

Search for
$$B^+ \rightarrow \mu^+ \nu_{\mu}$$

Vitalii Lisovskyi Supervisor: Xabier Cid Vidal August 4, 2015

Who am I?

Master student at Kharkiv • About me National University Introduction Probably the youngest • and summer student (19 years motivation old) Variables used for LATVIA Lienäi analysis < N > World · Czech Republic Velikive Luk DENMARK Karlskrona Glasgow Šiauliai Daugavpils LITHUANIA Klaipėda Copenhager Vitsyebsk **Multivariable** Rvazar Kaunas Kalum Gdańsk Rostock Minsk Olsztyn Hamburg analysis and Szczecin Bryansk Bydgoszcz BELARUS Mancheste Breme NETHERLAN Norwich RELAN Berlin Birmingham Poznań Hannover Warsaw Kharkiv, Ukraine **BDT** Brest Rotterdam Cardiff Cork Chernihiy POLAND Directions Save Zoom Middelburg GERMAN Plymouth Opole Fit on the Prague Cracow Kharkiy Lviv Frankfurt UKRAINE ZECH REPUBL Nikolayev Rouen Paris Stuttgart data **OVAKIA** Strasbourg Dnipropetrovsk Vienna Bratislava Orléans Krivoy Rog Satu Mare Budapest Dijon Zaporizhzhva Nantes Besancon HUNGARY Zalău FRANCE Chişina **Future** ROMANIA Odessa Zagreb Limoge OATIA Turin Krasnodar perspectives Simferopol Borde Craiova Bucharest Sevastopo Bologna Genoa Bay of Bisca Maykop San Marino SERBIA Monaco-Ville Toulouse Santande arajevo La Coruña Sokhum Vitor Marseille BULGARIA My second Andorra la Vella Burgos Podgorica Zaragoz /alladolid Barcelona project 250 km 100 miles @ 2015 HERE @ 2015 Microsoft Corporation

Activity

About me

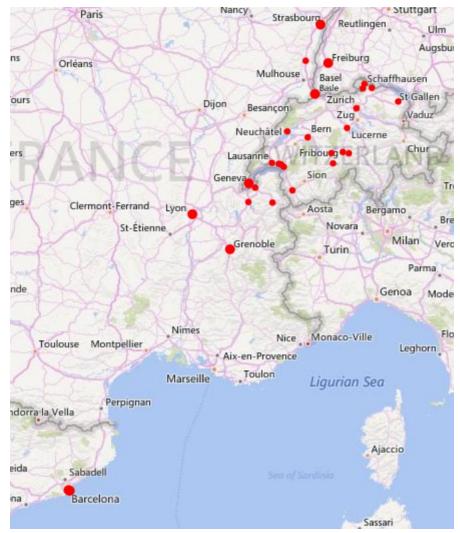
•

•

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT


Fit on the data

Future perspectives

My second project

- I used all the weekends here for travelling
- Map of main visited places during these 7 weeks:

In the weekdays, I attended lectures and worked on my project

My project

About me Introduction W^{+} • $B^+ \rightarrow \mu^+ \nu_{\mu}$ decay and motivation Suppressed by helicity conservation Variables used for analysis • SM: BR($B^+ \rightarrow \mu^+ \nu_{\mu}$) $\approx 4.10^{-7}$ **Multivariable** New Physics: possible existence of new analysis and **BDT** charged mediators can increase BR Fit on the data H^{+} Future perspectives e.g.: My second project

Analysis introduction

About me

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data

Future perspectives

My second project

- My previous talk on VRD meeting: <u>https://indico.cern.ch/event/371291/contribution/2/at</u> <u>tachments/1129926/1614663/Vitalii BMuNu VRD.pdf</u>
- Current best upper limit: around 2xSM $B_r < 1 \times 10^{-6}$ (90% CL) (BaBar)
- Can LHCb break this limit?
 - We may have a chance
- Challenging analysis:
 - Only neutrino and muon in the final state, so the usual invariant mass reconstruction is not possible
 - We must find another variable to fit: BDT fit

Analysis introduction

About me

- Introduction and motivation
 - Variables used for analysis

Multivariable analysis and BDT

> Fit on the data

Future perspectives

My second project

- Types of background: *bb* and *cc* production, with further semileptonic decays with muon in the final state
- Expected number of signal events is smaller than background, so background must dominate in the data
- So, our first purpose is to ensure that these two types of background describe the data well

