

Tracking Studies for the Upgrade 2 of the LHCb Experiment

Penelope Hoffmann 1,2

Supervisors: Renato Quagliani¹, Alessandro Scarabotto³

 1 CERN, 2 Heidelberg University (DE), 3 TU Dortmund (DE)

August 29, 2024

- Improving precision for physics analysis \rightarrow increase in luminosity \rightarrow higher pileup and occupancy
- New complex detector setup for handling high occupancy and radiation damage
- Need to check/develop tracking reconstruction algorithms for new detector layout
 - \rightarrow robust tracking performance needed

Aim: Study effect of tracking design on performance

Detector Setup for Tracking in Upgrade 2

Magnetic field: 4 T m Wanted p resolution: $\frac{\sigma_p}{p}\sim 0.4-0.5\,\%$

Velo (TV):

- Pixels, new *lighter* RF-foil
- Pitch size: $55x55 \,\mu\text{m}^2$

Upstream Tracker (UP):

- 4 layers of pixels
- Pitch size: $50 \times 150 \, \mu m^2$

Mighty Tracker (MT):

- Fiber Tracker (FT)
 - 12 layers of scintillating fibers
 - Similar to Run3 config (x-u-v-x layout)
- Mighty Pixel (MP)
 - 6 pixel layers
 - Pitch size: $50 \text{x} 150 \, \mu \text{m}^2$

Geometry Options for the Mighty Tracker

Hybrid Tracker:

- Pixels placed at the z pos. where fiber x layers located
- Acceptance covered by pixels removed from fibers (also in u, vlayers)
- $\bullet\,$ Beam hole: $260\,\mathrm{mm}$ x $260\,\mathrm{mm}$
- Total Pixel Area Coverage:
 - Baseline: $\sim 18 \,\mathrm{m}^2$
 - Low: $\sim 8 \,\mathrm{m}^2$
 - Medium: $\sim 13 \,\mathrm{m}^2$
 - High: $\sim 13 \,\mathrm{m}^2$

Optimization of geometry with regards to cost, occupancy, and performance

Setups for the Mighty Tracker

Default MT Setup:

• Pixel and fiber x layers at equal z position

Shifted MT Setup:

• Pixel layers shifted in z from position of fiber x layer

Weight Matrix Formalism

- Parametrically propagates uncertainty matrix along meas. planes
- Both forward and backward propagation possible
- Multiple Scattering taken into account
- Run 5 detector configuration

MP Placement Validation Studies

• Shift 1st MP layer towards magnet $\rightarrow \frac{\sigma_p}{p}$ improvement?

• Validation of modified Run 3 simulation results [C. Langenbruch, L. Uecker, A. Guenther] Validation Study:

- Shift 1st MP layer $\left(\frac{X}{X_0} \sim 1.74\%\right)$ with surrounding services $\left(\frac{X}{X_0} \sim 2\%\right)$
- p resolution checked for shifts of $\Delta z = 30 \,\mathrm{cm}, 50 \,\mathrm{cm}, 100 \,\mathrm{cm}$

Weight Matrix Approach

- Parametrically propagates uncertainty matrix along meas. planes
- Both forward and backward propagation possible
- Multiple Scattering taken into account
- Run 5 detector configuration

Pattern Recognition Framework

- Python-based offline reconstruction tool
- Custom hit digitization
- Includes prototypes of TTrack reconstruction algorithms:
 - Pixel to Pixel Algorithm
 - Fiber to Fiber Algorithm
 - Pixel to Fiber Algorithm

Utilized Upgrade 2 Simulation

First time full-acceptance MT reconstruction run over Upgrade 2 simulation:

- ${\ensuremath{\, \circ \, }}$ min
Bias sample
- Luminosity working point: $\mathcal{L} = 1.5 \times 10^{34} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$
- Includes both MP and full FT acceptance
- Default setup: only FT hits used, hits for MP taken from FT
- Shifted setup: MP Hits used, hits in MP acceptance removed from FT

Reconstructing Pixel-Fiber Tracks

Contribution of migrating tracks to reconstructible tracks:

