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Abstract

We discuss a theoretical condition for time reversal violation in weak non-leptonic
two-body decays involving spinning and unstable particles in the final state. In
some cases this condition looks particularly simple and suitable for tests of time

reversal violation.

1 Introduction

People started to believe in Time Reversal Violation (TRV), since when the first
CP violation was discovered, in 1964. This is a consequence of the CPT symmetry,
derived under very mild assumptions and confirmed by stringent tests. However
till now only one experiment has given evidence for direct TRV. We refer to the
CPLEAR experiment[1], which was realized in 1998 and consisted of establishing

that the K0 → K
0

transition rate is different than the K
0 → K0 one. Generally it is

quite difficult to realize the inverse process to a weak decay and, above all, to compare
the two decay rates with enough precision for discovering possible differences.

An alternative way of coping with the problem is to look for theoretical conse-
quences of Time Reversal Invariance (TRI) and to investigate whether these are con-
tradicted by experiment. In particular, let us consider the two non-leptonic decays
K → ππ and Λ → πp. Such a kind of decays involves strong Final State Interactions
(FSI) between the decay products. In the cases considered, given the low mass of the
parent resonances, FSI amount essentially to elastic scattering. Then, thanks to the
Fermi-Watson theorem, TRI implies the following condition:

A = e2iδA∗, (1)
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where A is the weak decay amplitude and δ is the strong phase-shift of elastic scat-
tering. In other words, if one has

A = aei(δ+φw), (2)

with a real and φw 6= 0, π, we conclude that Time Reversal (TR) is violated. φw is
generally known as “weak” phase; for example, it could be related to the CP-violating
phase which appears in the Cabibbo-Kobayashi-Maskawa (CKM) parametrization of
the Yukawa coupling with three-quark generations.

However also this strategy appears impervious, since we are faced with the diffi-
culty of determining phases with sufficient precision. The main aim of our talk is to
pose the question as to whether we may be luckier with decays of higher mass reso-
nances, produced copiously at facilities like the LHC. In particular, we shall modify
condition (1) for such decays and we shall suggest how to exploit data in order to
test TRV.

In section 2 we define the observables which can be extracted in two-body decays
with spinning decay products. In section 3 we illustrate how to modify the condition
for TRV, when inelastic channels are open. Section 4 is devoted to suggesting tests
for TRV. Lastly, a short conclusion is drawn in section 5.

2 Observables in two-body decays

We consider two-body decays involving beauty, and therefore detectable at LHCb,
like Λb → ΛJ/ψ and B → V V , V being a vector meson. We examine the observables
that can be extracted from such decays. These can be defined, for example, in the
so-called helicity frame. To this end we consider a canonical frame, such that the
xy-plane coincides with the production plane of the parent resonance. If p is the
momentum of this resonance in the canonical frame, the helicity frame is defined, in
the rest frame of one of the two decay products, by three mutually orthogonal unit
vectors:

eL =
p

|p| , eT =
u× eL

|u× eL|
, eN = eT × eL, (3)

where u is the unit vector in the direction of the z-azis of the canonical frame. The
observables - angular distribution, polarization components and polarization correla-
tions - can be suitably defined starting from the density matrix of the decay products.
We have

I(θ, φ) = trρ, (4)

I(θ, φ)Pi(θ, φ) = tr(ρsi), (5)

I(θ, φ)Pij(θ, φ) = tr(ρsisj). (6)
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where ρ is the density matrix of the two decay products, si the components of the spin
operator, θ and φ are respectively the polar and azimuthal angle of the momentum of
one of the decay products in the helicity frame and i, j run over the indices L, T,N
of the unit vectors. It is worth noting that Pij 6= PiPj because of quantum effects.

As an example, we give the expressions of some of the above observables, relative to
the decay Λb → ΛJ/ψ[2], as functions of the rotationally invariant decay amplitudes,
Aλ1,λ2

, λ1 and λ2 being the helicities of the two decay products. We have

I(θ, φ) =
1

4π
(|A1/2,0|2 + |A

−1/2,0|2 + |A1/2,1|2 + |A
−1/2,−1|2), (7)

I(θ, φ)PΛ
L (θ, φ) =

1

4π
(|A1/2,0|2 − |A−1/2,0|2 + |A1/2,1|2 − |A−1/2,−1|2), (8)

I(θ, φ)PTN(θ, φ) =
1

4π
√

2
Im(A−1/2,−1A

∗

1/2,0 − A−1/2,−1A
∗

1/2,0). (9)

Really the above formulae hold in the case of unpolarized Λb, which is generally
not true, since spin-orbit coupling causes a transverse polarization in the production
reaction. However, also with this simplifying assumption, it can be shown[2] that
one obtains an over-determined linear system, whose unknowns are the products
Aλ1,λ2

A∗

λ′

1
,λ′

2

. Solving this system allows to determine all moduli of the amplitudes
and all phases up to one, which we set conventionally to zero. It can be shown that
this is a rather general result, valid also, e. g., for decays of the type 0 → 1 1.

