
B E T Ü L D O Ğ R U L
S U P E R V I S O R S : N I K O N E U F E L D , T O M M A S O C O L O M B O , F L A V I O P I S A N I

RUST bindings for DIM

A G E N D A

What is DIM?

Why RUST?

The Challenge

My Approach

Key Features Implemented

Benefits of RUST with DIM

Challenges Faced

Future Work

Conclusion

W H A T I S D I M ?

A communication system for distributed/mixed environments

Network transparent inter-process communication layer.

Client/server paradigm

Servers - services and publish information.

Clients subscribe to these services or send commands.

Widely used at CERN for monitoring, control systems, and data acquisition systems etc.

W H Y R U S T ?

A modern systems programming language

Memory Safety - prevents common memory-related bugs such as buffer

overflows and use-after-free errors without needing a garbage collector.

Concurrency Safety - ownership model ensures thread safety, preventing data

races and ensuring reliable concurrent operations.

Performance - offers low-level control over memory while maintaining high

performance, comparable to C, which is crucial for high-demand systems like

DIM.

T H E C H A L L E N G E

Different Memory Management Models

DIM is written in C -> direct access to memory and relies heavily on manual

management

Rust -> strict rules around memory access and safety.

Callback Mechanisms:

DIM uses callbacks to notify clients of events.

Rust’s closure and function pointer systems don’t map directly to C’s callback

mechanisms, requiring a custom solution to manage lifetimes and safety.

Multithreading

DIM clients operate concurrently, managing multiple services at once.

Rust’s concurrency model -> Arc and Mutex, needed to be integrated with

DIM’s threading model.

M Y A P P R O A C H

Understanding DIM API

Using bindgen - generates Rust FFI (Foreign Function Interface) bindings to C libraries

Manual Refinement

Manage Pointers - Encapsulate unsafe C pointers in Rust-safe abstractions to prevent memory

issues.

Handle Callbacks - Develop a system to safely pass Rust closures to C, ensuring proper lifetime

management

Ensure Concurrency Safety - Adapt DIM’s concurrency features to fit Rust’s ownership and

concurrency models, ensuring thread safety.

K E Y F E A T U R E S I M P L E M E N T E D

Service Subscription - allows Rust clients to

subscribe to services provided by DIM servers, a

safe API

K E Y F E A T U R E S I M P L E M E N T E D

Command Handling - Clients can request

execution of commands to DIM servers using

high-level Rust constructs

K E Y F E A T U R E S I M P L E M E N T E D

Thread-Safe Clients - Enabled concurrent

operations using Arc and Mutex, allowing

multiple threads to interact with DIM

simultaneously.

Error Handling Enhancements - Rust’s Result

type - provides more descriptive and

manageable error reporting.

Resource Management - Rust’s Drop trait for

automatic resource cleanup, preventing leaks

and ensuring efficient resource management.

B E N E F I T S O F R U S T W I T H D I M

Memory Safety: By preventing common memory issues, the bindings improve the reliability

of DIM operations.

Concurrency Safety: Rust’s model helps avoid data races and concurrency issues, ensuring

safer multithreaded operations.

Performance: Rust maintains high performance, similar to C, while providing additional

safety features.

Ease of Use: The bindings provide an idiomatic Rust API, simplifying interaction with DIM

and making it more accessible for Rust developers.

C H A L L E N G E S F A C E D

FFI Layer Complexity: Handling the foreign function

interface (FFI) required careful management of raw

pointers and memory.

Debugging Issues: Debugging issues related to unsafe

code involved both Rust and C debugging tools, which

was complex and time-consuming.

Thread Safety: Ensuring compatibility between DIM’s

threading model and Rust’s concurrency model required

careful design and implementation.

F U T U R E W O R K

API Refinements: Some APIs could be made more idiomatic and

user-friendly.

Callback function structure improvements

Performance Optimizations: Further optimizations could

enhance the performance of the bindings.

C ON C L U S I O N

Modernizing and enhancing DIM by integrating Rust’s safety and concurrency

features

The Rust bindings provide a safer, more efficient interface for interacting with

DIM

Q&A

Thank you!