Analysis introduction

About me

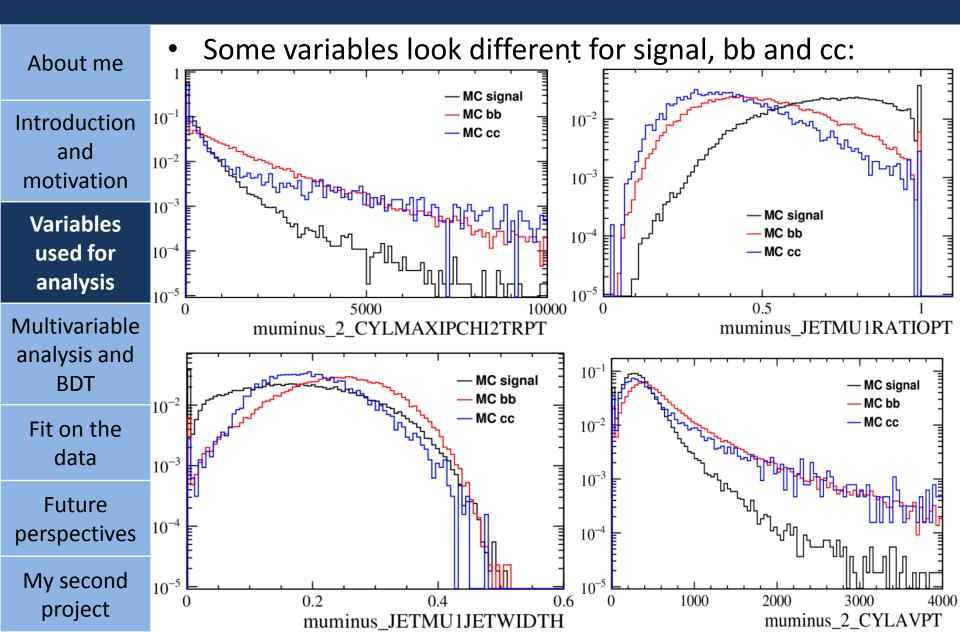
Introduction and motivation

> Variables used for analysis

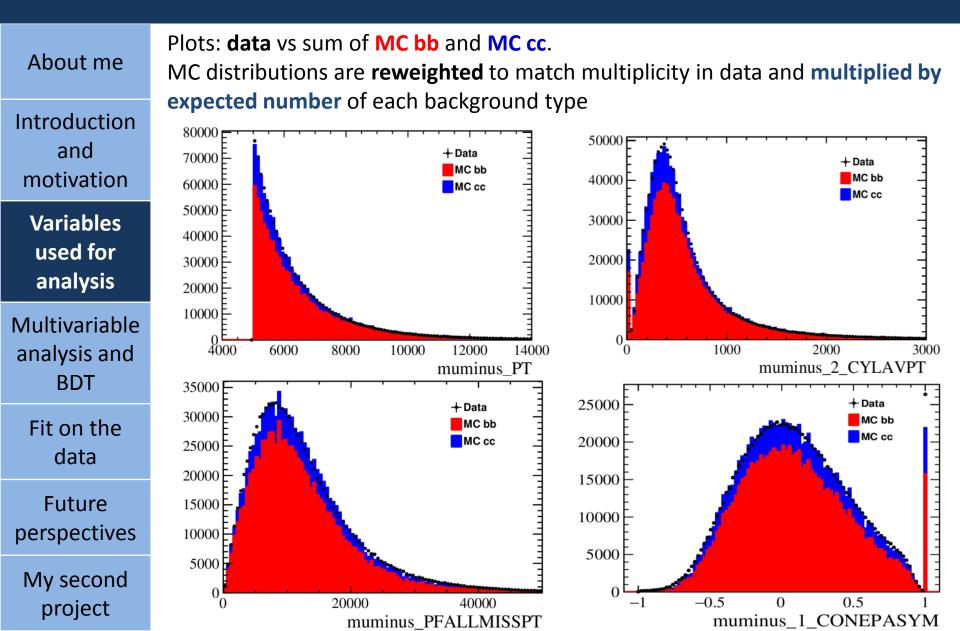
Multivariable analysis and BDT

> Fit on the data

Future perspectives


My second project

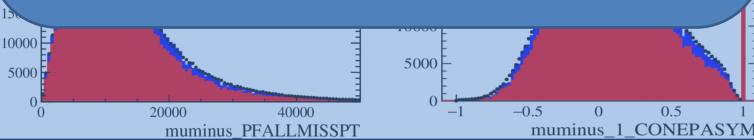
• Data: 2012 LHCb data, around 78.6 pb⁻¹


