What do we expect from LHC(b)?

Tatsuya Nakada CERN and University of Lausanne

19-23.2.2001, Ise, Japan

LHC magnet string

LHC prototype low- β quadrupole at KEK

LHC Plan

Beam injection and a sector test in 2005 Detector installation completed: January 2006 LHC beam commissioning: February-March 2006 First collisions and pilot run: April 2006 $L = \sim 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$, for 4 weeks

Start of physics run: August 2006

 $L = \sim 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, for 7 months

Experimental Conditions

Cross sections (PYTHIA)

σ_{total}	100 mb
$\sigma_{inelastic}$	80 mb
$\sigma_{\text{inelastic}} - \sigma_{\text{diffractive}}$	55 mb
σ_{bb}	500 µb
σ _{cc}	1.5 mb

Machine parameters

 $f_{\text{bunch crossing}}$ 40 MHzL(B physics ATLAS, CMS) $10^{33} \text{ cm}^{-2} \text{s}^{-1}$ L(LHCb) $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

(design luminosity 10^{34} cm⁻²s⁻¹)

<image>

ATLAS

Central detector: $|\eta| < 2.5$ Pixel vertex detector Si strip tracker High resolution E cal H cal High resolution muon system High $P_{\rm T}$ lepton triggers

CMS

ATLAS

SC coil for toroidal magnet

Cryostat for Liquid Argon E-cal

CMS

PbWO₄ E-Cal

Fe yoke

Dedicated B detector

Forward detector: $2.1 < \eta < 5.3$ Si mini-strip vertex detector Inner and Outer Tracker **RICH detectors** E-cal, H-cal Muon system High $P_{\rm T}$ hadron and lepton triggers Detached vertex trigger Dipole magnet

LHCb

Hybrid Photo-Deitector

straw driftchamber

HPD pixel readout chip

LHCb Technical Designed Reports

January 2000, submission April 2000, approved September 2000, submission February 2001, approved September 2000, submission February 2000, approved

Important Issue I: Hadron ID

Lepton trigger (and no hadron ID) -ATLAS, CMS-

trigger and tag

Lepton+hadron trigger with hadron ID -LHCbtrigger and tag

Trigger efficiencies for the hadronic final states are very much enhanced. High tagging efficiency with good quality.

ATLAS and CMS

Central geometry and no vertex trigger \rightarrow high threshold values for the $P_{\rm T}$ trigger (~6 GeV) = Low b efficiency

LHCb

Forward geometry and with vertex trigger \rightarrow moderate threshold values for the $P_{\rm T}$ trigger (1~2 GeV) = Higher b efficiency

Difference can be seen by...

$B_d \rightarrow \pi^+\pi^- + tag$				
	ATLAS	CMS	LHCb	
$\sigma_{\rm m} [{ m MeV}/c^2]$	70	27	17	
Annual yield	2.3k	0.9k	4.9k	
$B_s \to J/\psi \; \varphi$				
	ATLAS	CMS	LHCb	
σ_{τ} [fs]	63	63	31	

LHC contributions to CP violation

Improvement in statistics

useful B sample @ LHC in one year > $\sum_{i=1}^{n}$ all previous B experiments by then

 $B_d \rightarrow J/\psi \ K_S \ (ATLAS, \ CMS, \ LHCb)$

 $B_d \rightarrow K^* \mu^+ \mu^-$ (ATLAS, CMS, LHCb)

 $B_d \rightarrow \pi^+\pi^-$ (LHCb, ATLAS???)

 $B_d \rightarrow \rho \pi (LHCb)$

 $B_d \rightarrow D^* \pi (LHCb)$

 $B_d \rightarrow K^{\pm} \pi^{\mp} (LHCb)$

 $B_d \rightarrow \phi K_S (LHCb)$

 $\sigma(\sin 2\beta) < 0.01$

45k events/year LHCb

~5k flavour tagged/year

100 flavour tagged $\rho^0 \pi^0$ /year ($Br = 10^{-6}$) 340k flavour tagged D* π /year

Up to one π^0 in the final state.

New decay modes

- $B_s \rightarrow J/\psi \phi$ (ATLAS, CMS, LHCb)
- $B_s \rightarrow D_s^{\pm} K^{\mp} (LHCb)$
- $B_s \rightarrow K^+ K^- (LHCb)$
- ${\rm B_s} \to {\rm K^{\pm}}\,\pi^{\mp}\,({\rm LHCb})$
- $B_s \rightarrow \phi \phi(LHCb)$

Combination gives a model independent value of arg V_{ub} even with presence of new physics. $\sigma_{\phi_3} < 10^\circ$ in one year. $|V_{ub}|$ will be well known from the B factory experiments by then.

With LHCb in operation, **a model independent determination** of the CKM parameters is possible **even in a presence of New Physics**.

Effect due to new physics can be isolated unambiguously!!

No New Physics contribution to the Standard Model tree induced decay modes.

In addition...

very rare decays $Br < 10^{-8}$ $B_s \rightarrow \mu^+ \mu^-$,ATLASCMSLHCbSignal9711Background3113.3

In one year with $Br = 3.5 \times 10^{-9}$ L = 10^{33} (ATLAS,CMS) 2×10^{32} (LHCb)

forbidden in the Standard Model

$$\begin{split} & \mathbf{B}_{\mathrm{s}} \rightarrow \mathrm{e}^{\pm} \mu^{\mp}, \, \mathbf{B}_{\mathrm{d}} \rightarrow \mathrm{e}^{\pm} \mu^{\mp}, \\ & \tau^{\pm} \rightarrow \mu^{\pm} \mu^{\pm} \mu^{\mp} \end{split}$$

LHCb (very preliminary): $\tau^{\pm} \rightarrow \mu^{\pm}\mu^{\pm}\mu^{\mp}$ upper limit of < 1.8×10⁻⁷ @ 90% CL in one year @ $L = 2 \times 10^{32}$ **Possible improvements for LHCb** Running with higher luminosity: 5×10³² Dedicated trigger combinations: Two or three high $P_{\rm T}$ muons with a relaxed requirement on the detached vertex.