$B \rightarrow \ell \ell K^{(*)}$ prospects at LHCb

- Theoretical motivation
- Zero of FBA in ${
 m B}^0{
 ightarrow}\mu\mu{
 m K}^*$
- $R_{
 m K}$ in ${
 m B}^{\pm}{
 ightarrow}\mu\mu{
 m K}^{\pm}$ and ${
 m B}^{\pm}{
 ightarrow}{
 m ee}{
 m K}^{\pm}$

Flavour in the Era of the LHC 7–10 Nov. 2005 CERN, Geneva

> Patrick Koppenburg CERN / PH / LBC On behalf of the LHCb collaboration

$b \rightarrow s \ell \ell$ decays

- Second-order diagram
- Sensitive to
 - SuSy,
 - graviton exchanges,
 - extra dimensions

$b \rightarrow s \ell \ell$ decays

- Second-order diagram
- Sensitive to
 - SuSy,
 - graviton exchanges,
 - extra dimensions
- Well known SM branching ratio $(1.36\pm0.08)\cdot10^{-6}$ (NNLL) for $s=q^2/m_{\rm b}^2<0.25$
- Inclusive decays difficult to access at hadron colliders
- Exclusive decays affected by hadronic uncertainties

Solution: Use ratios where hadronic uncertainties cancel out

• CP asymmetry

P. Koppenburg

IHC

[Goto et. al, hep-ph/9609512]

Solution: Use ratios where hadronic uncertainties cancel out

• CP asymmetry

P. Koppenburg

✓ Ratio of ee and $\mu\mu$ modes

[Goto et. al, hep-ph/9609512]

Solution: Use ratios where hadronic uncertainties cancel out

• CP asymmetry

P. Koppenburg

- ✓ Ratio of ee and $\mu\mu$ modes
 - Forward-backward asymmetry

[Goto et. al, hep-ph/9609512]

Solution: Use ratios where hadronic uncertainties cancel out

• CP asymmetry

- ✓ Ratio of ee and $\mu\mu$ modes
 - Forward-backward asymmetry
- CP asymmetry in FBA

[Goto et. al, hep-ph/9609512]

Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry
- ✓ Ratio of ee and $\mu\mu$ modes
 - Forward-backward asymmetry
- CP asymmetry in FBA
- ✓ Zero of FBA $s_0 = \frac{-2C_7^{\text{Eff}}}{C_9^{\text{Eff}}(s_0)}$

[Goto et. al, hep-ph/9609512]

Zero of FBA in ${ m B}^0{ ightarrow}\mu\mu{ m K}^*$

Jose Helder Lopes Public LHCb notes 2003-104 & 2005-010

$B^0 \rightarrow \mu \mu K^*$ selection

Main selection criteria:

μp_T	$> 900 { m MeV}$
$\pi \ p_T$	$> 200 { m MeV}$
π and $\mathrm{K}~\mathrm{IP}$	$> 2\sigma$
$K^* p_T$	$>900~{\rm MeV}$
$\mu\mu$ and $\mathrm{K}^{*}~\chi^{2}$	< 8
$\mathrm{B}~\chi^2$	< 10
B IP	$< 3.5\sigma$
$\mu\mu$ and K^* PV separation	$> 1.5\sigma$
J/ψ veto	$29003200~\mathrm{MeV}$
$\psi(2\mathrm{S})$ veto	$36503725~\mathrm{MeV}$
K* mass	$m_{\mathrm{K}^*} \pm 100 \ \mathrm{MeV}$

P. Koppenburg

Optimised for BR.

Maybe not optimal for zero of FBA

$B^0 \rightarrow \mu \mu K^*$ selection

Expected signal and background yields in 2 fb^{-1} of data, i.e 10^7 s at $\mathcal{L} = 2 \cdot 10^{32}$.

Assuming the SM BR of $12\cdot 10^{-7}$

Sample	Stats.	Yield	B/S
$B^0 \rightarrow \mu \mu K^*$	50k	4400 ± 100	
$B\overline{B}$	11M	1000-11700	0.2 - 2.6
$b \rightarrow \mu c (\mu q)$	200k	500 - 1900	0.1-0.4
$2 (b \rightarrow \mu)$	$1.8\mathrm{M}$	750 ± 130	0.17 ± 0.03
${ m J}/\psi$	200k	20-80	0.02–0.1

B/S ratios limited by low background MC statistics

2003 MC, Geant 3 --- to be updated

Toy MC

To assess errors on FBA: run many pseudo-experiments with reasonable signal and data assumptions.

