
Fourier analysis to improve 

calorimeter fast simulation: 

The 6 Seasons Model

By Francis Beckert



What is FastSim and why does it exist?

Simulating entire particle showers with Gauss is 

extremely computationally intensive

- >50% of CPU time taken up by calorimeter 

simulation

FastSim seeks to address this by storing some data + 

properties from the full simulation

- Emulates the results from the full simulation without 

running the full particle-matter interactions  



Why is building a good FastSim for Calo hard?

Limited data storage

- n^5 different input combinations for particle gun 

alone (n = number of bins per dimension)

- Up to 6 different particle types (photon, e+/-, pi+/-, 

K+/-, p, n) 

- Needs to be loaded on every job

Needs to be FAST

- Must be significantly faster than full simulation to 

warrant slight decrease in data quality
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Particle gun setting: Generating showers

Properties of a shower:

Time for abusive notation: we will say E = E_clust
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Issue with 

current 

version of 

fast sim:

Everything 

is uniform



Statistical fluctuations in uniform regions

log(E) modeled by crystal ball 

function:

Power law tail

Gaussian



Actually, that’s a lie



Maintenant deux pour le prix d’un!



Log transform E + fit 

double crystal ball 



Given (x,y,θ,φ) can we predict cluster 

Energy in Ecal?



Deterministic problem:

- How can we accurately 

quantify and model the non-

uniform regions of the 

calorimeter?

- How does varying each input 

parameter affect the 

expected cluster energy?

Probabilistic problem:

- Since the cluster energy is 

determined by a stochastic 

process, it is also random 

and follows some distribution

- How can we model this 

distribution?

- How do the deterministic 

effects influence this 

distribution?



Approaches

1. Linear neural network with sigmoid 

activation layer

Pros:

- Captures linear relations between the 

inputs

- Sigmoid function allows us to learn the 

binary relation between inputs and 

non-uniformities

Cons:

- Small networks fail to learn the 

complex patterns

- Large networks are … well too large 

- Difficult to build an optimizer for data 

with stochastic component



Approaches

1. Linear neural network 

with sigmoid activation 

layer

2. RandomForest regressor

Pros:

- Can encode the decision 

points which indicate whether 

or not we are in a non-

uniform region

Cons:

- To understand the complex 

relationships between 4 

variables a large number of 

trees is required



Approaches

1. Linear neural 

network with sigmoid 

activation layer

2. RandomForest regressor

3. BallTree + Nearest Neighbors

Pros:

- Fast predictions

- Does not need to encode 

relationships between inputs

Cons:

- Model size scales linearly 

with train data set size (and 

we need >100M data points 

to get accurate statistics in 4 

dims)



Approaches

1. Linear neural 

network with sigmoid 

activation layer

2. RandomForest regressor
3. BallTree + Nearest Neighbors

Common problem: Either too big or too inaccurate
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Can we reduce this to a linear problem?



Solution: The 6 Seasons Approach 

Data: 

(x,y,θ,φ) → E

x100M physics 

events

Bin to 2D “image” for 

each coordinate pair

For example: 400 x-bins 

and 300 y-bins, for each bin 

calculate the avg cluster E

X vs Y

X vs θ 

X vs φ 

Y vs θ 

Y vs φ 

θ vs φ  

2D Fast Fourier 

Transform

Filter all signals 

weaker than nᐧσ

Save significant 

signals in sparse 

format 

>5x data compression 

per coordinate pair bin 

+ additive along input 

dims

Reconstruct each 

coordinate pair with 

inverse Fourier 

Transform

6-vector of cluster 

energies v

Linear Regression 

on v + (x,y,θ,φ) 

against E

1. Bin data 2. Fourier filter 3. Linear Regression



Assumptions we are making:

1. The periodicity in the data is additive (i.e. the 

effects of non-uniformities add)

1. The data is additive across coordinate pairs

1. The fourier filtered outputs are linearly 

correlated with cluster energy



Results:
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Results:

Full Sim: 

X vs Y with 

θ<0.05



Results:

FT corrections: 

X vs Y with 

θ<0.05



x vs θ
Results:



x vs φResults:



Real Results (not just pictures) :

RMSE per bin: 1.616 MeV

RMSE per prediction: 50.877 MeV

Standard deviation of fitted crystal ball distribution: 49.76 MeV

Relative error per bin: 1.640 x 10^-3

[ RMSE/(max - min) ]



Model Specs :

Size: 500 kb

Prediction speed: >70.000 predictions per second



Next Steps :

How do we apply the corrections?

- Deterministic: apply a correction based on some analytical 

expression to fast sim prediction

- Probabilistic: use some probability distribution to interpolate 

between the fast sim data and corrections (beta distribution 

with parameters determined by prediction values)

How does this scale with momentum?

- We determined an analytical expression for the scaling 

with momentum, but how does this scaling interact with 

the periodicity?
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Thank you for your attention!

Any questions?


