
Fourier analysis to improve

calorimeter fast simulation:

The 6 Seasons Model

By Francis Beckert

What is FastSim and why does it exist?

Simulating entire particle showers with Gauss is

extremely computationally intensive

- >50% of CPU time taken up by calorimeter

simulation

FastSim seeks to address this by storing some data +

properties from the full simulation

- Emulates the results from the full simulation without

running the full particle-matter interactions

Why is building a good FastSim for Calo hard?

Limited data storage

- n^5 different input combinations for particle gun

alone (n = number of bins per dimension)

- Up to 6 different particle types (photon, e+/-, pi+/-,

K+/-, p, n)

- Needs to be loaded on every job

Needs to be FAST

- Must be significantly faster than full simulation to

warrant slight decrease in data quality

Particle gun

Aluminium structure

ECal

(Not to scale!)

Setting:

- Photons generated in

front of spd

- Run2 Calo

θ

x

y

φ

Particle gun setting: Generating showers

Properties of a shower:

Time for abusive notation: we will say E = E_clust

Particle gun

Aluminium structure

ECal

(Not to scale!)

Gap between calo modules

Aluminium structure

Gaps between

calo modules

Ecal Run2 full sim

Issue with

current

version of

fast sim:

Everything

is uniform

Statistical fluctuations in uniform regions

log(E) modeled by crystal ball

function:

Power law tail

Gaussian

Actually, that’s a lie

Maintenant deux pour le prix d’un!

Log transform E + fit

double crystal ball

Given (x,y,θ,φ) can we predict cluster

Energy in Ecal?

Deterministic problem:

- How can we accurately

quantify and model the non-

uniform regions of the

calorimeter?

- How does varying each input

parameter affect the

expected cluster energy?

Probabilistic problem:

- Since the cluster energy is

determined by a stochastic

process, it is also random

and follows some distribution

- How can we model this

distribution?

- How do the deterministic

effects influence this

distribution?

Approaches

1. Linear neural network with sigmoid

activation layer

Pros:

- Captures linear relations between the

inputs

- Sigmoid function allows us to learn the

binary relation between inputs and

non-uniformities

Cons:

- Small networks fail to learn the

complex patterns

- Large networks are … well too large

- Difficult to build an optimizer for data

with stochastic component

Approaches

1. Linear neural network

with sigmoid activation

layer

2. RandomForest regressor

Pros:

- Can encode the decision

points which indicate whether

or not we are in a non-

uniform region

Cons:

- To understand the complex

relationships between 4

variables a large number of

trees is required

Approaches

1. Linear neural

network with sigmoid

activation layer

2. RandomForest regressor

3. BallTree + Nearest Neighbors

Pros:

- Fast predictions

- Does not need to encode

relationships between inputs

Cons:

- Model size scales linearly

with train data set size (and

we need >100M data points

to get accurate statistics in 4

dims)

Approaches

1. Linear neural

network with sigmoid

activation layer

2. RandomForest regressor
3. BallTree + Nearest Neighbors

Common problem: Either too big or too inaccurate

x:

y:

θ:

φ:

Can we reduce this to a linear problem?

Solution: The 6 Seasons Approach

Data:

(x,y,θ,φ) → E

x100M physics

events

Bin to 2D “image” for

each coordinate pair

For example: 400 x-bins

and 300 y-bins, for each bin

calculate the avg cluster E

X vs Y

X vs θ

X vs φ

Y vs θ

Y vs φ

θ vs φ

2D Fast Fourier

Transform

Filter all signals

weaker than nᐧσ

Save significant

signals in sparse

format

>5x data compression

per coordinate pair bin

+ additive along input

dims

Reconstruct each

coordinate pair with

inverse Fourier

Transform

6-vector of cluster

energies v

Linear Regression

on v + (x,y,θ,φ)

against E

1. Bin data 2. Fourier filter 3. Linear Regression

Assumptions we are making:

1. The periodicity in the data is additive (i.e. the

effects of non-uniformities add)

1. The data is additive across coordinate pairs

1. The fourier filtered outputs are linearly

correlated with cluster energy

Results:

x:

y:

Results:

θ:

φ:

Results:

Full Sim:

X vs Y with

θ<0.05

Results:

FT corrections:

X vs Y with

θ<0.05

x vs θ
Results:

x vs φResults:

Real Results (not just pictures) :

RMSE per bin: 1.616 MeV

RMSE per prediction: 50.877 MeV

Standard deviation of fitted crystal ball distribution: 49.76 MeV

Relative error per bin: 1.640 x 10^-3

[RMSE/(max - min)]

Model Specs :

Size: 500 kb

Prediction speed: >70.000 predictions per second

Next Steps :

How do we apply the corrections?

- Deterministic: apply a correction based on some analytical

expression to fast sim prediction

- Probabilistic: use some probability distribution to interpolate

between the fast sim data and corrections (beta distribution

with parameters determined by prediction values)

How does this scale with momentum?

- We determined an analytical expression for the scaling

with momentum, but how does this scaling interact with

the periodicity?

Acknowledgements:

My two wonderful supervisors!

Sergey Kholodenko

Matteo Rama

Thank you for your attention!

Any questions?