Use reconstructed dimuon mass spectrum and FBA angle

Toy MC

To assess errors on FBA: run many pseudo-experiments with reasonable signal and data assumptions.

- Use reconstructed dimuon mass spectrum and FBA angle
- \rightarrow Get errors on dimuon mass spectrum

Relative errors on branching fraction after 1 year:

1-6 GeV²: $\pm 5.7\%$

 $> 14 \, \text{GeV}^2$: $\pm 3.2\%$

Much less than hadronic uncertainties

Zero of FBA

• 2 fb^{-1} : $(4.0 \pm 1.2) \text{ GeV}^2$ with 4% inefficiency

#entries 40 **Entries** 220 Mean 3.849 RMS 1.177 30 20 10 0^L 0 2 3 5 4 6 8 7 s₀(GeV^2) Spread of s_0

Zero of FBA

• 2 fb^{-1} : $(4.0 \pm 1.2) \text{ GeV}^2$ with 4% inefficiency

$R_{\rm K} \text{ in } { m B}^{\pm} { ightarrow} \mu \mu { m K}^{\pm}$ and ${ m B}^{\pm} { ightarrow} { m ee} { m K}^{\pm}$

Patrick Koppenburg

 $B \rightarrow \ell \ell K^{(*)}$ prospects at LHCb— Flavour in Era of the LHC — 09/11/2005 WG2 – p.8/16

$B^{\pm} \rightarrow \ell \ell K^{\pm}$

Measure the ratio: [Hiller & Krüger, hep-ph/0310219]

$$R_{\rm X} = \frac{\frac{4m_{\mu}^2}{\int} ds \frac{d\Gamma(B \to X\mu^+\mu^-)}{ds}}{\int}_{\frac{4m_{\mu}^2}{4m_{\mu}^2}} = \begin{cases} 1.000 \pm 0.001 & {\rm X} = {\rm K}\\ 0.991 \pm 0.002 & {\rm X} = {\rm K}^* \end{cases}$$

Corrections to unity can be large (O(10%)) in models that distinguish between lepton flavours, like interactions involving neutral Higgs bosons (typically MSSM at large tan β).

In this study we integrate in the range $4m_{\mu}^2 \le s \le 6 \,\mathrm{GeV}^2$

[Hiller & Krüger, hep-ph/0310219]

$R_{\rm K} \propto {\rm BR}({\rm B_s}{\rightarrow}\mu\mu)$

Assuming:

- right-handed currents negligible
- (Pseudo-)scalar couplings $\propto m_{\ell}$, (à la neutral higgs, not the case for broken *R*-parity)
- No CP-phases beyond the SM
- I.e. SM, MSSM with MFV at large $\tan \beta$...

Experimental status:

R_X	BaBar ($208 {\rm fb}^{-1}$) [hep-ex/0507005]
$R_{ m K}$	$1.06 \pm 0.48 \pm 0.05$
R_{K^*}	$0.93 \pm 0.46 \pm 0.12$
	Belle (250 fb $^{-1}$)
	[hep-ex/0410006]
R_{K}	$\begin{array}{c} \mbox{[hep-ex/0410006]}\\ \hline 1.38 \begin{array}{c} +0.39 \\ -0.41 \end{array} \begin{array}{c} +0.06 \\ -0.07 \end{array}$

[Hiller & Krüger, hep-ph/0310219]

P. Koppenburg

LHCb

Experimental status:

R_X	BaBar ($208 {\rm fb}^{-1}$) [hep-ex/0507005]
R_{K}	$1.06 \pm 0.48 \pm 0.05$
R_{K^*}	$0.93 \pm 0.46 \pm 0.12$
	Belle ($250 {\rm fb}^{-1}$)
	[hep-ex/0410006]
R_{K}	$1.38 \substack{+0.39 \\ -0.41 \ -0.07}^{+0.06}$

 B_s →μµ: The present CDF limit is $1.5 \cdot 10^{-7}$ at 90% CL [hep-ex/0508036]

[Hiller & Krüger, hep-ph/0310219]

LHCh

- We also plan to measure the ${\rm B_s} \to \mu\mu$ branching fraction
- A disagreement would imply New Physics beyond a minimal model
 - *R*-parity violating SuSy
 - right-handed couplings

. . .

