TRES
RUST bindings for DIM

BETUL DOGRUL
SUPERVISORS: NIKO NEUFELD, TOMMASO COLOMBO, FLAVIO PISANI

CE/RW
/)



AGENDA

e What is DIM?

e Why RUST?

e The Challenge

e My Approach

e Key Features Implemented
e Benefits of RUST with DIM
e Challenges Faced

e Future Work

e Conclusion




WHAT IS DIM?

e A communication system for distributed/mixed environments
e Network transparent inter-process communication layer.

e Client/server paradigm

e Servers - services and publish information. Distributed Information Management System

e Clients subscribe to these services or send commands.

« Widely used at CERN for monitoring, control systems, and data acquisition systems etc.

. Request
Register .- e, Service

SErvices.-

"h:n'n:-:‘g
: Info
2 "uuh-'--.nm to "u. n. ice

+
rrrrrrr .

- & A

LLLLLL ‘-\--

'1
Server w—\ Cllent Y,

Commands




WHY RUST?

e A modern systems programming language

e Memory Safety - prevents common memory-related bugs such as buffer
overflows and use-after-free errors without needing a garbage collector.

e Concurrency Safety - ownership model ensures thread safety, preventing data

races and ensuring reliable concurrent operations.

 Performance - offers low-level control over memory while maintaining high
performance, comparable to C, which is crucial for high-demand systems like

DIM.

®



THE CHALLENGE

e Different Memory Management Models
o DIM is written in C -> direct access to memory and relies heavily on manual
management
o Rust -> strict rules around memory access and safety.
e Callback Mechanisms:

o DIM uses callbacks to notify clients of events.

o Rust’s closure and function pointer systems don’t map directly to C’s callback
mechanisms, requiring a custom solution to manage lifetimes and safety.
e Multithreading
o DIM clients operate concurrently, managing multiple services at once.

o Rust’s concurrency model -> Arc and Mutex, needed to be integrated with

DIM’s threading model.



MY APPROACH

« Understanding DIM API

e Using bindgen - generates Rust FFIl (Foreign Function Interface) bindings to C libraries

« Manual Refinement

e Manage Pointers - Encapsulate unsafe C pointers in Rust-safe abstractions to prevent memory
ISsues.

e Handle Callbacks - Develop a system to safely pass Rust closures to C, ensuring proper lifetime
management

e Ensure Concurrency Safety - Adapt DIM’s concurrency features to fit Rust’s ownership and

concurrency models, ensuring thread safety.




e 3

Inchudes

bindings.rs

includes

Static/Dynamic
Libraries
(.a, .s0)

— cbindgen —»

-<+— bindgen

Rust Code Files
(.rs)

l

C Code File(s)
(.c, .h) <'

Rust Compiler

l

l

C Compiler

Object Files
(-.0)

|

|

Object File(s)
(Ex. square.o)

INcludes

includas

= archiver =jm

o

T~

Static Library File
(Ex. square.a)

|

Linker

|

Binary Executable




DimClient|+client _id: usize
+connected: bool|+new()
+info service stamped()
+request cmnd service()
+get_quality()
+get timestamp()
+release service()

interacts with invokes

DimServer|+server name: String
+services: Vec<DimService>|+new()
+add_service()
+start()

DimCommand|+command name: String
+parameters: Vec<u8>|+execute()
+get name()

+get _parameters()

ServiceHandle|+handle id: usize|+new()
+releasel()

DimService|+service name: String
+data: Vec<u8>|+update data()
+get name()
+get_data()

kas type

ServiceType|+Monitored
+OnDemand




KEY FEATURES IMPLEMENTED

o

name: &

W owmowm N

e Service Subscription - allows Rust clients to

T subscribe to services provided by DIM servers, a

to string();
ription) .expect

Coe safe AP

dis add servic

service size
usr routine,
tag,

', service id);




KEY FEATURES IMPLEMENTED

fn request_cmnd_service(

o L r
command name: &str,
serv address: &mut [u8],

) -> Result<(), CommandErrors> {

let ¢ command name: CString =
CString::new(command name).map err{op: | | CommandError::ConversionError)?; ° Command Handling - Cllents Can requeSt

let serv size: 132 = serv address.len as 132;

execution of commands to DIM servers using

let ret: 132 = unsafe

dic_cmnd_service_[
service name: c_command name.as ptr(), I
SRR v cireas. o5 it pir() as *mt o veld] high-level Rust constructs
e size: serv_size,

)

if ret == 1
ok(())
else
Err{CommandError: : CommandNotFound)




KEY FEATURES IMPLEMENTED

® Thread'safe Clients = Enabled Concurrent oub fn start_serving(&mut self, task_name: &str) -= Result<i32, ServingError> {

if self.task name == None
. . . println!("Starting serving with task name {}", task name);
operations using Arc and Mutex, allowing let c_task_name: CString =
CString::new(task name).map err(op: | | ServingError::TaskNameConversionFailed)?;
ntln!(" C String Task Name: {:7}", c task name);

multiple threads to interact with DIM

self.task name = Some(c task name.clone());

: let result: i32 = unsafe { dis start serving (task name: c_task name.as ptr()) };
SlmUI.taneOUSly. println! (" Start serving result: {}", result);
match result {
1 => 0ki(1),

e Error Handling Enhancements - Rust’'s Result .iIz:?:i?lr"':'i-.:;_'r"-.-"_"|-:;|E|‘r'u::|r'::I|'|'-.-'.31_i-::I'-_'-.Er"-.-'i::EI-::II,

type - provides more descriptive and

ntln!("Server has already started serving!\n");

Err(ServingError: :AlreadyServingError)

manageable error reporting.
e Resource Management - Rust’s Drop trait for

automatic resource cleanup, preventing leaks

It self) {
if self.task name.is some
("Dropping DimServer:

and ensuring efficient resource management. cel . stop serving()

else

("Dropping DimServer: no active service




BENEFITS OF RUST WITH DIM

e Memory Safety: By preventing common memory issues, the bindings improve the reliability

of DIM operations.

e Concurrency Safety: Rust’s model helps avoid data races and concurrency issues, ensuring

safer multithreaded operations.

e Performance: Rust maintains high performance, similar to C, while providing additional

safety features.
e Ease of Use: The bindings provide an idiomatic Rust API, simplifying interaction with DIM

and making it more accessible for Rust developers.




Rust Bindings T
Layer ~C

CHALLENGES FACED

 FFl Layer Complexity: Handling the foreign function
interface (FFI) required careful management of raw
pointers and memory.

e Debugging Issues: Debugging issues related to unsafe

- - - Servic Rustes
code involved both Rust and C debugging tools, which ~ tne DIM System
R ey Handeby Thread Safety Model

was complex and time-consuming.

e Thread Safety: Ensuring compatibility between DIM’s
threading model and Rust’s concurrency model required

careful design and implementation.




FUTURE WORK

e APl Refinements: Some APIs could be made more idiomatic and
user-friendly.

e Callback function structure improvements

e Performance Optimizations: Further optimizations could

enhance the performance of the bindings.




CONCLUSION

e Modernizing and enhancing DIM by integrating Rust’s safety and concurrency
features

e The Rust bindings provide a safer, more efficient interface for interacting with
DIM

e Q&A




Thank you!




