

Flavor Physics at LHC

Symmetries and Phases of the Universe - Irsee 20 I2 - P. Campana (CERN \& INFN Frascati)

Flavor Physics at LHC

definition:

study of interactions in b - and c -hadrons produced in pp collisions at LHC (heavy quarks)

why:

search for new phenomena (= New Physics) beyond the Standard Model to explain the ORIGIN OF FLAVOR, one of the unsolved mysteries connected to the origin of fermion generations, the striking hierarchies in the fermion spectrum, the absence of CP violation in strong interactions and the matter antimatter asymmetry (the current level of CP violation being too small by $\sim 10^{10}$)
how:
Heavy Flavor Physics probes large mass scales via virtual quantum "loops" of New Particles appearing as corrections to the dominant diagrams ("tree diagram")

where:

looking to very rare decays and searching for unexpected $C P$ violation in $b-$ and $c-$ hadron decays, measuring CKM matrix elements in tree and loops diagrams

Heavy Flavor studies are also important in $\mathrm{Pb}-\mathrm{Pb}$ collisions (as probes of QGP effects)

Direct vs. Indirect searches

Production of new particles at LHC will probe directly the structure of matter and interactions

The goal is to give an answer to the HIERARCHY PROBLEM of Electroweak Symmetry Breaking (stability of SM Higgs under radiative corrections) and to find candidates for the DARK MATTER: the higher the energy available in the collision, the highest the reach in new mass scale (DIRECT SEARCHES)

But even in presence of discovery of new states, different New Physics scenarios can lead to similar signatures: difficult to disentangle the various theories

High statistics, high precision measurements on low energy rare process potentially affected by virtual quantum corrections, may offer indirect insights (INDIRECT SEARCHES)

This technique has been used since long time in Particle Physics, and it is an important part of LHC physics program

A tiny effect with great consequences

The experimental observation of a very small difference in the energy levels of ${ }^{2} \mathrm{~S}_{1 / 2}$ and ${ }^{2} \mathrm{P}_{1 / 2}$ in H atoms ("Lamb shift") due to quantum virtual effects ("loops") has brought to the development of modern QED (Schwinger, Feynman, Tomonaga - Nobel prize in 1955)

New Physics from (ultra) low energy precise measurements!

1970: GIM mechanism (hypothesis of c quark) to explain absence of $\mathrm{K}_{\mathrm{L}} \rightarrow \mu \mu$ decay. $\mathrm{SU}(2)$ quarks doublet

1987 ARGUS (DESY): the measurement of oscillations frequency of B^{0} - anti B^{0} system suggests a very high mass of top quark (at least $>50 \mathrm{GeV}$)

SLC/LEP Preliminary APRIL 1994

Flavor as a portal to New Physics

In the extensions of the Standard Model, additional flavor and CP violation can arise from exchange of new scalar (H^{+}, squarks, ...), fermionic (gluinos, $\mathrm{t}^{\prime}, \ldots$) or gauge ($Z^{\prime}, W^{\prime}, \ldots$) degrees of freedom

However new models must respect strong Flavor selection rules

In particular the absence of Flavor Changing Neutral Currents (no transitions between quarks of same charge) implies on New Models:

- new particles are heavy $\left(M_{\mathbf{x}} \gg \mathrm{ITeV}\right)$
- their masses are degenerate ($\Delta \mathrm{m} \sim 0$)
- or mixing angles are small

The absence of signals of New Physics in current measurements in Heavy Flavor, already now set strong constraints on the TeV-scale physics (higher than those found in direct searches so far, even at LHC)

Present constraints from Flavor Physics

The CKM Paradigm

Spectacular confirmation of the CKM model as the dominant source of flavor and CP violation in interactions among quarks
All flavor variables constrained in the SM CKM fit are in good agreement with experimental observations

Some variables still to be measured precisely (e.g. γ, now at 20%) and some discrepancy ($\sim 3 \sigma$) between some measurements (e.g. V_{ub}): therefore a lot of room for surprises !

LHC is taking over the legacy from B factories and Flavor Physics at Fermilab

Why using B mesons ?