[Hiller & Krüger, hep-ph/0310219]

$B^{\pm} \rightarrow \ell \ell K^{\pm}$ Selection

	Selection
$\ell \; p_T$, K p_T	$\geq 1500 \mathrm{MeV}$
K IP significance	≥ 2
$\ell\ell~\chi^2$	≤ 9
$\mathrm{B}~\chi^2$	≤ 30
B IP significance	≤ 4
B flight significance	≥ 5
B mass window	$\pm 500 \mathrm{MeV}$

- Selection optimised to minimize $R_{\rm K}$ error in one year
- 2004 MC, Geant 4
- Statistics: 18M $B\overline{B}$, 4M J/ $\psi \rightarrow \ell \ell$, 2M signal and specific backgrounds. More to come.

Trigger

- High trigger efficiency in L0 and L1 because of the leptons
- In the HLT we require the signal to be fully reconstructed
- \rightarrow Which is difficult for electrons

One solution is to develop an inclusive dilepton trigger. Selection cuts:

$\ell \ p_T$	$\geq 500 \mathrm{MeV}$
$\ell\ell~\chi^2$	≤ 9
$\ell\ell \ p_T$	$\geq 1250 \mathrm{MeV}$
$\ell\ell$ flight signif.	≥ 2

• 68% for ee at 70 ± 8 Hz

• 75% for
$$\mu\mu$$
 at 130 ± 12 Hz

B versus dilepton mass after selection

 $B \rightarrow eeK$

$B \to \mu \mu K$

P. Koppenburg

 $B \rightarrow \ell \ell K^{(*)}$ prospects at LHCb— Flavour in Era of the LHC — 09/11/2005 WG2 – p.13/16

$R_{ m K}$ with $2~{ m fb}^{-1}$

- The signal is fitted by a Crystal-Ball function
- The background is fitted by a 2nd-order polynomial
- The parameters of the Crystal-Ball function are fixed from the signal MC

Possible status with 10 fb^{-1}

In 2012, measure $B_s \rightarrow \mu\mu$ and get 4.5% error on R_K :

- $BR(B_s \rightarrow \mu \mu)$ compatible with SM (~ 3 · 10⁻⁹)
 - $R_{\rm K} \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3 / m_A^2$

[Hiller & Krüger, hep-ph/0310219]

Possible status with 10 fb^{-1}

In 2012, measure $B_s \rightarrow \mu\mu$ and get 4.5% error on R_K :

- $BR(B_s \rightarrow \mu \mu)$ compatible with SM (~ 3 · 10⁻⁹)
 - $R_{\rm K} \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3 / m_A^2$
 - $R_{\rm K} \neq 1$: New Physics Right-handed currents or broken lepton-universality

Possible status with 10 fb^{-1}

[Hiller & Krüger, hep-ph/0310219]

In 2012, measure $B_s \rightarrow \mu\mu$ and get 4.5% error on R_K :

- $BR(B_s \rightarrow \mu \mu)$ compatible with SM (~ 3 · 10⁻⁹)
 - $R_{\rm K} \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3/m_A^2$
 - $R_{\rm K} \neq 1$: New Physics Right-handed currents or broken lepton-universality
- $BR(B_s \rightarrow \mu \mu)$ larger than SM: New Physics
 - *R*_K sets constraints on NP parameters

- ${
 m B}^0{
 ightarrow}\mu\mu{
 m K}^*$ one of the top priorities at LHCb:
 - Can get 13% error on $C_7^{\rm Eff}/C_9^{\rm Eff}$ with $10~{
 m fb}^{-1}$
 - More optimisation work needed
- $B^{\pm} \rightarrow \ell \ell K^{\pm}$ promising at LHCb
 - Get 10% error on $R_{
 m K}$ in one year
 - Control channel for ${
 m B}^0{
 ightarrow}\mu\mu{
 m K}^*$ FBA
 - R_{K^*} with $\mathrm{B}^0{ o}\mu\mu\mathrm{K}^*$: to be studied

Ready for Penguins at CERN!

