CERN-FNAL HCP 2009

Experimental Aspects of Heavy Flavour Physics

.... The saga of the penguin and the polar bear.... continued

Valerie Gibson

Overview

- Introduction
- The Standard Model
- B Physics

- Celebrating the B factories
- What have we learnt from the Tevatron ?
- The LHC era
- and beyond....
- Summary

Lecture 2

Where to look next?

The Tevatron

The Tevatron

Collider Run II Integrated Luminosity

Run II: start March 2001, end ?? Integrated luminosity > 6 fb⁻¹ Peak luminosity ~ $3.5 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

16/6/2009

HADRON

COLLIDER PHYSICS

16/6/2009

CERN/FNAL Summer School

HADRON COLLIDER PHYSICS SUMMER SCHOOL

e⁺e⁻ vs Hadron Colliders

	$e^+e^- \rightarrow \Upsilon(4s \rightarrow B\overline{B})$	$p\bar{p} \rightarrow b\bar{b}X \left(\sqrt{s} = 2 \text{ TeV}\right)$	$pp \rightarrow b\bar{b}X (\sqrt{s} = 14 \text{ TeV})$	
prod	1 nb	~100 μb	~500 μb	
typ. $b\overline{b}$ rate	10 Hz	~100 kHz	~500 kHz	
purity	~1/4	$\sigma_{_{b}\overline{b}}/\sigma_{_{inel}}pprox 0.2\%$	$\sigma_{_{b}\overline{b}}/\sigma_{_{inel}}pprox 0.6\%$	
pile-up	0	1.7	0.5-20	
B content	$B^{+}B^{-}(50\%), B^{0}\overline{B}^{0}(50\%)$	$B^+(40\%), B^0(40\%), B_s(10\%)$), B_c (<1%), b – baryons(10%)	
B boost	small, βγ~0.56	large, decay vertices are displaced		
event structure	BB pair alone	many particles non-associated to $b\overline{b}$		
prod. vertex	Not reconstructed	reconstructed v	with many tracks	
$B^0 \overline{B}^0$ mixing	coherent	incoherent \rightarrow flave	our tagging dilution	
bb production at hadron colliders Flav (qua	your creation Flavo ark annihilation) (gluor	ur creation n fusion)	b g g g g g g g g g g g g g	

Triggers for B Physics

The trigger at the Tevatron determines the B physics program Int rate ~2.5 MHz, L1 accept 30 kHz (CDF), 2kHz (D0), Output rate ~150 Hz CDF trigger exploits the SVT processor to select displaced tracks D0 trigger based on powerful muon identification

3 main trigger types:

Dimuon (J/Ψ): "Easy" trigger, clean signal Single lepton: Semi-leptonic B decays Combine with displaced track (CDF) Hadronic B (80% B decays) (CDF) Require several displaced tracks and precision tracking. Biases lifetimes etc

Tevatron Events

16/6/2009

HADRON

COLLIDER PHYSICS

CERN/FNAL Summer School

8/60

HADRON COLLIDER PHYSICS SUMMER SCHOOL

Key ingredients

Lifetimes and mixing measurements

16/6/2009

CERN/FNAL Summer School

10/60

B_s Mixing

One of the most important achievements of the Tevatron

16/6/2009

 $B_s \rightarrow J/\Psi \phi$ "Gold-plated" decay equivalent to $B_d \rightarrow J/\Psi K_s$ for sin(2 β)

Measures CP violating phase due to interference of mixing and decay amplitudes

 $\beta_s^{SM} = \arg\left[-V_{tb}^*V_{ts}/V_{cb}^*V_{cs}\right]$

Neglecting SM penguins

Expected to be very small in the SM

Note: CP violating phase in flavour mixing is also very small in the SM

 $\phi_s^{SM} = \arg(-M_{12}/\Gamma_{12}) \approx 0.004$

NP contributions would effect both phases by same quantity

$$2\beta_s = 2\beta_s^{SM} - \phi_s^{NP}$$

$$\phi_s = \phi_s^{SM} + \phi_s^{NP}$$

If NP phase is dominant

$$\beta_s = -\phi_s$$

β_s

However, $B_s \rightarrow J//\Psi \phi$ analysis is non-trivial. P \rightarrow VV decay, hence a mixture of CP-even and CP-odd final states with significant width $\Delta\Gamma_s$ and mass splitting Δm_s

 β_s sensitivity has angular dependence, rapidly oscillating in proper time.

CDF and D0 both favour positive values of β_s

Probability of SM = 7.0%

Probability of SM = 24% (8.5% w/o systematics)

HFAG combine CDF & D0 results using common assumptions

Expt	Int. Lumi	From SM	
CDF	1.35 fb ⁻¹	1.5 σ	
D0	2.8 fb ⁻¹	1.8 σ	
Combined		2.2 σ	

New combination coming soon

"Kπ Puzzle"

sin 2β

No convincing evidence of New Physics... yet...