- Geometry dependent
- Long Recoble: $\sim 10 \%$
- TTracks: $\sim 15 \%$
- \rightarrow non-negligible amount of migrating tracks

Reconstructing migrating tracks more complex, but:

- (Probably) Important for internal alignment considerations
- Important for FT-hole size design and overlapping region studies

TTrack Types:

- Pixel to Pixel
- Fiber to Fiber
- Pixel to Fiber (migrating)

Effect of MP Placement on Pix-Fib Reconstruction

- Hits in both pixel and fiber part of same layer possible \rightarrow cannot be treated as unique layer anymore: effectively 12 instead of 6 x layers
- Track might not hit pixel or fiber part
 - \rightarrow loosened reconstruction requirement: 5 hits over all x layers needed

Efficiencies for the TTrack Reconstruction Algorithms

- TTrack reconstruction algorithm efficiencies for Baseline geometry
- Efficiencies evaluated for tracks with $p > 5 \,\text{GeV}, \, 2 < \eta < 5$ and w/o electrons

Setup		PixPix $[\%]$	FibFib [%]	PixFib [%]	Overall $[\%]$
Default	Eff. ε	97.93	92.36	89.76	96.21
Delaun	Ghost	2.53	6.89	30.72	7.51
Shifted	Eff. ε	98.20	92.95	91.28	96.67
Shifted	Ghost	2.03	6.89	21.72	5.93

- Ghost rate evaluated in each of the track containers separately
- Nb: PixPix efficiencies given for 3 hit finding routine included
- \rightarrow for shifted setup modified algorithms perform well in both efficiency and ghost rate

Results for Shifted Setup

- Overall Efficiencies evaluated for different MP geometries in shifted setup
- Efficiencies evaluated for tracks with p > 5 GeV, $2 < \eta < 5$ and w/o electrons

Geom.	Baseline $[\%]$	Low [%]	Medium $[\%]$	High $[\%]$
Eff. ε	96.67	94.52	96.21	96.18
Ghost	5.93	31.68	13.08	13.03

- Ghost rate driven by higher occupancy in fiber
- Efficiencies similar to Run 3

Reconstructing Long Tracks: Matching

- Run existing prototype of matching algorithm using cheated Velo (TV) segments and full acceptance reconstructed TTracks
- High matching efficiencies (ε > 90%) observed but high ghost rate (~ 60%)
 → Retrained BDT, but: improvement in ghost rate leads to significant efficiency losses

Next step: How can we collect the correct UP hits?

- Idea: given Velo and TTrack state parameters on found matches, predict and constrain parameters for the local UP track model
- UP hits selection based on best χ^2 matching criteria

Momentum Resolution Dependency on UP Material Studies

- $\bullet\,$ Overall material budget for UP layers and cooling boxes: $10\,\%\,$
- Scenarios of material placement:
 - equally distributed
 - mostly at entrance of UP
 - mostly at exit of UP
- Performance tested for long tracks

	material x/x_0				
	equal distrib.	entrance	\mathbf{exit}		
Cooling Box (Entrance)	1%	4.8%	0.1%		
UT layer 1	2%	4.8%	0.1%		
UT layer 2	2%	0.1%	0.1%		
UT layer 3	2%	0.1%	0.1%		
UT layer 4	2%	0.1%	4.8%		
Cooling Box (Exit)	1%	0.1%	4.8%		

 \rightarrow Optimization of material budget at EXIT of UP can potentially lead to significant p resolution improvement

Conclusions from carried-out tracking studies:

- First time running full MT reconstruction over Upgrade 2 simulation sample \rightarrow efficiency similar to Run 3
- Inclusion of UP in pattern recognition crucial for matching performance \rightarrow more work needed here
- UP material repartition has significant impact on p resolution

What I hope to finish in the remaining time:

- Building parameterization of UP track motion
- First checks on UP hit collection

Backup

The Pixel Fiber Algorithm I

Two Hit Combination:

p.ex. Pair T1_1x, T3_2x

- From T1_1x predict x pos. of hit in T3_2x with a straight line
- Line parameters determined on truth sample
- Open search window of 1400 mm around the predicted position

The Pixel Fiber Algorithm II

Three Hit Combination:

 $\mathrm{p.ex.}\ \mathtt{T1_1x},\ \mathtt{T2_1x},\ \mathtt{T3_2x}$

- Predict x pos. in T2_1x using straight line from T1_1x to T3_2x
- Open search window around predicted position
- Correct for infinite momentum assumption
- Select hits in window of max. 3 mm
- Correction and window tuned on truth sample

Shifted Acceptance: Can have both fiber and pixel hit in same layer!