• Stripping cuts:

- muon p_t >5 GeV/c and IP χ^2 >400
- select events with low multiplicity (<150 tracks)
- MC: stripping filtered production
 - signal: 54818 events
 - bb: 43563 events
 - cc
 : 6410 events
- We use variables of different types:
 - Global physics variables
 - Cylinder and cone variables
 - Jet variables

Variables distributions

Variables distributions

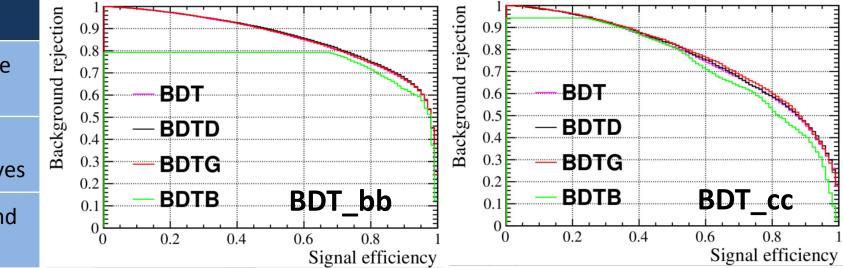


Variables distributions

About me Introduction and motivation Variables used for analysis Multivariable analysis and **BDT** Fit on the data Future perspectives My second project

Plots: **data** vs sum of **MC bb** and **MC cc**. MC distributions are **reweighted** to match the multiplicity in data and **multiplied by expected number** of each background type

Background modes describe the data well. Let's search for signal!



Multivariate analysis

About me Introduction and motivation Variables used for analysis Multivariable analysis and Background rejection **BDT** 0.9 0.8 Fit on the 0.7 data 0.6 0.5 **Future** 0.4 0.3 perspectives 0.2 0.1 My second 0 project

Two BDT variables: BDT_bb and BDT_cc

- For training these BDTs we use:
 - Same signal sample (signal MC)
 - Same discriminating variables (*list was optimized*)
 - Different background samples: bb MC for BDT_bb and cc MC for BDT_cc
- BDTG method chosen as one giving the best separation