19/60

CERN/FNAL Summer School

60.5

0

 $B \rightarrow K^* \mu \mu$

Allowing for New Physics in B mixing in a model independent way

A wake up call for New Physics...

The LHC

A

The search is just about to take a giant leap....

CMS

Expect collisions from end Oct 2009: $\sqrt{s}=10 \text{ TeV}$

Month	No. Bunches	Protons per bunch	β* [m]	% Nom	Peak luminosity cm-2s-1	Integrated luminosity
1				Beam Co	ommissioning	
2	43	3 x 10 ¹⁰	4	0.4	1.2 x 10 ³⁰	100 – 200 nb ⁻¹
3	43	5 x 10 ¹⁰	4	0.7	3.4 x 10 ³⁰	~2 pb ⁻¹
4	156	5 x 10 ¹⁰	2	2.5	2.5 x 10 ³¹	~13 pb ⁻¹
5	156	7 x 10 ¹⁰	2	3.3	4.9 x 10 ³¹	~25 pb ⁻¹
6	720	3 x 10 ¹⁰	2	6.7	4.0 x 10 ³¹	~21 pb ⁻¹
7	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
8	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
9	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
10	lons					
Total						(200 – 300 pb ⁻¹)

Roger Bailey, Oxford IoP, April 2009

Expected delivered int. Iumi ≠ physics Iumi

B production at the LHC

Huge statistics: $\sigma_{bb} \sim 500 \ \mu b$ at 14 TeV, ~1% of σ_{vis} All B species: B[±](40%), B⁰(40%), B_s(1%), B_c (<1%), Λ_b (10%),...)

Ultimate luminosity of LHC : 10³⁴ cm⁻²s⁻¹

Up to 10M b-hadrons / per sec / per experiment

But more than 20 interactions / x-ing

LHCb runs at (2-3) x 10³² cm⁻² s⁻¹

Mainly single interactions Less radiation Luminosity is tunable by adjusting beam focus Still get 0.1M b-hadrons per sec

ATLAS/CMS: 10³³ cm⁻² s⁻¹ in the first 3 years Nominal year: LHCb 2 fb⁻¹, ATLAS/CMS 10 fb⁻¹

16/6/2009

B production at the LHC

bb production correlated and sharply peaked forward-backward

A forward detector (LHCb) geometry can cover a large fraction of the phase space

16/6/2009

An experiment dedicated to the search for New Physics in heavy flavours

Forward single arm spectrometer

Excellent tracking precision silicon VELO detector

Excellent particle identification 2 RICH detectors π/K separation over *p* ~2–100

Efficient Trigger Low p_T lepton, γ/π^0 & hadron

16/6/2009

VELO

- 21 VELO stations (r and ϕ silicon sensors)
- placed in a secondary vacuum vessel
- 3cm separation, 8mm from beam
- separated by a 300 μm of AI RF foil
 - detector halves retractable for injection

42 VELO modules r and φ layer n⁺n type 2048 strips/sensor Strip pitch 40-100 mm Beam's eye view

A VELO half during installation

RICH Detectors

Particle ID: p~2-100 GeV provided by 2 RICH detectors

16/6/2009

HADRON COLLIDER PHYSICS SUMMER SCHOOL

Trigger

Trigger crucial to the successful operation of LHCb

- B fraction is only ~1% of inelastic cross-section.
- Br's of interesting B decays <10⁻⁴
- Properties of minimum bias similar to B's

First Level Trigger (Level-0, hardware)

- Largest E_T hadron, $e(\gamma)$ and $(di-)\mu$
- Pile-up system (not for μ trigger)

Reduces 10 MHz inelastic rate to 1MHz

High Level Triggers (HLT, software)

- Run on CPU farm (1800 nodes)
- Access to all detector data
- Use more tracking to re-confirm L0 decision
- Full event reconstruction; inclusive and

exclusive selections

Output rate 2 kHz

Expected trigger performance

	e(L0)	e(HLT)	e(total)
Hadronic	50%	80%	40%
Electromagnetic	70 %	60%	40%
Muon	90%	80%	70%

Output rate	Trigger Type	Physics Use
200 Hz	Exclusive B candidates	Specific final states
600 Hz	High Mass di-muons	J/ψ, b→J/ψX
300 Hz	D* Candidates	Charm, calibrations
900 Hz	Inclusive b (e.g. $b \rightarrow \mu$)	B data mining

