Fourier analysis to improve
calorimeter fast simulation:
The 6 Seasons Model

By Francis Beckert



What is FastSim and why does it exist?

Simulating entire particle showers with Gauss is

extremely computationally intensive

- >50% of CPU time taken up by calorimeter
simulation

FastSim seeks to address this by storing some data +

properties from the full simulation

- Emulates the results from the full simulation without
running the full particle-matter interactions



Why is building a good FastSim for Calo hard?

Limited data storage

- n”5 different input combinations for particle gun
alone (n = number of bins per dimension)

- Up to 6 different particle types (photon, e+/-, pit+/-,
K+/-, p, n)

- Needs to be loaded on every job

Needs to be FAST

- Must be significantly faster than full simulation to
warrant slight decrease in data quality
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Particle gun setting: Generating showers

Properties of a shower:
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Time for abusive notation: we will say E = E_clust
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Statistical fluctuations in uniform regions

log(E) modeled by crystal ball
function:
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Actually, that's a lie



Maintenant deux pour le prix d’un!
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Given (X,y,0,¢) can we predict cluster
Energy In Ecal?



Deterministic problem:

How can we accurately
guantify and model the non-
uniform regions of the
calorimeter?

How does varying each input
parameter affect the
expected cluster energy?

Probabilistic problem:

Since the cluster energy is
determined by a stochastic
process, it is also random
and follows some distribution
How can we model this
distribution?

How do the deterministic
effects influence this
distribution?



Approaches

1. Linear neural network with sigmoid
activation layer

Pros:

- Captures linear relations between the
inputs

- Sigmoid function allows us to learn the
binary relation between inputs and
non-uniformities

cons:

- Small networks fail to learn the
complex patterns

- Large networks are ... well too large

- Difficult to build an optimizer for data
with stochastic component



Approaches

2. RandomForest regressor
Pros:

- Can encode the decision
points which indicate whether
or not we are in a non-

1. Linear neural network uniform region

with sigmoid activation
|ayer cons:

- To understand the complex
relationships between 4
variables a large number of
trees is required



Approaches
3. BallTree + Nearest Neighbors

Pros:

- Fast predictions
- Does not need to encode
relationships between inputs

1. Linear neural 2. RandomForest regressor
network with sigmoid cons:
activation layer _ _

- Model size scales linearly

with train data set size (and
we need >100M data points
to get accurate statistics in 4

dims)



Approaches

1. Linear neural 2. RandomForest regressor 3. BallTree + Nearest Neighbors
network with sigmoid
activation layer

Common problem: Either too big or too inaccurate
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Can we reduce this to a linear problem?



Solution: The 6 Seasons Approach

1. Bin data

2. Fourier filter

3. Linear Regression

Data:
(x,y,0,0) - E

x100M physics
events

Bin to 2D “image” for
each coordinate pair

For example: 400 x-bins
and 300 y-bins, for each bin
calculate the avg cluster E

XvsY
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Y vs 6
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2D Fast Fourier
Transform

!

Filter all signals
weaker than n-o

!

Save significant
signals in sparse
format

>5x data compression

per coordinate pair bin

+ additive along input
dims

Reconstruct each
coordinate pair with
inverse Fourier
Transform

6-vector of cluster
energies v

!

Linear Regression
onv +(xy,8,0)
against E




Assumptions we are making:

1. The periodicity in the data is additive (i.e. the
effects of non-uniformities add)

1. The data is additive across coordinate pairs

1. The fourier filtered outputs are linearly
correlated with cluster energy
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Results:
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Full Sim:
X vs Y with
0<0.05
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Real Results (not just pictures)

RMS per bin =

RMSE per bin: 1.616 MeV

b’i :f (E(:E:ya‘ga qS) _E(x7y707¢))d/\
B;

Relative error per_bin: 1.640 X 10™-3 B, = (2, 2 + lo) x (yi, ys +1y) % (63,05 +lg) X (3, & + L)
[ RMSE/(max - min) | )\ = Lebesgue measure on R*

RMSE per prediction: 50.877 MeV RMS per prediction — Z (E(z,y,0,0) — E(z,y,0,))?

$1y797¢

Standard deviation of fitted crystal ball distribution: 49.76 MeV



Model Specs

Size: 500 kb

Prediction speed: >70.000 predictions per second



Next Steps :

How do we apply the corrections?
- Deterministic: apply a correction based on some analytical
expression to fast sim prediction
- Probabilistic: use some probability distribution to interpolate
between the fast sim data and corrections (beta distribution
with parameters determined by prediction values)

How does this scale with momentum?
- We determined an analytical expression for the scaling
with momentum, but how does this scaling interact with
the periodicity?
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