In most of the new physics scenarios, large effects are expected in decays of b-quarks (many times new physics effects couple to mass)
$B_{\mathbf{u}}, B_{d}$, and B_{s} mesons are produced abundantly at LHC (together with b baryons)
Long lifetime of b hadrons allow for "easy" experimental detection of decays
Several techniques allow to tag the flavor of the b (b or anti-b)
Large mass of b quark gives phase space to many final states (and daughter particles have high momentum: easier to detect)

Theoretical predictions in b physics are often accurate (much easier than in lower mass quarks, e.g. charm) and can be compared with experimental observations

Wealth of data coming from B factories and Fermilab experiments, in a large variety of decay modes

Tools for studying the symmetries and the phases of the Universe

VLT spectrometer @ ESO

ATLAS spectrometer @ LHC

Atlas and CMS

Main focus on high $\mathrm{P}_{\mathbf{T}}$ Physics (Higgs and Supersymmetry) but large samples of B events available

Can stand to high luminosity from $\mathrm{LHC} \sim 310^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (now) Up to $\sim 510^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (in future)

CMS Detector

Pixels Tracker ECAL HCAL Solenoid Steel Yoke Muons

STEEL RETURN YOKE

2T solenoid, toroid system ($\int \mathrm{Bdl}=1-7.5 \mathrm{Tm}$) Tracking to $|\eta|=2.5$, calorimetry to $|\eta|=4.9$ es
 44m

B-hadrons reconstruction mainly exploits excellent Vertex detectors (silicon strips and pixels) and Muon detectors for precise p measurements

Limited hadron identification, but excellent photon identification

Cuts on medium $\mathrm{Pt}_{\mathbf{T}}(4-6 \mathrm{GeV})$ dimuon final states

ALICE (the Little Bang)

Study of QCD phase transition (QGP \rightarrow hadrons) at $t_{\text {Universe }} \sim 10 \mu \mathrm{~s}$

In high-energy $\mathrm{Pb}-\mathrm{Pb}$ collisions, large energy densities are reached over large volumes (>> $100 \mathrm{fm}^{3}$)

Two main parts:

barrel ($|\eta|<0.9$); forward μ-spectrometer $(-4<\eta<-2.5)$

Crucial for Heavy Flavor: vertexing, tracking, hadron and muon ID, performed in harsh conditions (very high particle multiplicities, several 10^{3})

Flavor Physics as a probe to study behavior of strong interactions in the high density QCD medium of Pb Pb collisions (e.g. charm production suppression)

LHCb (a dedicated Flavor Physics experiment)

Excellent vertex resolution to resolve fast oscillation of $B_{s}(\sim 40 \mathrm{fs})$

Background rejection ($\mathrm{S} / \mathrm{B}=\mathrm{I} / 200$ at production)
Good particle ID ($\pi, \mathrm{K}, \mathrm{p}, \gamma, \mu$)
Precise momentum resolution ($\sim 0.5 \%$)
Trigger capability
Efficient selection of hadronic and leptonic final states
Low $\mathrm{P}_{\mathbf{T}}$ single μ detection ($>1.5 \mathrm{GeV}$)

Trigger efficiencies:
B decays with $\mu \mu \quad \varepsilon \sim 70-90 \%$ B decays with hadrons $\varepsilon \sim 20-45 \%$ Charm decays : $\varepsilon \sim 10-20 \%$ (!)

b and c quark production in the LHCb environment

Gluon-Gluon-Fusion:

Both b quarks in the forward acceptance of LHCb

- inelastic pp collisions $\sigma \sim 60 \mathrm{mb}(7 \mathrm{TeV})$
- c quark production $\sigma \sim 6 \mathrm{mb}(7 \mathrm{TeV})$
- b quark production $\sigma \sim 0.3 \mathrm{mb}(7 \mathrm{TeV})$

All c - and b - hadrons types produced
Typical running luminosity (LHCb)
$\sim 410^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (limited by occupancy)
$\sim 15 \mathrm{MHz}$ of pp collisions (few 10 kHz bb)
~ 510^{11} b-anti b pairs $/ \mathrm{y}$

LHC detectors: precise spectrometers across energy decades

LHCb Preliminary
$\sqrt{s}=7 \mathrm{TeV}$

Muon identification plays a key role in reconstruction of heavy mesons with J / ψ in the final state:

- Good acceptance at low PT
- Error on mass scale $\sim 0.1 \mathrm{MeV}$
$\rightarrow 30$ years of Particle Physics in one plot (few months of data taking) !

$$
\stackrel{2}{2}]^{2}
$$

201 I: a "luminous" year at LHC

Luminosity leveling guarantees adequate and stable running and trigger conditions for LHCb
Plans for 2012:

- $\sqrt{s}=8 \mathrm{TeV}$ (increased HF cross sections: $+15 \%$)
- I5/fb Atlas \& CMS, I.5/fb LHCb
- First run p-Pb for the four experiments

In 2015: $\sqrt{\mathrm{s}}=14 \mathrm{TeV}-\mathrm{L}>10^{34}$ (Atlas \& CMS)