Total 2000 Hz

ATLAS & CMS

ATLAS and CMS are designed to explore the high energy frontier

Excellent tracking

Pixel detectors close to interaction Followed by silicon strip detectors ATLAS : TRT, straw tubes using transition radiation

High p_T muon triggers First level (hardware) di- and single muon high p_T trigger Followed by software triggers ~ 10Hz to storage for B-physics, ~10% bandwidth

Mass resolutions (MeV/c²)

	ATLAS	CMS	LHCb
B _s →μμ	90	36	18
$B_s \rightarrow D_s \pi$	53		14
$B_s\!\rightarrow\!J/\psi\varphi$	61	14	16

Proper time resolutions (fs)

	ATLAS	CMS	LHCb
$B_s \rightarrow D_s \pi$	-	77	36
$B_s \rightarrow J/\psi \phi$	152		40

Important for resolving B_s oscillations

ADRON

COLLIDER PHYSICS

Prospects for γ/ϕ_3

 γ is the least well-known angle of the Unitarity Triangle... CKMfitter (frequentist) and Utfit (Bayesian) groups do not agree...

 γ is the only CP-violating observable that can be measured at tree-level ... a benchmark quantity to be measured as well as possible.

ADRON

	Mode	Yield (2 fb ⁻¹)	B/S	
	$B^{\pm} \rightarrow D(K\pi)K^{\pm}$ (fav.)	84k	0.6	
ADS/GLW	$B^{\pm} \rightarrow D(K\pi)K^{\pm}$ (sup.)	1.6k	0.6	
1.10	$B^{\pm} \rightarrow D(KK)K^{\pm}$	8.5k	1.2	
	$B^{\pm} \rightarrow D(\pi\pi)K^{\pm}$	3k	3.2	
GGSZ	$B^{\pm} \rightarrow D(K_{s}\pi\pi)K^{\pm}$	6.8k	0.4	

16/6/2009

40/60

γ from trees

$B_s \rightarrow D_s K$: Time-dependent measurement

Measure $\gamma - 2\beta_s$ from interference between mixing and decay amplitudes.

16/6/2009

CERN/FNAL Summer School

41/60

γ from trees

Expected performance from LHCb with current studies

- **B**[±]→**D**⁰**K**[±] : **D**⁰→Kπ, KK, ππ , Kπππ, K_sππ
- $B^0 \rightarrow D^0 K^{*0} : D^0 \rightarrow K\pi, KK$

Time dependent measurements: $B^0 \rightarrow D\pi$, $B_s \rightarrow D_s K$

δ _B θ (°)	0	45	90	135	180
$\sigma_{\!\gamma}$ for 0.5 fb ⁻¹ (°)	8.1	10.1	9.3	9.5	7.8
$\sigma_{\!\gamma}$ for 2 fb ⁻¹ (°)	4.1	5.1	4.8	5.1	3.9
$\sigma_{\!\gamma}$ for 10 fb ⁻¹ (°)	2.0	2.7	2.4	2.6	1.9

LHCb 10 fb⁻¹ : γ precision 2-3

γ from loops : B \rightarrow hh strategy

HADRON

COLLIDER PHYSICS

γ from loops : B \rightarrow hh strategy

Use $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ and extract $S_{\pi\pi}$, $C_{\pi\pi}$, S_{KK} , C_{KK} from fit to

$$A_{f}^{CP}(t) = \frac{\Gamma_{f}(t) - \overline{\Gamma}_{f}(t)}{\Gamma_{f}(t) + \overline{\Gamma}_{f}(t)} = \frac{-C_{f}\cos(\Delta mt) + S_{f}\sin(\Delta mt)}{\cosh(\Delta\Gamma t/2) + \Omega_{f}\sinh(\Delta\Gamma t/2)}$$

 $\Omega_{f}^{2} + S_{f}^{2} + C_{f}^{2} = 1$

The 4 observables depend on 7 parameters

$$C_{\pi\pi} = f_1(d, \vartheta, \gamma), \qquad S_{\pi\pi} = f_2(d, \vartheta, \gamma, \beta)$$
$$C_{KK} = f_3(d', \vartheta', \gamma), \qquad S_{KK} = f_4(d', \vartheta', \gamma, \beta_s)$$

d , ϑ (d', ϑ ') parametrizes P/T ratio of decay transitions $B_d \rightarrow \pi^+\pi^-(B_s \rightarrow K^+K^-)$

Input β from B \rightarrow J/ Ψ K_S and invoke Uspin (d \leftrightarrow s) symmetry $d = d' \pm 20\%$

in

5_S

16/6/2009

CERN/FNAL Summer School

46/60

3 angles (θ, ϕ, ψ) describe direction of final decay products

Fit to angular distributions, proper time, flavour tag, mass

 \rightarrow 7 free parameters including β_s

 $\sigma(2\beta_s) = 0.03 \ (2fb^{-1})$

16/6/2009

CERN/FNAL Summer School

47/60

10

If $2\beta_s$ is in fact the central value measured by the Tevatron (~0.8), then LHCb should have a 5σ observation with 200 pb⁻¹

b→sqq penguins

Currently explored at B factories with time-dependent analyses of tagged decays to CP eigenstates such as $B^0 \rightarrow \phi K_S$, etc.