Three Hit Truth Window and Correction

Corrections shown here for Low geometry:

• plotted with old search window \rightarrow new search window: 3

The Pixel Fiber Algorithm III

Hit collection in T3_u/v layers:

- With 3-hit combination: parabolic fit in xz, line fit in yz
- From predicted x and u/v hit information calculate y prediction
- Open window in y in T3_u/v:
 - if hit in T2 was in Pixel layer: 8 mm
 - $\bullet\,$ if hit in T2 was in Fiber layer: $15\,\mathrm{mm}$

The Pixel Fiber Algorithm IV

Hit collection in remaining x layers:

- With T3_u/v hits: update yz line fit
- Predict from 3-hit combination x, from line fit y
- Open search window: 1 mm in x, 10 mm in y

Shifted Acceptance: Only 5 of 6 x layers required to have a hit!

The Pixel Fiber Algorithm V

Hit collection in remaining u/v layers;

• With all hits fit parabola in xz, line in yz to predict x, y in u/v layers

Case I:

- T1/2 hits in Pixel, no Hits in T1/2 u/v layers
- Cut on χ^2_{ndof} of fit: $\chi^2_{ndof} < 15$

Case II:

- 5 mm window in y for hit selection
- Cut on χ^2_{ndof} of fit with all hits: $\chi^2_{ndof} < 5$

Effect of MP Placement on Pix-Fib Reconstruction (detailed)

For Default Acceptance:

- Hit found either in pixel or fiber part of the same x layer
- Require hit in every x layer

For Shifted Acceptance:

- Hits can be found in both pixel and fiber acceptance of the same x layer
- Track might not leave hit in all 6 x layers

Changes made to the Pixel-Fiber algorithm:

- Track with either the pixel or the fiber hit of the same x layer
- In reconstruction requirement: track has to leave at least 5 hits in the 6 x layers

TTrack Reconstruction Algorithms

Pixel to Pixel Algorithm:

- Requires minimum of 3 hits in track (enabled 3 hit tracking)
- $\bullet\,$ Hits in T1, T2 and T3 required (for 3 hit tracking disabled: 2 in T2 req.)

Fiber to Fiber Algorithm:

- Logic similar to Run 3
- Adapted for increased reco speed with slight drop in efficiency

Hit Flagging:

- Pixel to Pixel and Fiber to Fiber algorithm run first
- Hits utilized in PixPix algorithm flagged
- Pixel to Fiber algorithm run with remaining unflagged hits

Definition Efficiency:

efficiency = $\frac{\# \text{ reconstructed tracks}}{\# \text{ reconstructible tracks}}$

- reconstructed tracks used here: clones and fakes removed from consideration
- reconstructible track:
 - has Velo (from TVHits) ≥ 3
 - has UP (from UPHits) ≥ 2

Definition Ghost Rate:

 $rate = \frac{\# \text{ fake tracks}}{\# \text{ reconstructed tracks}}$

• fake track: < 70 % of hits are associated to same MCP key

Efficiency and Ghost Rate: Default Setup

Geometry		PixPix [%]	FibFib [%]	PixFib [%]	Overall [%]
Bagolino	Eff. ε	97.93	92.36	89.76	96.21
Dasenne	Ghost	2.53	6.89	30.72	7.51
Low	Eff. ε	98.02	89.92	90.56	94.27
LOW	Ghost	3.14	36.81	66.63	34.81
Modium	Eff. ε	97.93	91.93	90.46	95.85
Medium	Ghost	2.70	15.68	47.03	15.37
High	Eff. ε	97.92	91.95	89.77	95.80
mgn	Ghost	2.71	14.93	47.66	15.90

- