} \left[4\cos^2\theta_1 \cos^2\theta_2 f_L + \sin^2\theta_1 \sin^2\theta_2 (1 - f_L) \right]$$

is almost longitudinally polarized

 $= 0.992 \pm 0.024_{-0.013}^{+0.026}$

15/6/2009

15/6/2009

Summary α

$$\alpha = (89.0_{-4.2}^{+4.4})^{\circ} 60\%$$
 c.l. interval

 α is now a precision 4.8% measurement Note: $\beta @ 4.2\%$

Angle $\gamma \equiv \phi_3$

$\gamma : B \rightarrow DK$

The measurement of γ via tree processes provides a SM benchmark that must be met by any New Physics model

The theoretically cleanest method measures γ via the interference between $B \rightarrow D^0 K$ and $B \rightarrow \overline{D^0} K$

Common parameters: CKM angle γ Amplitude ratio, r_B Strong phase difference, δ_B γ precision very sensitive to value of r_B

$$\frac{\left\langle B \to \overline{D^0} K \right\rangle}{\left\langle B \to D^0 K \right\rangle} = r_B e^{i(\delta_B - \gamma)}$$

$$Y_B \sim \frac{|V_{ub}V_{cs}^*|}{|V_{cb}V_{us}^*|} \times |\text{col. supp}| = 0.1 - 0.2$$

HADRON COLLIDER PHYSICS SUMMER SCHOOL

$\gamma : B \rightarrow DK$

Reconstruct D in final states accessible to both D^0 and D^0

- **"ADS" Method:** Atwood, Dunietz, Soni; PRL78 (1997) 3257; PRD63 (2001) 036005.
- $D \rightarrow Cabibbo favoured and doubly-suppressed decays e.g. K^+\pi^-, K^+\pi^-\pi^0$

"GLW" Method: Gronau, London, Wyler; PLB253 (1991) 483; PLB265 (1991) 172.

 $D \rightarrow CP$ Eigenstates e.g. K^+K^- , $\pi^+\pi^-$, $K_s\pi^0$

"Dalitz" or "GGSZ" Method: Giri, Grossman, Soffer, Zupan, PRD68 054018 (2003). D \rightarrow three-body decays e.g. $K_s \pi^+ \pi^-$, $K_s K^+ K^-$

Time-integrated analyses, tagging not required Effects due to charm mixing and CP violation negligible Different B decays (e.g. DK, D^*K , DK^*) have different hadronic factors r_B , δ_B Strategy: combine as many channels as possible to improve γ sensitivity

Currently most powerful method for extraction of γ Exploit interference pattern in Dalitz plot for $B^{\mp} \rightarrow D(K_s h^+ h^-) K^{\mp}$

Sensitivity varies strongly over Dalitz plane (mixture ADS+GLW) Input knowledge of *D* decay amplitude, introduces model uncertainty

Simultaneous fit to Dalitz plot density for B⁺/B⁻ data

ADRON

OLLIDER

15/6/2009

GGSZ (Dalitz) Method

BaBar : 383M BB; PRD78 (2008) 034023 Belle : 657M BB; ArXiv:0803.3375 $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$ $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$ $\gamma = \left(76^{+12}_{-13} \pm 4 \pm 9\right)^{6}$ $B \rightarrow DK, D^*K$ $D \rightarrow K_{s}\pi^{+}\pi^{-}$ model error $\gamma = (76 \pm 22 \pm 5 \pm 5)^{\circ}$ $B \rightarrow DK, D^*K, DK^*$ $D \rightarrow K_{s}\pi^{+}\pi^{-}, K_{s}K^{+}K^{-}$ Note: difference in Belle & BaBar

stat errors due to values of r_B

15/6/2009

Summary γ

World average combinations vary according to statistics philosophy...

frequentist

 V_{ub} and V_{cb}

$|V_{ub}|$ and $|V_{cb}|$ determined from semi-leptonic B decays

At tree level everything is clean

QCD corrections must be included

- Inclusive measurements :
 OPE → total s.l. decay rate, moments
- Exclusive measurement :
 Form factors from LQCD

 $V_{ub} \text{ suffers from large } b \to c \text{ background}$ $\frac{\Gamma(b \to u\ell \nu)}{\Gamma(b \to c\ell \nu)} \sim \left| \frac{V_{ub}}{V_{cb}} \right|^2 \sim \frac{1}{50}$

Theory and experiment analyses are well advanced

- Briefly comment on current status

15/6/2009

 τv

The helicity suppressed $B \rightarrow \tau v$ annihilation decay sensitive to $f_B / V_{ub} / A$ lso sensitive to tree-level charged Higgs

$$Br(B^{+} \to \tau^{+}\nu) = \frac{G_{F}^{2}}{8\pi} |V_{ub}|^{2} f_{B}^{2} m_{B} m_{\tau}^{2} \tau_{B} \left(1 - \frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2}$$

An excess of events is clearly visible in signal region of "Extra Energy in Calorimeter"

$$Br(B^{+} \to \tau^{+}\nu) = (1.65^{+0.38}_{-0.37}) \times 10^{-4}$$

Semi-leptonic tag
$$Br(B^{+} \to \tau^{+}\nu) = (1.2 \pm 0.4 \pm 0.3 \pm 0.2) \times 10^{-4}$$

BaBar : 383M BB; PRD77 (2008) 011107 Belle : 657M BB; ArXiv:0809.3834 hadronic tag

~2.5 σ discrepancy between Br(B $\rightarrow \tau \nu$) and CKM from other measurements

Combining with B mixing results removes dependence on f_B

$$\frac{Br(B^+ \to \tau^+ \nu)}{\Delta m_d} = \frac{3\pi}{4} \frac{m_\tau^2 \tau_B}{m_W^2 S(x_t)} \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \frac{\sin^2 \beta}{\sin^2 \gamma} \frac{1}{|V_{ud}|^2 B_{B_d}}$$

Tension with $sin 2\beta$ persists.

Theory free prediction for $B_{Bd} \sim 2.7\sigma$ from LQCD value

$B \rightarrow \tau \nu$

Tree-level charged Higgs contribution interferes destructively with SM

W diagram 1000**Disfavoured region** annıhılatıon 10 33 (05%) - C.1 800 Br/BrSM<1 \mathbf{H}^+ H[±] Mass (GeV/c²) 600 e.g. MSSM (G.Isidori; ArXiv:0710.5377) 400 $Br(B^+ \to \tau^+ \nu) \approx Br^{SM} \times \left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)$ 200 Tevatron Run LEP Excluded (95% C.L.) Br $=1.77\pm0.65$ $B\overline{r^{SM}}$ 20 40 60 80 100 tan B Large Br/BrSM ruled out by Br upper limits

$B \rightarrow \tau \nu$

B factories versus LHC (ATLAS) for the charged Higgs

U.Haisch, hep-ph/0805.2141; ATLAS curve added by Steve Robertson (LLWI 2009) D.Eriksson, F.Mahmoudi and O.Stal, JHEP 0811:0.35 (2008) for MSSM interpretation

B Mixing

Traditional method for measuring V_{td} and V_{ts} is through box diagrams

Input theory from LQCD for B_{Bq} and f_{Bq} to extract $|V_{td}|$ or $|V_{td}/V_{ts}|$

15/6/2009

ADRON

COLLIDER

B Mixing

15/6/2009

CERN - FERA

COLLIDER PHYSICS

15/6/2009

Summary of Sides

CP Conserving Measurements $|V_{ub}/V_{cb}|$, Δm_d , $|\Delta m_d/\Delta m_s|$, $B \rightarrow \tau v$

Global CKM Fit

HADRON

COLLIDER PHYSICS

The "K π Puzzle

"K π Puzzle" published by Belle in Nature 2008....

Belle : 535M BB; Nature 452 (2008) 332

Direct CPV asymmetry in $B \rightarrow K^+\pi^-$ decays different to $B \rightarrow K^+\pi^0$ decays ??

HFAG 2009

$$A_{CP}(K^{+}\pi^{-}) = -0.098^{+0.012}_{-0.011}$$
 8.1 σ

$$A_{CP}(K^{+}\pi^{0}) = +0.050 \pm 0.025$$

$$\Delta A_{K\pi} = A_{CP} \left(K^{+} \pi^{-} \right) - A_{CP} \left(K^{+} \pi^{0} \right)$$

= -0.147 ± 0.028

"Kπ Puzzle"

CERN/FNAL Summer School

5.3σ

Model independent method to detect NP

M.Gronau : PLB82 (2005) 627

COLLIDER

FCNC b \rightarrow s transition, very sensitive to NP

The forward-backward asymmetry arises from the interference between γ and Z⁰ contributions

$$A_{FB}\left(s = m_{\mu\mu}^{2}\right) = -C_{10}\,\xi(s)\left[\operatorname{Re}(C_{9})F_{1} + \frac{1}{s}C_{7}F_{2}\right]$$

The zero crossing point is most theoretically clean

$$s_0^{SM} = 4.36_{-0.31}^{+0.33} \text{ GeV}^2$$

Beneke et al: EPJC41 (2005) 1⁻¹

73

Ali et al; PLB273 (1991) 505

FCNC Rare Decays: $B \rightarrow K^* \mu \mu$

Recent results of A_{FB} from the B factories show interesting behaviour

Data points tend to be above the SM curve Is the sign of C7 wrong ? Need more statistics BaBar : 384M BB; ArXiv:0804.4412 Belle : 657M BB; ArXiv:0904.0770 Note: opposite sign convention

15/6/2009

COLLIDER

"Kπ Puzzle"

Summary

- B factories have dramatically improved our understanding of flavour physics, far beyond expectations.
- Clear demonstration of the SM CKM mechanism as the dominant source of CP violation
- Overall good agreement in the global SM CKM fit
 - A huge step forward on precision of $\boldsymbol{\alpha}$
- A few puzzles remaining.....
 - Tension between sin2 β and $|V_{ub}|$ with $B{\rightarrow}\tau\nu$
 - K π puzzle
 - A_{FB} in $B \rightarrow K^* \mu \mu$

Next lecture:

- What have we learnt from the Tevatron ?
- Is there still room for NP ?
- If so, can it be discovered at the LHC and beyond ?

New Physics is still hiding...

CP Violation in Interference

Golden case: CP final state and single dominating amplitude

$$A_{f_{CP}}^{CP}(t) = \operatorname{Im} \lambda_{f_{CP}} \sin(\Delta m t)$$

β : b \rightarrow ccs modes

HADRON

COLLIDER PHYSICS

15/6/2009

Three-pion final state: dominated by transitions through ρ mesons

- Interfering contributions from $\rho^+\pi^-$, $\pi^+\rho^-$ (and $\rho^0\pi^0$)
- Snyder-Quinn method Snyder&Quinn, PRD48 (1993) 2139; Quinn&Silva, PRD62 (2000) 054002
 - Time-dependent Dalitz analysis of 6 decay amplitudes
 - BW phase variations break degeneracy in solutions

 $B \rightarrow \pi^+ \pi^- \pi^0$

ADS Method

$$\begin{array}{lll} B^+ \to D^0 K^+ & + & D^0 \to f \\ \text{suppressed} & \text{favoured} \\ B^+ \to \overline{D^0} K^+ & + & \overline{D^0} \to f \\ \text{favoured} & \text{suppressed} \end{array} \end{array} \begin{array}{l} \text{Same final state} \\ \text{Large interference} \\ \text{-O(1)} \end{array}$$

Measure B⁺ and B⁻ yields to determine ADS observables:

$$R_{ADS} \equiv \frac{\Gamma\left(B^{-} \to D\left[\to f\right]K^{-}\right) + \Gamma\left(B^{+} \to D\left[\to \overline{f}\right]K^{+}\right)}{\Gamma\left(B^{-} \to D\left[\to \overline{f}\right]K^{-}\right) + \Gamma\left(B^{+} \to D\left[\to f\right]K^{+}\right)} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos\gamma\cos\left(\delta_{B} + \delta_{D}\right)$$

$$A_{ADS} \equiv \frac{\Gamma(B^{-} \to D[\to f]K^{-}) - \Gamma(B^{+} \to D[\to \overline{f}]K^{+})}{\Gamma(B^{-} \to D[\to f]K^{-}) + \Gamma(B^{+} \to D[\to \overline{f}]K^{+})} = 2r_{B}r_{D}\sin\gamma\sin(\delta_{B} + \delta_{D})/R_{ADS}$$

ADS method useful at present to constrain r_{R}

$$r_D = \left| \frac{A\left(\overline{D^0} \to f\right)}{A\left(\overline{D^0} \to f\right)}, \quad \delta = \arg\left[\frac{A\left(\overline{D^0} \to f\right)}{A\left(\overline{D^0} \to f\right)} \right]$$

~O(1)

ADS Method

No significant signal observed in any modes yet Upper limits on R_{ADS} translated to constraint r_B

30.0

BaBar

Belle

HEAG

HFAG BaBar

Average

SaBar

Awerade

Awerade

werade

Average

-0.04

H-AG

0.08

BaBar

D KrK

PRD 72 (2006) 082004

PRD 78 (2000) 071931

PRD 72 (2005) 05203

PRD 72 (200%) 032004

CIGH2009 melminars

PRD 78 (2007) 111101

0.02

0.02

0.04

0.56

HADRON

COLLIDER PHYSICS

CERN/FNAL Summer School

HFAG

CKM2008 PRCLIMINARY

0.006 ± 0.000 40.008

 $0.0.0 \pm 0.005$

-0.002

-0.002

0.011

0.011 40018

0.066 ± 0.031

0.0°2±0.015

0.1

0,066 ±0.029 ±0.010

 $0.012 \pm 0.02 \pm 0.00$

80.6

R_{ADS} Averages

15/6/2009

CERN - FERM

COLLIDER PHYSICS

No direct measurement of γ , but helps in combination with other methods. Sensitivity to γ depends on strong phase.

GLW Method

$$R_{CP\pm} \equiv \frac{\Gamma\left(B^{-} \to D_{CP\pm}^{0}K^{-}\right) + \Gamma\left(B^{+} \to D_{CP\pm}^{0}K^{+}\right)}{2\Gamma\left(B^{-} \to D^{0}K^{-}\right)} = 1 \pm 2r_{B}\cos\gamma\cos\delta_{B} + r_{B}^{2}$$

$$A_{CP\pm} \equiv \frac{\Gamma\left(B^{-} \to D_{CP\pm}^{0}K^{-}\right) - \Gamma\left(B^{+} \to D_{CP\pm}^{0}K^{+}\right)}{\Gamma\left(B^{-} \to D_{CP\pm}^{0}K^{-}\right) + \Gamma\left(B^{+} \to D_{CP\pm}^{0}K^{+}\right)} = \pm 2r_{B}\sin\gamma\sin\delta_{B}/R_{CP\pm}$$

Alternate set

$$x_{\pm} = r_B \cos(\delta_B + \gamma) = \frac{R_{CP+} (1 \mp A_{CP+}) - R_{CP-} (1 \mp A_{CP+})}{4}$$
$$r_B^2 = x_{\pm}^2 + y_{\pm}^2 = \frac{R_{CP+} + R_{CP-} - 2}{2}$$

Inclusive Vcb

Exclusive Vcb