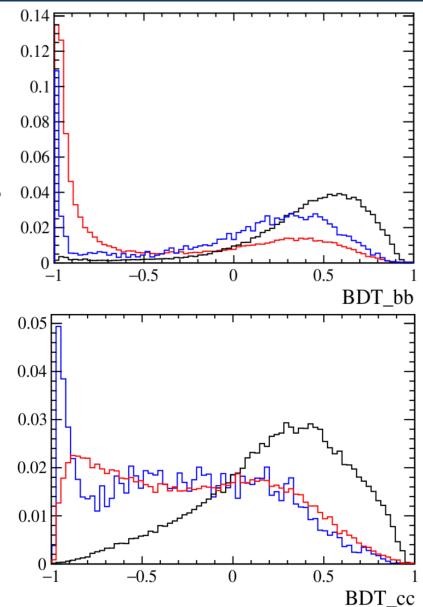
BDT distributions

About me

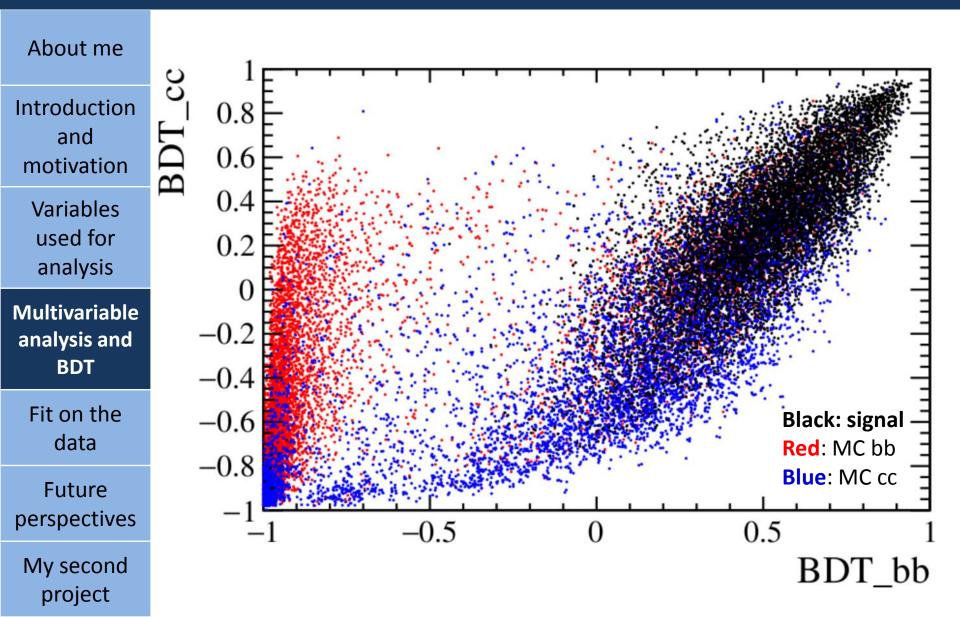
Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT


Fit on the data

Future perspectives


My second project

 BDT variables distributions for signal and background modes

- Black: MC signal
- **Red**: MC bb
- Blue: MC cc

BDT distributions

BDT fit on data

Future perspectives of analysis

About me

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data

Future perspectives

My second project

- **bb** and **cc** backgrounds are **dominant**
- Describe the data well \rightarrow reasonable fit
- Uncertainties of fits are much larger than expected number of events so we can't push a BR limit down right now, but...
 - MC samples with large number of events
 - BDT training including more variables
 - 2D BDT fit with nonuniform binning
 - Higher statistics during Run II

That's not all...

About me

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data

Future perspectives

My second project

- I also help with $K_s \rightarrow \mu\mu$ analysis
 - co-supervised by Jessica Prisciandaro
- A longer talk on it I will present on VRD meeting tomorrow...
- Goal of the analysis: search for this decay
- My contribution:
 - Calculating reconstruction and stripping efficiencies
 - Fit of dominant misID background mode

Stripping efficiency

About me

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data

Future perspectives

My second project

• Stripping cuts efficiencies studied on $K_s \rightarrow \mu\mu$ (signal) and $K_s \rightarrow \pi\pi$ (normalization channel):

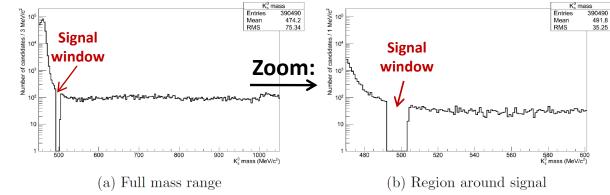
Stripping cuts efficiencies

	$\pi\pi$ separately		$\mu\mu$ separately		$\pi\pi$ all together		$\mu\mu$ all together	
cuts	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$
$\mu^{\pm} \operatorname{JP} \chi^2 > 100$	76.65	0.06	77.90	0.09	76.64	0.06	77.90	0.09
$AMAXDOCA(K_s^0) < 0.3$	87.51	0.05	97.91	0.03	90.83	0.05	99.74	0.0130
$DIRA(K_s^0) > 0$	98.49	0.02	97.91	0.03	99.80	0.01	99.74	0.01
$FD(K_s^0) * m(K_s^0) / p(K_s^0) > 0.1 * 89.53 * 0.29979$	72.60	0.07	71.86	0.10	86.60	0.06	86.60	0.09
$IP(K_{s}^{0}) < 0.4$	88.88	0.05	91.07	0.06	90.89	0.06	91.60	0.08
$p_T(\mu^{\pm}) > 250$	34.17	0.07	31.65	0.10	35.86	0.10	33.77	0.13
$400 < m(K_s^0) < 600 ext{ or } m(K_s^0) > 465$	99.18	0.01	99.86	0.01	99.99	0.00	99.99	0.01
all stripping cuts	-	-	-	-	19.61	0.06	18.99	0.08