- Rare B decays (LHCb, Atlas and CMS)
- CP violation in B_{s} system (LHCb, Atlas and CMS)
- Search for CP violation in charm (LHCb)
- Heavy Flavor Production \& Spectroscopy (All)
- Heavy Flavor as probe of QGP (Alice)

$B_{s} \rightarrow \mu \mu$

Predicted to be very rare in the SM due to GIM \& helicity suppression:

- $\quad \operatorname{Brsm}_{s \mathrm{~s}}\left(\mathrm{~B}_{\mathrm{s}} \rightarrow \mu \mu\right)=(3.2 \pm 0.2) \times 10^{-9}$

Large sensitivity to NP, eg SUSY:

- $\operatorname{Br}_{\operatorname{MSSM}}\left(B_{q} \rightarrow \ell^{+} \ell^{-}\right) \propto \frac{M_{b}^{2} M_{\ell}^{2} \tan ^{6} \beta}{M_{A}^{4}}$

Last summer (EPS conf.) first results:
LHCb (0.4/fb) + CMS (1.3/fb) combination BR $\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu \leq \mathrm{I} . \mathrm{I} \times 10^{-8}\right)(95 \% \mathrm{CL})$

New round of measurements from ATLAS, CMS and LHCb soon available (at current winter conferences)

Prospects for 2012 (LHCb) $\rightarrow 3 \sigma$ discovery (similar sensitivity for CMS)

Particularly challenging measurement:
BR \sim few 10^{-9} against a strong peaking background (high efficiency/high discrimination required)

Background discriminated with B invariant mass and multivariate analysis variable (BDT) trained on data $\left(B \rightarrow \pi \pi, B \rightarrow K K\right.$ are very similar to $\left.B_{s} \rightarrow \mu \mu\right)$ "Standard candles" to obtain the BR:
$\mathrm{B}^{+} \rightarrow J / \psi \mathrm{K}^{+}, \mathrm{B}_{s} \rightarrow J / \psi \phi, \mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$
At the end of the analysis, few events are left (candidates $B_{s} \rightarrow \mu \mu$) with $S / B<1$ in the most sensitive kinematical region
Also very important $B_{d} \rightarrow \mu \mu$ (but $B R \sim 1 / 30$ of B_{s})

G. Isidori, ICFA Seminar, 201 I
$\mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)$ sets strong bounds on tan β at least in MSSM, complementary to direct searches and in tension with g - 2 result (presently the largest off-SM anomaly)

... breaking news ... just few hours ago, CMS seminar at CERN with new limits on $\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu$ (5 times more statistics than in 201I)

Search for $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$and $B^{0} \rightarrow \mu^{+} \mu^{-}$in 2011 dataset

upper limit $(95 \% \mathrm{CL})$	observed	expected
$\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	7.7×10^{-9}	8.4×10^{-9}
$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)$	1.8×10^{-9}	1.6×10^{-9}

Significant improvement of the limit (~ 2.5 times the SM value)
More new results from LHCb and Atlas soon

$C P$ violation \& $B_{s} \bar{B}_{s}$ Mixing Phase

Interference between mixing and decay gives rise to CP violating phase $\phi_{s}=\phi_{M}-2 \phi_{D}$

$$
\phi_{s} \stackrel{S M}{=}-2 \beta_{s} \equiv-2 \arg \left(-\frac{V_{t s} V_{t b}^{*}}{V_{c s} V_{c b}^{*}}\right) \sim 0 \text { in } S M
$$

Requires time-dependent, flavour tagged, angular analysis

Interference effects from New Physics could bring in the amplitude of the process a non zero phase with strong impact on the amount of CP violation

$$
A_{C P}(t) \equiv \frac{N(\bar{B} \rightarrow f)-N(B \rightarrow f)}{N(\bar{B} \rightarrow f)+N(B \rightarrow f)}=\underset{\sim}{S} \sin \left(\Delta m_{q} t\right)
$$

Measuring ϕ_{s}
Particle ID, flavor ID, excellent mass and high time resolution needed ($\sigma_{t} \sim 40$ fs to follow the fast oscillations of B_{s}) as this is a time dependent measurement

Disentangling $C P=I$ and $C P=-I$ final states with angular analysis

Most precise measurement of ϕ_{s}
$\phi_{s}=0.15 \pm 0.18$ (stat) ± 0.06 (syst) rad

- Consistent with SM
4σ Evidence for $\Delta \Gamma_{s} \neq 0$:
- $\Delta \Gamma \mathrm{s}=0.123 \pm 0.029$ (stat) ± 0.008 (syst) ps-1

Quantum effect: B_{s} mass eigenstates $\left(B_{s H}, B_{s L}\right)$ have different lifetimes (like in the $K_{\mathbf{S}}, K_{\mathbf{L}}$ system)

This unphysical solution removed with subsequent analysis

$B_{s} \rightarrow J / \psi \phi$

As of now, only LHCb ϕ_{s} measurement available

Atlas and CMS excellent detector performances even at high luminosities will allow for (future) new measurements of ϕ_{s}, in particular as their statistics will increase (competitive with $\mathrm{O}(>50 / \mathrm{fb})$)

Status and perspectives of CPV measurements

- Previous tensions with SM observed by CDF and D0 not confirmed
- $\mathrm{A}_{S L}$ (=asymmetry in semileptonic B decays) result from D0 ($\sim 4 \sigma$ away from SM) to be tested soon by LHCb. This measurement planned also by CMS

LHCb expects a precision of 0.1 rad with I/fb data sample

A "charming" surprise

LHCb can profit of the huge charm production cross section at the LHC ($\sim 6 \mathrm{mb}$): (non negligible trigger efficiency and huge sample of data)
B factories have observed tiny oscillations of $D^{\mathbf{0}}$-anti $D^{\boldsymbol{0}}$ system but not $C P$ violation Interference between tree and loop diagrams could generate direct $C P$ violation

Measure CP violation in charmed mesons (e.g. in $\mathrm{D}^{0} \rightarrow$ hh decays) with unprecedented data samples

Particularly interesting as CPV in charm would be the only "up" quark type with this effect (top quark does not form hadrons)

$$
\begin{aligned}
A_{C P}(f)= & \frac{\Gamma\left(D^{0} \rightarrow f\right)-\Gamma\left(\bar{D}^{0} \rightarrow f\right)}{\Gamma\left(D^{0} \rightarrow f\right)+\Gamma\left(\bar{D}^{0} \rightarrow f\right)} \\
& f=K K \text { or } \pi \pi
\end{aligned}
$$

Theoretical expectations for $\mathrm{A}_{\mathbf{C P}}$ are very small $10^{-3} \div 10^{-4}$ (but uncertainties up to 10^{-2})

LHCb has an evidence for CP violation in c quark at 3.5σ level (with $0.6 / \mathrm{fb}$ data sample): first "anomalous result" at LHC
$\Delta A_{C P}=[-0.82 \pm 0.21$ (stat.) ± 0.11 (sys.) $] \%$
Evidence to be confirmed with more statistics and with other independent cross checks

LHCb result generated a lot of theoretical interest
It has been suggested that the Standard Model could account for the measured value of CPV in charm (corrections to hadronic parts)

Only the observation of a similar result with other charm decays will solve the puzzle if it is NP or not

Quarkonia production

Test perturbative QCD at new energy regime, higher transverse momentum and wider rapidity range than previously (Atlas \& CMS: high $\mathrm{P}_{\mathbf{T}}$, low η - LHCb: low $\mathrm{P}_{\mathbf{T}}$, high η)

Production mechanism for heavy quarkonium states ($\mathrm{J} / \psi, \psi(2 \mathrm{~S}), \mathrm{Y}$ and higher angular states) not fully understood.
Unprecedented level of test for the various fragmentation models

Next challenging measurements: obtain polarization values: strong test of models

Study of radiative decays of cc and bb P wave resonances

Clarify the mechanisms of hadron production in the fragmentation process
Present significant feed down states for J / ψ and Y (S wave states) inclusive production

Key role in identifying and measuring energy of photons in final states at LHC (first time at hadron colliders)

Mass $\left(\chi_{\mathrm{b}}(3 \mathrm{P})\right)=10.530(9) \mathrm{GeV}$ First NEW observed particle at LHC (... waiting for the Higgs ...)

b and c production in PP collisions

Consistent comparison with NLO over 3 orders of magnitude

Charm production in dense matter (Alice)
"Centrality" (CC) gives an evaluation of density of matter probed by the heavy meson

Strong suppression observed in central collisions (0-20\%) wrt pp reference

Significant suppression also in semiperipheral (40-80\%) wrt pp reference

Suppression for charm is a factor 3-4 above $\mathrm{Pt}^{\sim 5} \mathrm{GeV} / \mathrm{c}$ Indicates strong energy loss of c quarks in the hot and dense QCD medium formed in these collisions

J / ψ in $\mathrm{Pb}-\mathrm{Pb}$: results and comparison with RHIC

$\mathrm{R}_{\mathrm{AA}}($ ALICE $)>\mathrm{R}_{\text {AA }}($ PHENIX $)$: smaller J / ψ suppression in spite of the factor 13 in \sqrt{s}
First indication for charm quark (re)combination in heavy-ion collisions
Similar studies possible also in Atlas \& CMS

Perspectives: the long way to precision Heavy Flavor Physics

		now	~2017	~2025	
Type	Observable	Current precision	$\begin{gathered} \mathrm{LHCb} \\ \left(5 \mathrm{fb}^{-1}\right) \\ \hline \end{gathered}$	Upgrade $\left(50 \mathrm{fb}^{-1}\right)$	Theory uncertainty
Gluonic penguin	$\begin{gathered} S\left(B_{s} \rightarrow \phi \phi\right) \\ S\left(B_{s} \rightarrow K^{* 0} K^{* 0}\right) \\ S\left(B^{0} \rightarrow \phi K_{S}^{0}\right) \end{gathered}$	0.17	$\begin{aligned} & \hline 0.08 \\ & 0.07 \\ & 0.15 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.02 \\ & 0.03 \end{aligned}$	$\begin{gathered} 0.02 \\ <0.02 \\ 0.02 \end{gathered}$
B_{s} mixing	$2 \beta_{s}\left(B_{s} \rightarrow J / \psi \phi\right)$	0.35	0.019	0.006	~ 0.003
Right-handed currents	$\begin{gathered} S\left(B_{s} \rightarrow \phi \gamma\right) \\ \mathcal{A}^{\Delta \Gamma_{s}}\left(B_{s} \rightarrow \phi \gamma\right) \end{gathered}$	-	$\begin{aligned} & 0.07 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.03 \end{aligned}$	$\begin{gathered} <0.01 \\ 0.02 \end{gathered}$
$\begin{gathered} \text { E/W } \\ \text { penguin } \end{gathered}$	$\begin{gathered} A_{T}^{(2)}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) \\ s_{0} A_{\mathrm{FB}}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right) \end{gathered}$	-	$\begin{gathered} 0.14 \\ 4 \% \\ \hline \end{gathered}$	$\begin{gathered} 0.04 \\ 1 \% \\ \hline \end{gathered}$	$\begin{gathered} 0.05 \\ 7 \% \\ \hline \end{gathered}$
Higgs	$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$	-	30\%	8\%	< 10\%
penguin	$\frac{\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}$	-	-	$\sim 35 \%$	$\sim 5 \%$
Unitarity triangle angles	$\begin{gathered} \gamma\left(B \rightarrow D^{(*)} K^{(*)}\right) \\ \gamma\left(B_{s} \rightarrow D_{s} K\right) \\ \beta\left(B^{0} \rightarrow J / \psi K^{0}\right) \end{gathered}$	$\begin{gathered} \sim 20^{\circ} \\ - \\ 1^{\circ} \end{gathered}$	$\begin{gathered} \sim 4^{\circ} \\ \sim 7^{\circ} \\ 0.5^{\circ} \end{gathered}$	$\begin{aligned} & 0.9^{\circ} \\ & 1.5^{\circ} \\ & 0.2^{\circ} \\ & \hline \end{aligned}$	negligible negligible negligible
$\begin{aligned} & \text { Charm } \\ & \text { CPV } \end{aligned}$	$\begin{gathered} A_{\Gamma} \\ A_{C P}^{d i r}(K K)-A_{C P}^{d i r}(\pi \pi) \end{gathered}$	$\left\{\begin{array}{l} .5 \times 10^{-3} \\ 3 \times 10^{-3} \end{array}\right.$	$\begin{aligned} & 2 \times 10^{-4} \\ & 4 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 4 \times 10^{-8} \\ & 8 \times 10^{-} \end{aligned}$	-
+ results from Atlas \& CMS					

Conclusions

Heavy Flavor is a portal to the discovery and the understanding the New Physics
The excellent performances of LHC and of the experiments has allowed to start producing exciting results in the Heavy Flavor Physics domain (LHCb in particular)

Standard Model still "un-cracked" but yet large room for unexpected phenomena: indirect searches are complementing direct searches for Supersymmetry

A lot of activities and very good perspectives for precise measurements in CP violation in b and c hadrons, CKM matrix, very rare decays, heavy flavor production in $\mathrm{p}-\mathrm{p}$ and $\mathrm{Pb}-\mathrm{Pb}$ collisions. LHC has produced already the best measurements in the field

Evidence (LHCb) of CP violation in charm could be an hint of New Physics (still to be verified with other measurements)

Looking forward to increase the statistics in 2012 (I5/fb each ATLAS \& CMS, I. 5 LHCb) and energy \& statistics in 2015

Aiming to pin down theoretical expectations in Flavor Physics within the next decade !