- Expect same result (i.e. sin2 β) as b \rightarrow ccs tree decays like B⁰ \rightarrow J/ ψ K_S if SM
- ${\sf B}_{s} \,{\to}\, \varphi \varphi$ also possible at LHCb

- CPV < 1% in SM; V_{ts} enters both in mixing and decay amplitudes
- significant CP-violating phase can only be due to New Physics
- Angular analysis required
- 3k signal events per 2 fb⁻¹, B/S < 0.8

 $\sigma(\Phi_{{\sf Bs}\,
ightarrow\,\phi\phi})\cong 0.11~(0.05)\ 2 {\rm fb^{-1}}~10~{\rm fb^{-1}}$

Main issue is background rejection With limited MC statistics, indication that main background is $b \rightarrow \mu$, $b \rightarrow \mu$

LHCb Exclusion @ 90% c.l. Reach final CDF/D0 limit @ 0.1 fb⁻¹ Reach SM prediction @ 2fb⁻¹ Observation 3σ evidence @ 3 fb⁻¹

 5σ discovery @ 10 fb⁻¹

HADRON

COLLIDER PHYSICS

ADRON FCNC Rare Decays: $B \rightarrow K^* \mu \mu$ COLLIDER PHYSICS

FCNC b \rightarrow s transition, very sensitive to NP

The forward-backward asymmetry arises from the interference between γ and Z⁰ contributions

$$A_{FB}\left(s = m_{\mu\mu}^{2}\right) = -C_{10}\,\xi(s)\left[\operatorname{Re}(C_{9})F_{1} + \frac{1}{s}C_{7}F_{2}\right]$$

The zero crossing point is most theoretically clean

$$s_0^{SM} = 4.36^{+0.33}_{-0.31} \text{ GeV}^2$$

Beneke et al: EPJC41 (2005) 1

73

Ali et al; PLB273 (1991) 505

$B^0 \rightarrow K^* \mu^+ \mu^-$ Decays

<i>LHCb</i>	Channel	Yield (2 fb ⁻¹)	B/S
<i>снс</i> р	$B^0 {\rightarrow} K^* \mu^+ \mu^-$	7200	~0.2

Fit to decay angular projections Other angular observables e.g. K* polarization

The 3rd Generation Experiments 🐐

Following the resounding success of the B factories and the Tevatron ... and the potential for discovery at the LHC...there is a clear need to continue heavy flavour physics beyond 2015

NP effects are small \rightarrow need high precision measurements to distinguish between various NP models

Compelling and complementary programmes....

HADRON COLLIDER PHYSICS

HADRON COLLIDER PHYSICS SUMMER SCHOOL

"Super"-LHCb

Can LHCb exploit the full potential of flavour physics at the LHC?
 Many LHCb measurements will be statistically limited with 10 fb⁻¹

LHCb Upgrade

"Super" LHCb

- Upgrade LHCb detector to operate at 10X design luminosity
- Run ~5 yrs at \mathscr{L} ~ 2x10³³ cm⁻²s⁻¹ \rightarrow ~100 fb⁻¹ data sample
- Add Vertex Detector and Tracker to first level of trigger
- Readout full detector at 40 MHz all front-end electronics must be redesigned
- Much of the detector will need to be replaced due to increased occupancy and/or irradiation

Expression of Interest for an LHCb Upgrade

Eol 2008 TDR in prep 2010

The LHCb Collaboration

Flavour physics 2020?

Maybe New Physics will not be able to hide any longer...

16/6/2009

HADRON

COLLIDER PHYSICS

or... the totally unexpected ...?

The "Yeti" or "Abonimable Snowman"

Thank you

16/6/2009

CERN/FNAL Summer School

1.16

CDF Trigger

Probability of SM = $6.6\% \sim 1.8\sigma$

Strong phases constrained

RICH Performance

Full MC simulation using "global" fit to Cherenkov rings

HADRON

COLLIDER PHYSICS

16/6/2009

Inclusive Vub

CERN/FNAL Summer School

66/60

γ from loops

HADRON

COLLIDER PHYSICS

$B^0 \rightarrow K^* \mu^+ \mu^-$ Decays

Nano-Beam Scheme

