
B E T Ü L D O Ğ R U L
S U P E R V I S O R S : N I K O N E U F E L D , T O M M A S O C O L O M B O , F L A V I O P I S A N I

RUST b�nd�ngs for DIM

A G E N D A

What �s DIM?

Why RUST?

The Challenge

My Approach

Key Features Implemented

Benef�ts of RUST w�th DIM

Challenges Faced

Future Work

Conclus�on

W H A T I S D I M ?

A commun�cat�on system for d�str�buted/m�xed env�ronments

Network transparent �nter-process commun�cat�on layer.

Cl�ent/server parad�gm

Servers - serv�ces and publ�sh �nformat�on.

Cl�ents subscr�be to these serv�ces or send commands.

W�dely used at CERN for mon�tor�ng, control systems, and data acqu�s�t�on systems etc.

W H Y R U S T ?

A modern systems programm�ng language

Memory Safety - prevents common memory-related bugs such as buffer

overflows and use-after-free errors w�thout need�ng a garbage collector.

Concurrency Safety - ownersh�p model ensures thread safety, prevent�ng data

races and ensur�ng rel�able concurrent operat�ons.

Performance - offers low-level control over memory wh�le ma�nta�n�ng h�gh

performance, comparable to C, wh�ch �s cruc�al for h�gh-demand systems l�ke

DIM.

T H E C H A L L E N G E

D�fferent Memory Management Models

DIM �s wr�tten �n C -> d�rect access to memory and rel�es heav�ly on manual

management

Rust -> str�ct rules around memory access and safety.

Callback Mechan�sms:

DIM uses callbacks to not�fy cl�ents of events.

Rust’s closure and funct�on po�nter systems don’t map d�rectly to C’s callback

mechan�sms, requ�r�ng a custom solut�on to manage l�fet�mes and safety.

Mult�thread�ng

DIM cl�ents operate concurrently, manag�ng mult�ple serv�ces at once.

Rust’s concurrency model -> Arc and Mutex, needed to be �ntegrated w�th

DIM’s thread�ng model.

M Y A P P R O A C H

Understand�ng DIM API

Us�ng b�ndgen - generates Rust FFI (Fore�gn Funct�on Interface) b�nd�ngs to C l�brar�es

Manual Ref�nement

Manage Po�nters - Encapsulate unsafe C po�nters �n Rust-safe abstract�ons to prevent memory

�ssues.

Handle Callbacks - Develop a system to safely pass Rust closures to C, ensur�ng proper l�fet�me

management

Ensure Concurrency Safety - Adapt DIM’s concurrency features to f�t Rust’s ownersh�p and

concurrency models, ensur�ng thread safety.

K E Y F E A T U R E S I M P L E M E N T E D

Serv�ce Subscr�pt�on - allows Rust cl�ents to

subscr�be to serv�ces prov�ded by DIM servers, a

safe API

K E Y F E A T U R E S I M P L E M E N T E D

Command Handl�ng - Cl�ents can request

execut�on of commands to DIM servers us�ng

h�gh-level Rust constructs

K E Y F E A T U R E S I M P L E M E N T E D

Thread-Safe Cl�ents - Enabled concurrent

operat�ons us�ng Arc and Mutex, allow�ng

mult�ple threads to �nteract w�th DIM

s�multaneously.

Error Handl�ng Enhancements - Rust’s Result

type - prov�des more descr�pt�ve and

manageable error report�ng.

Resource Management - Rust’s Drop tra�t for

automat�c resource cleanup, prevent�ng leaks

and ensur�ng eff�c�ent resource management.

B E N E F I T S O F R U S T W I T H D I M

Memory Safety: By prevent�ng common memory �ssues, the b�nd�ngs �mprove the rel�ab�l�ty

of DIM operat�ons.

Concurrency Safety: Rust’s model helps avo�d data races and concurrency �ssues, ensur�ng

safer mult�threaded operat�ons.

Performance: Rust ma�nta�ns h�gh performance, s�m�lar to C, wh�le prov�d�ng add�t�onal

safety features.

Ease of Use: The b�nd�ngs prov�de an �d�omat�c Rust API, s�mpl�fy�ng �nteract�on w�th DIM

and mak�ng �t more access�ble for Rust developers.

C H A L L E N G E S F A C E D

FFI Layer Complex�ty: Handl�ng the fore�gn funct�on

�nterface (FFI) requ�red careful management of raw

po�nters and memory.

Debugg�ng Issues: Debugg�ng �ssues related to unsafe

code �nvolved both Rust and C debugg�ng tools, wh�ch

was complex and t�me-consum�ng.

Thread Safety: Ensur�ng compat�b�l�ty between DIM’s

thread�ng model and Rust’s concurrency model requ�red

careful des�gn and �mplementat�on.

F U T U R E W O R K

API Ref�nements: Some APIs could be made more �d�omat�c and

user-fr�endly.

Callback funct�on structure �mprovements

Performance Opt�m�zat�ons: Further opt�m�zat�ons could

enhance the performance of the b�nd�ngs.

C ON C L U S I O N

Modern�z�ng and enhanc�ng DIM by �ntegrat�ng Rust’s safety and concurrency

features

The Rust b�nd�ngs prov�de a safer, more eff�c�ent �nterface for �nteract�ng w�th

DIM

Q&A

Thank you!