3 A condition for TRV

with inelastic channels open

Now we generalize eq. (1) to the case when more decay modes are present and there-
fore inelastic processes are admitted in the scattering between the decay products. In
this case TRI implies[3]

Am = SmnA
∗

n, (10)

where S is the scattering matrix and Am is the decay amplitude to a given eigenstate
of the total angular momentum, denoted by m. The solution to this equation can be
obtained by diagonalizing the S-matrix. To this end we recall a result by Suzuki[3],
that is,

Smn =
∑

k

Omke
2iδkOT

kn, (11)

where O is an orthogonal matrix and the δk are strong phase-shifts. Eqs. (10) and
(11) yield

Am =
∑

n

Omnane
iδn , (12)
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where an are real amplitudes representing the effects of weak interactions on the decay
process. Obviously complex values of one or more such amplitudes - that is, “weak”
phases - would imply TRV, analogously to the case when only elastic scattering is
allowed between the decay products.

We remark that, in a local field theory - like the SM -, even one complex an implies
CP violation, owing to CPT symmetry. As told in the introduction, in the SM the
phase of such a complex amplitude is related to the CKM parametrization.

4 Suggested tests for TRV

Unfortunately the result found in the previous section is generally not useful for
detecting TRV. Indeed, first of all, the elements of the matrix O are not known: at
best one can elaborate models, as in ref. 3. Secondly, the amplitudes An may be
determined, at best, up to a phase per decay mode. In fact, as shown in section
2, a decay to spinning and unstable particles allows to determine, through angular
distribution, polarizations and polarization correlations[4, 5, 2], all products of the
type Aλ1λ2

A∗

λ′

1
λ′

2

.
These products, in turn, allow to determine all moduli of the amplitudes and their

phases relative to a given amplitude, taken as a reference. This is not sufficient to
solve the linear system (12) with respect to the products ane

iδn . Therefore generally
we cannot elaborate tests for TRV through the method described.

However relation (12) may be considerably simplified, provided we choose suitable
decay modes. Let us consider, for example, the decay[2]

Λb → ΛJ/ψ. (13)

or the following decays of B and Bs, already studied, both theoretically[4, 5, 6, 7]
and experimentally[8, 9, 10]:

B+ → (J/ψK∗+); (14)

B0 → (J/ψK∗0); (15)

Bs → (J/ψφ), (J/ψK
∗0

). (16)

Such decays do not involve isotopic spin, in order to avoid interference among different
isospin amplitudes.

We examine the scattering corresponding to FSI between the decay products in
decays of the type just illustrated. Then the momentum of the “initial” hadrons in
the center-of-mass system is 1.6 to 1.7 GeV/c, therefore the scattering involves at
least 15 partial waves. Since the decays considered imply orbital angular momenta
not greater than 2, we are faced essentially with central collisions. These give rise
mainly to deep inelastic collisions, whose shadow constitutes the largest part of elastic
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scattering. Instead, anelastic reactions - that is, with excitation of one or both decay
products to higher mass states - are suppressed, as well as spin-flip elastic scattering,
since these processes occur only in peripheral collisions, so as to keep coherence with
the initial state.

But deep inelastic collisions imply a complete loss of coherence with respect to
the initial particles. Indeed, any such process includes

a) an exchange of gluons between the two hadrons;
b) hard collisions among partons;
c) parton fragmentations and/or recombinations to hadrons;
d) gluon exchange among final hadrons.
Therefore the sum (12) consists of quite a lot of terms. Moreover it appears logical

to assume for the phases in (12) a very rapid dependence on the index n (n 6= m),
that is, a sudden variation of the phase-shift from state to state. On the contrary,
there is no reason for the terms an (weak amplitudes) and Omn (kinematic quantities)
to depend so strongly on n. Then, for n 6= m, the sum can be approximated by the
integral of the product of a smooth function times a rapidly varying phase. Therefore
only the term with n = m survives in that sum, i. e.,

Am = Ommame
iδm . (17)

This result was obtained also by Wolfenstein[11] with a different line of reasoning.
Eq. (17) can be tested by comparing the decays considered with the CP -conjugate

ones and assuming CPT symmetry. Indeed, under this assumption, am differs from
am just by a phase, while Omm and δm are CP -invariant, since they depend only
on strong interactions. Here and in the following the barred quantities refer to the
CP -conjugate process, obviously with opposite helicities, denoted synthetically by m.
Then we have

|Am| = |Am|, (18)

We stress that this test is not mandatory for the method we are going to suggest for
detecting TRV.

In order to state tests for TRV, we define, preliminarily, a particular observable
that we can extract from analyses of decays, that is, for a given decay mode,

Φm = arg(Am) − arg(Am0
). (19)

Here, as explained before, Am0
is conventionally taken to be real. Then we define the

following asymmetries:

ACP =
Φm − Φm

Φm + Φm

, AC =
Φm − Φm

Φm + Φm

, AP =
Φm − Φm

Φm + Φm
. (20)

Here, again, the barred quantities refer to the phases of the C-conjugated amplitudes.
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5 Conclusion

We have shown a theoretical condition which implies TRV. Moreover we have sug-
gested tests to be applied to non-leptonic two-body decays involving spinning par-
ticles. The tests may be realized by means of analyses of angular distributions,
polarizations and polarization correlations of the decay products. Given the wealth
of b− b pairs which will be produced at LHC per year (1012), such tests appear to be
not so unrealistic. Furthermore, in principle, comparing the results of the suggested
tests with the SM predictions could help detecting NP effects, since the condition
found is independent of any specific model. Lastly we observe that the condition we
require for obtaining evidence for TRV is opposite to the one demanded for detecting
CP violations, which needs interference among amplitudes, and therefore, necessarily,
more terms in the sum (12)[12].
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