Optimising the search for CP violation in $D_s^+ \rightarrow K^+ \pi^+ \pi^-$ decays at LHCb

Using forward-backward asymmetry as a probe for CPV

Summer Project 2021
Olaf Massen

Supervisors:
Dr. Nathan Philip Jurik
Dr. Laurent Dufour
Dalitz plot & Isobar model

1) $D_S^+ \rightarrow K^+ \pi^+ \pi^-$
2) $D_S^+ \rightarrow K^+ \alpha \rightarrow K^+ \pi^+ \pi^-$
3) $D_S^+ \rightarrow \pi^+ \beta \rightarrow K^+ \pi^+ \pi^-$

LHCb collaboration

Summer Project 2021, Olaf Massen
Removing background: BDTG

- D_S^+ Impact parameter of primary vertex
- Secondary vertex χ^2
- D_S^+ Pseudorapidity
- D_S^+ transverse and total momentum
- D_S^+ decay length and lifetime
- D_S^+ flight distance to primary vertex
- Daughter track isolation variables

Cut a signal efficiency of 75%
→ Background rejection 82%
Resonances:

- $K^*(892)$
- $\rho(770)$
- πN
- $K^*(1410)$
- $K^*_0(1430)$
- $\rho(1450)$

Incomplete model, missing structure both in $K^+\pi^-$ and $\pi^+\pi^-$ projection

Based on 567 ± 31 events

Improved Model

Resonances:

- $K^*(892)$
- $\rho(770)$
- NR
- $K^*(1410)$
- $K_0^*(1430)$
- $\rho(1450)$
- $f_0(980)$
- $f_0(1370)$
- $K_2^*(1430)$
- $\omega(782)$
- $f_2(1270)$

Based on $3.5 \cdot 10^6$ events

Improvement, yet still incomplete. Still useful for sensitivity study!
Regional charge asymmetry

\[A_{CP} = \frac{\#D_s^+ - \#D_s^-}{\#D_s^+ + \#D_s^-} \]

Forward-Backward charge asymmetry in helicity angle

\[\pi^- (3) \quad \theta_{23} \quad \pi^+ (2) \]

\[K^+ (1) \]

→ Twice as much statistics
Simulating CP violation

\[A_\rho = |A| e^{i\phi} \]

\[\Delta |A| \in \{-0.2 \%, -0.1 \%, 0 \%, 0.1 \%, 0.2 \%\} \]

\[\Delta \phi \in \{-0.2^\circ, -0.1^\circ, 0^\circ, 0.1^\circ, 0.2^\circ\} \]
Sensitivity results (1 toy example)

\[1.5 \cdot 10^7 D^+_S & 1.5 \cdot 10^7 D^-_S \]

Significance of ACP

- LHCb preliminary
- Amplitude \(\rho(770) = 0.0 \% \)
- Weak phase \(\rho(770) = -0.1^\circ \)
Sensitivity results (1 toy example)

<table>
<thead>
<tr>
<th>ΔA</th>
<th>$\Delta \phi$</th>
<th>Global A_{CP-FB}</th>
<th>σ</th>
<th>Angle</th>
<th>Best Bin</th>
<th>A_{CP}</th>
<th>σ</th>
<th>Best Bin</th>
<th>A_{CP-FB}</th>
<th>σ</th>
<th>Angle</th>
</tr>
</thead>
</table>
| 0.0 % | -0.1° | (-0.013 ± 0.018)\% | 0.7 | θ_{13} | 11 | (0.158 ± 0.074)\% | 2.1 | 10 | (-0.388 ± 0.136)\% | 2.9 | θ_{12}
| | +0.1° | (-0.018 ± 0.018)\% | 1.0 | θ_{12} | 12 | (0.614 ± 0.268)\% | 2.3 | 12 | (-0.630 ± 0.268)\% | 2.4 | θ_{13}
| -0.1% | -0.1° | (0.030 ± 0.018)\% | 1.7 | θ_{13} | 21 | (0.242 ± 0.109)\% | 2.2 | 21 | (-0.253 ± 0.109)\% | 2.3 | θ_{13}
| | 0.0 ° | (-0.038 ± 0.018)\% | 2.1 | θ_{12} | 26 | (-0.353 ± 0.119)\% | 3.0 | 26 | (-0.353 ± 0.119)\% | 3.0 | All three
| | +0.1° | (-0.043 ± 0.018)\% | 2.4 | θ_{23} | 11 | (-0.152 ± 0.074)\% | 2.0 | 11 | (-0.152 ± 0.074)\% | 2.0 | θ_{12} and θ_{23}
| +0.1% | -0.1° | (0.028 ± 0.018)\% | 1.6 | θ_{23} | 9 | (-0.288 ± 0.103)\% | 2.8 | 21 | (-0.308 ± 0.109)\% | 2.8 | θ_{13}
| | 0.0 ° | (-0.026 ± 0.018)\% | 1.4 | θ_{13} | 9 | (-0.215 ± 0.103)\% | 2.1 | 21 | (-0.237 ± 0.109)\% | 2.2 | θ_{13}
| | +0.1° | (-0.045 ± 0.018)\% | 2.5 | θ_{12} | 13 | (-0.190 ± 0.068)\% | 2.8 | 13 | (-0.190 ± 0.068)\% | 2.8 | θ_{12} and θ_{23}

