Fourier analysis to improve calorimeter fast simulation: The 6 Seasons Model

By Francis Beckert

What is FastSim and why does it exist?

Simulating entire particle showers with Gauss is extremely computationally intensive

- >50% of CPU time taken up by calorimeter simulation

FastSim seeks to address this by storing some data + properties from the full simulation

- Emulates the results from the full simulation without running the full particle-matter interactions

Why is building a good FastSim for Calo hard?

Limited data storage

- n^5 different input combinations for particle gun alone (n = number of bins per dimension)
- Up to 6 different particle types (photon, e+/-, pi+/-, K+/-, p, n)
- Needs to be loaded on every job

Needs to be *FAST*

- Must be significantly faster than full simulation to warrant slight decrease in data quality

ECal

- Photons generated in \blacksquare front of spd
- **Run2 Calo** \sim

Particle gun setting: Generating showers

Properties of a shower:

 $E_i =$ deposited energy in *i*th cell $x_i = x$ -coordinate of *i*th cell $y_i = y$ -coordinate of *i*th cell $x_{\rm clust} = \frac{\sum_i E_i \cdot x_i}{\sum E_i}$ $y_{\text{clust}} = \frac{\sum_i E_i \cdot y_i}{\sum E_i}$ $\sigma(y_{\rm clust}) = \sqrt{\frac{\sum_i E_i (y_i - y_{\rm clust})^2}{\sum_i E_i}} \,.$

(Not to scale!)

Issue with current version of fast sim:

Everything is uniform

Statistical fluctuations in uniform regions

Actually, that's a lie

Log transform $E + fit$ double crystal ball

Given (x,y,θ,φ) can we predict cluster Energy in Ecal?

Deterministic problem:

- How can we accurately quantify and model the nonuniform regions of the calorimeter?
- How does varying each input parameter affect the expected cluster energy?

Probabilistic problem:

- Since the cluster energy is determined by a stochastic process, it is also random and follows some distribution
- How can we model this distribution?
- How do the deterministic effects influence this distribution?

Approaches

1. Linear neural network with sigmoid activation layer

Pros:

- Captures linear relations between the inputs
- Sigmoid function allows us to learn the binary relation between inputs and non-uniformities

Cons:

- Small networks fail to learn the complex patterns
- Large networks are … well too large
- Difficult to build an optimizer for data with stochastic component

Approaches

2. RandomForest regressor

Pros:

Cons:

- Can encode the decision points which indicate whether or not we are in a nonuniform region
- 1. Linear neural network with sigmoid activation layer
- To understand the complex relationships between 4 variables a large number of trees is required

Approaches

3. BallTree + Nearest Neighbors

Pros:

- Fast predictions
- Does not need to encode

relationships between inputs

1. Linear neural network with sigmoid activation layer

2. RandomForest regressor

Cons:

- Model size scales linearly with train data set size (and we need >100M data points to get accurate statistics in 4 dims)

1. Linear neural network with sigmoid activation layer 2. RandomForest regressor 3. BallTree + Nearest Neighbors

Common problem: Either too big or too inaccurate

X:

y:

 θ :

 ϕ :

Can we reduce this to a linear problem?

Solution: The 6 Seasons Approach

Assumptions we are making:

1. The periodicity in the data is additive (i.e. the effects of non-uniformities add)

1. The data is additive across coordinate pairs

1. The fourier filtered outputs are linearly correlated with cluster energy

X:

y:

Results:

Full Sim: X vs Y with θ < 0.05

Results:

FT corrections: $\frac{1}{2}$ $\frac{1$ X vs Y with θ<0.05

Results:

$x \vee s \theta$

Full Sim Data

П

corrections

 $0.0\,$

50

100

150

200

x coordinate in cm

250

300

Full Sim Data

corrections

350

П

Real Results (not just pictures) :

RMS per bin =
$$
\sqrt{\sum_i b_i^2}
$$

RMSE per bin: **1.616 MeV**

$$
b_i = \int_{B_i} (E(x, y, \theta, \phi) - \hat{E}(x, y, \theta, \phi)) d\lambda
$$

Relative error per bin: **1.640 x 10^{A-3}** $B_i = (x_i, x_i + l_x) \times (y_i, y_i + l_y) \times (\theta_i, \theta_i + l_\theta) \times (\phi_i, \phi_i + l_\phi)$
[RMSE/(max - min)] λ = Lebesgue measure on \mathbb{R}^4

RMSE per prediction: **50.877 MeV**

RMS per prediction =
$$
\sqrt{\sum_{x,y,\theta,\phi} (E(x,y,\theta,\phi) - \hat{E}(x,y,\theta,\phi))^2}
$$

Standard deviation of fitted crystal ball distribution: **49.76 MeV**

Size: 500 kb

Prediction speed: >70.000 predictions per second

Next Steps :

How do we apply the corrections?

- Deterministic: apply a correction based on some analytical expression to fast sim prediction
- Probabilistic: use some probability distribution to interpolate between the fast sim data and corrections (beta distribution with parameters determined by prediction values)

How does this scale with momentum?

- We determined an analytical expression for the scaling with momentum, but how does this scaling interact with the periodicity?

Acknowledgements:

My two wonderful supervisors!

Sergey Kholodenko

Matteo Rama

Thank you for your attention!

Any questions?