Fit of misID background mode

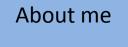
About me

Introduction and motivation

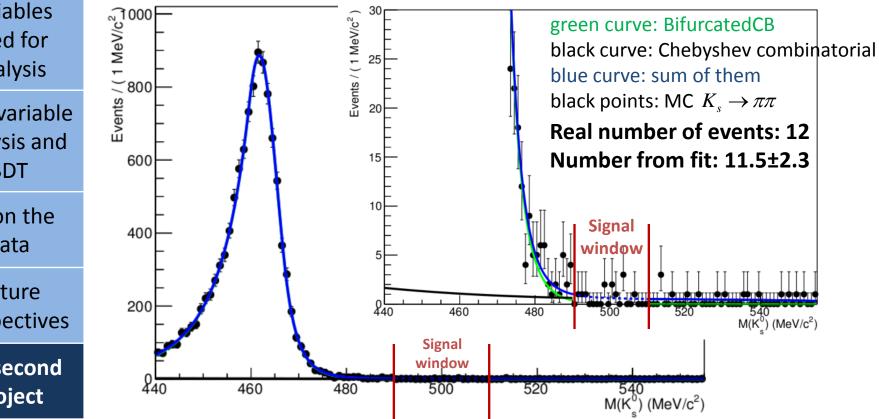

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data


Future perspectives

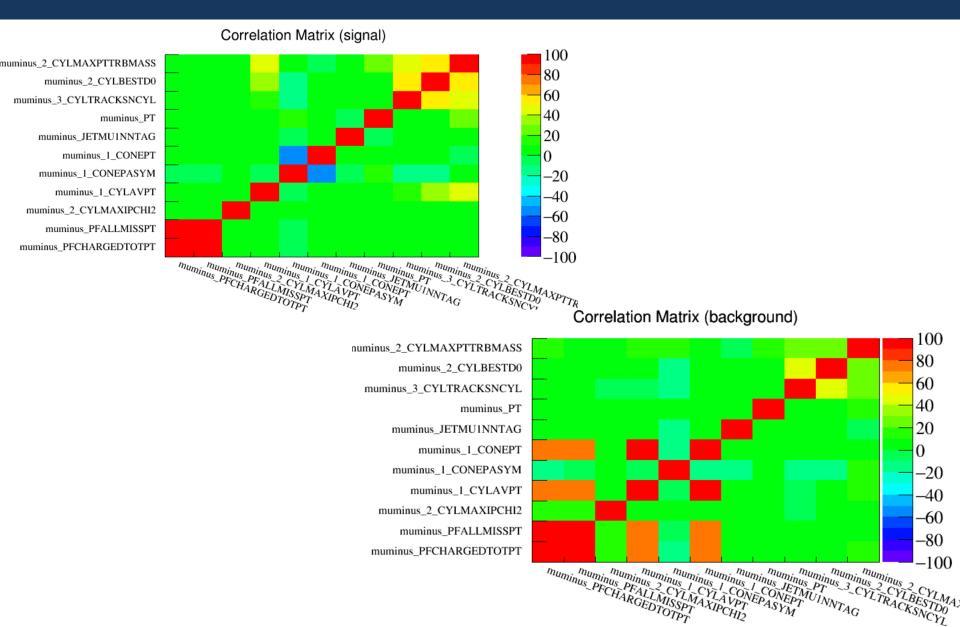
My second project Some pions can be misidentified as muons → huge misID background with shifted mass peak (but still covering the signal window)


- Necessary to obtain a best fit of this background in the signal window
 - I used $K_s \rightarrow \pi\pi$ MC with 0/1/both pions misIDd as muons
 - Tried different shapes to describe it
 - Compared the real number of events in the signal window with the integral under the fit

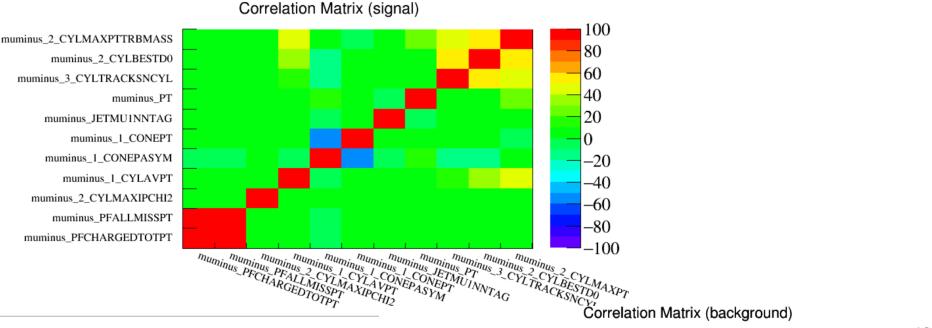
Fit of misID background mode

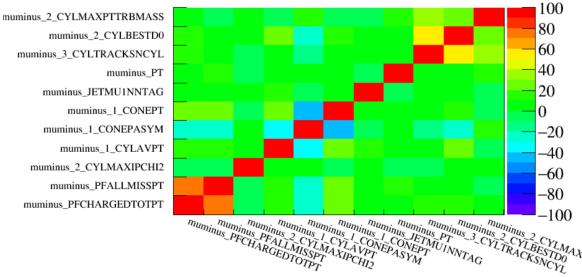
- Introduction and motivation
 - Variables used for
 - analysis
- Multivariable analysis and **BDT**
 - Fit on the data
- **Future** perspectives
- My second project

- The best shape: Bifurcated Crystal Ball + Chebyshev 3rd order
 - I checked the applicability of this fit to 2011 minbias data
 - Looked on fit behavior after different cuts, e.g. on BDT
- My fit model describes the background shape well ۲

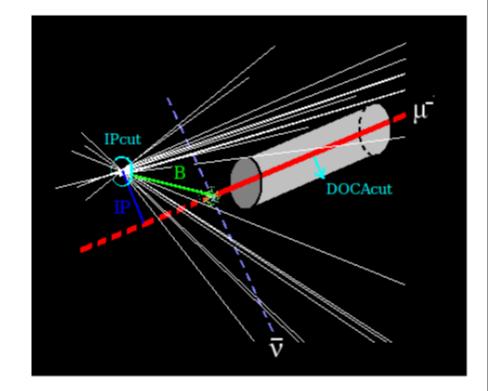

Conclusions

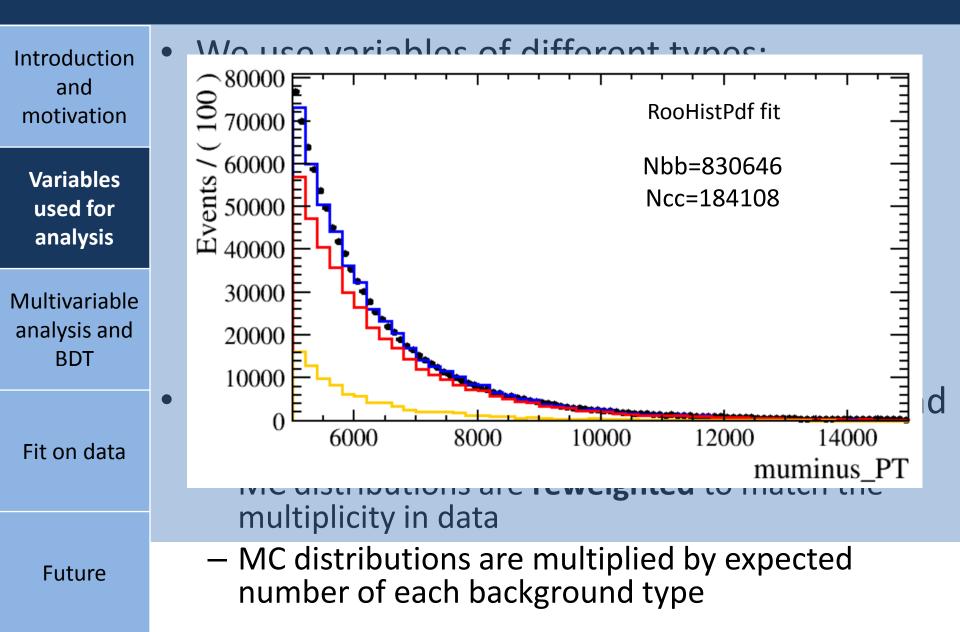
- That's still not all, but my time is over...
- $B^+ \rightarrow \mu^+ \nu_\mu$ analysis:
 - Dominant background modes understood
 - BDT trained and fitted
 - To continue analysis we need much machine and man power
- $K_s \rightarrow \mu\mu$ analysis:
 - Stripping cuts efficiencies calculated, the least efficient cuts identified
 - The best fit of the dominant background channel developed
- Much new knowledge and experience obtained


Thank you for your attention!

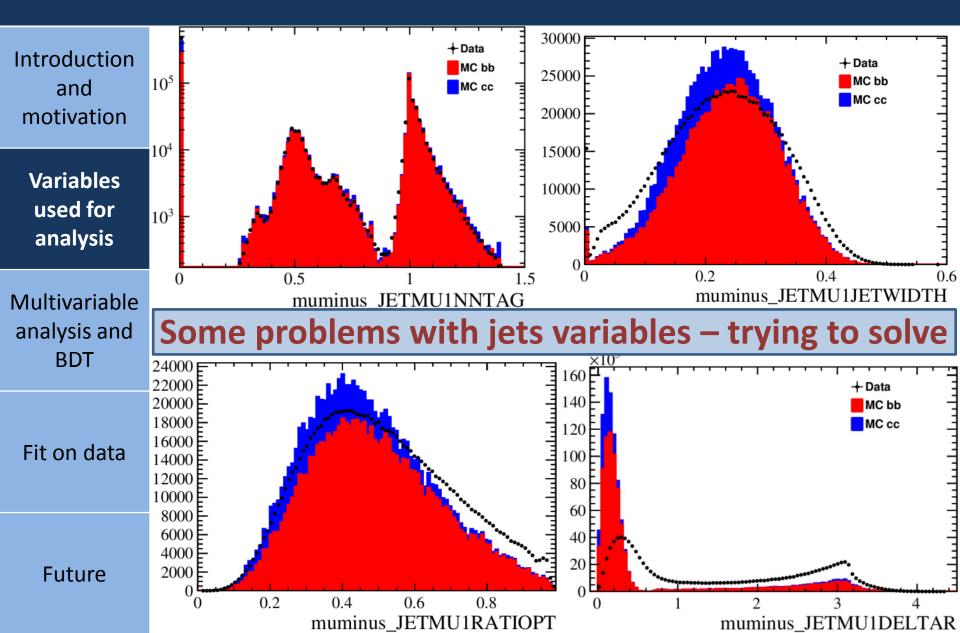

Backup slides

BDT_bb correlation matrices


BDT_cc correlation matrices



Isolation Definition (II)


- We want to select isolated muons → consider a cylinder around our muon track.
- Focus on low multiplicity events → set maximum number of tracks<150.
- Isolation conditions: (considering only Long and VELO tracks)
- ◇ Tracks in the event outside the cylinder → every track has a DOCA with the signal muon greater than the DOCAcut established.
- Tracks inside the cylinder are allowed if:
 - They are pointing to the PV (track IP smaller than IPcut).
 - The invariant mass of the system track+muon is larger than the B⁺ mass (idea: track+muon+missing ν system is not a 3-body decay from a B meson).

Variables used

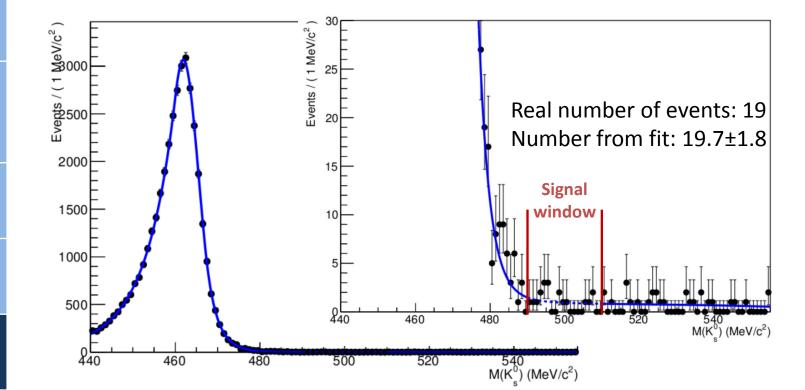
Jet variables

Fit of misID background mode

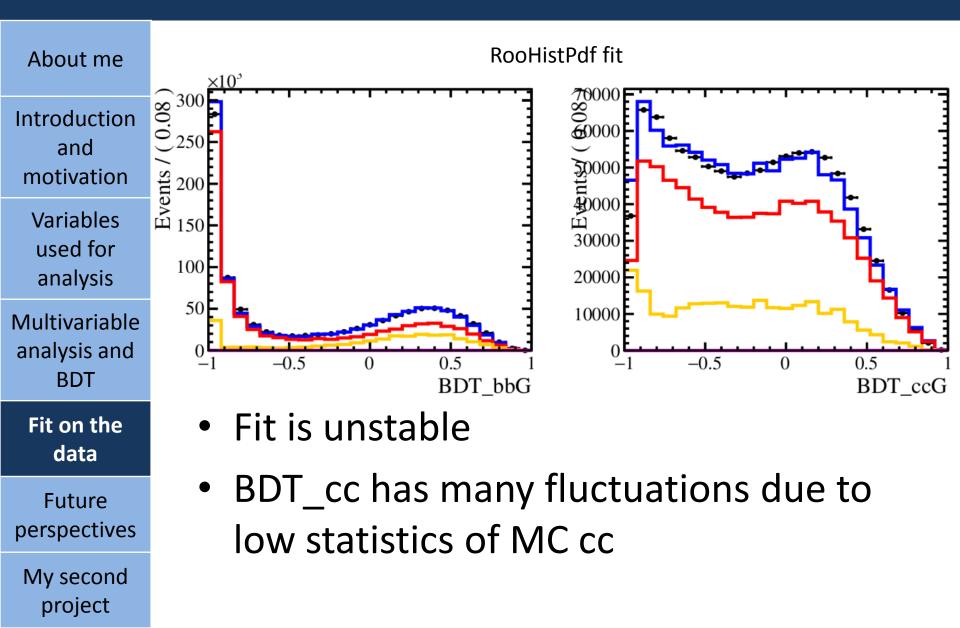
Introduction and motivation

About me

Variables used for analysis


Multivariable analysis and BDT

> Fit on the data


Future perspectives

My second project

- Then I checked the applicability of this fit to 2011 minimum bias data (proved absence of signal there)
- Looked on fit behavior after different cuts, e.g. on BDT
 - My fit model describes the background shape well

2D BDT fit on data

Stripping efficiency

About me

Introduction and motivation

> Variables used for analysis

Multivariable analysis and BDT

Fit on the data

Future perspectives

My second project

• Stripping cuts efficiencies studied on $K_s \rightarrow \mu\mu$ (signal) and $K_s \rightarrow \pi\pi$ (normalization channel):

Reconstruction efficiencies

πc	π	μ_{I}	μ
eff, $\%$	err, $\%$	eff, $\%$	err, $\%$
16.92	0.02	8.44	0.02

Stripping cuts efficiencies

	$\pi\pi$ separately		$\mu\mu$ separately		$\pi\pi$ all together		$\mu\mu$ all together	
cuts	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$	eff, $\%$	err, $\%$
$\mu^{\pm} _ \text{IP} \chi^2 > 100$	76.65	0.06	77.90	0.09	76.64	0.06	77.90	0.09
$AMAXDOCA(K_s^0) < 0.3$	87.51	0.05	97.91	0.03	90.83	0.05	99.74	0.0130
$DIRA(K_s^0) > 0$	98.49	0.02	97.91	0.03	99.80	0.01	99.74	0.01
$FD(K_s^0) * m(K_s^0) / p(K_s^0) > 0.1 * 89.53 * 0.29979$	72.60	0.07	71.86	0.10	86.60	0.06	86.60	0.09
$IP(K_s^0) < 0.4$	88.88	0.05	91.07	0.06	90.89	0.06	91.60	0.08
$p_T(\mu^{\pm}) > 250$	34.17	0.07	31.65	0.10	35.86	0.10	33.77	0.13
$400 < m(K_s^0) < 600 \text{ or } m(K_s^0) > 465$	99.18	0.01	99.86	0.01	99.99	0.00	99.99	0.01
all stripping cuts	-	-	-	-	19.61	0.06	18.99	0.08