Forward-backward charge asymmetry not twice as sensitive, but in some regions more sensitive than “regular” charge asymmetry
Outlook

With an increased number of MC events
 → Improve BDTG
 → Improve detector efficiency map

In general
 → Introduce CPV in multiple resonances
 → Use K-matrix formalism
 → Performing the CPV analysis on data
Back Up
MC Efficiency for BDTG cut at 0.4
Detector efficiency estimation

\[m(c\pi^+)^2 \quad [\text{GeV}^2/c^4] \]
\[m(K^+\pi^-)^2 \quad [\text{GeV}^2/c^4] \]
Example of residual background subtraction

![Graph showing the distribution of events and masses](image)

- $m(K\pi)$: 0.40 - 0.44
- $m(\pi\pi)$: 1.01 - 1.03
Dalitz plot of model by FOCUS Collaboration

Summer Project 2021, Olaf Massen
Dalitz plot of Improved model

LHCb preliminary
2018 dataset

LHCb preliminary
Improved model

LHCb preliminary
2018 dataset

LHCb preliminary
Improved model
Uniform binning of DP
Phase over DP: Physical Binning

[Image: A complex 3D graph showing a distribution of data points with various color gradients and labeled phases.]
Phase over DP: Uniform binning
Uniform Binning results

<table>
<thead>
<tr>
<th>ΔA</th>
<th>$\Delta \phi$</th>
<th>Global A_{CP-FB}</th>
<th>σ</th>
<th>Angle</th>
<th>Best Bin</th>
<th>A_{CP}</th>
<th>σ</th>
<th>Best Bin</th>
<th>A_{CP-FB}</th>
<th>σ</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0%</td>
<td>-0.1°</td>
<td>(-0.013 ± 0.018)%</td>
<td>0.7</td>
<td>θ_{13}</td>
<td>11</td>
<td>0.158 ± 0.074%</td>
<td>2.1</td>
<td>10</td>
<td>-0.388 ± 0.136%</td>
<td>2.9</td>
<td>θ_{12}</td>
</tr>
<tr>
<td></td>
<td>+0.1°</td>
<td>(-0.018 ± 0.018)%</td>
<td>1.0</td>
<td>θ_{12}</td>
<td>12</td>
<td>0.614 ± 0.268%</td>
<td>2.3</td>
<td>12</td>
<td>0.630 ± 0.268%</td>
<td>2.4</td>
<td>θ_{13}</td>
</tr>
<tr>
<td>-0.1%</td>
<td>-0.1°</td>
<td>(0.030 ± 0.018)%</td>
<td>1.7</td>
<td>θ_{13}</td>
<td>21</td>
<td>0.242 ± 0.109%</td>
<td>2.2</td>
<td>21</td>
<td>-0.253 ± 0.109%</td>
<td>2.3</td>
<td>θ_{13}</td>
</tr>
<tr>
<td></td>
<td>0.0°</td>
<td>(-0.038 ± 0.018)%</td>
<td>2.1</td>
<td>θ_{12}</td>
<td>26</td>
<td>-0.353 ± 0.119%</td>
<td>3.0</td>
<td>26</td>
<td>-0.353 ± 0.119%</td>
<td>3.0</td>
<td>All three</td>
</tr>
<tr>
<td></td>
<td>+0.1°</td>
<td>(-0.043 ± 0.018)%</td>
<td>2.4</td>
<td>θ_{23}</td>
<td>11</td>
<td>-0.152 ± 0.074%</td>
<td>2.0</td>
<td>11</td>
<td>-0.152 ± 0.074%</td>
<td>2.0</td>
<td>θ_{12} and θ_{23}</td>
</tr>
<tr>
<td>+0.1%</td>
<td>-0.1°</td>
<td>(0.028 ± 0.018)%</td>
<td>1.6</td>
<td>θ_{23}</td>
<td>9</td>
<td>-0.288 ± 0.103%</td>
<td>2.8</td>
<td>21</td>
<td>-0.308 ± 0.109%</td>
<td>2.8</td>
<td>θ_{13}</td>
</tr>
<tr>
<td></td>
<td>0.0°</td>
<td>(-0.026 ± 0.018)%</td>
<td>1.4</td>
<td>θ_{13}</td>
<td>9</td>
<td>-0.215 ± 0.103%</td>
<td>2.1</td>
<td>21</td>
<td>-0.237 ± 0.109%</td>
<td>2.2</td>
<td>θ_{13}</td>
</tr>
<tr>
<td></td>
<td>+0.1°</td>
<td>(-0.045 ± 0.018)%</td>
<td>2.5</td>
<td>θ_{12}</td>
<td>13</td>
<td>-0.190 ± 0.068%</td>
<td>2.8</td>
<td>13</td>
<td>-0.190 ± 0.068%</td>
<td>2.8</td>
<td>θ_{12} and θ_{23}</td>
</tr>
</tbody>
</table>

Summer Project 2021, Olaf Massen

LHCb collaboration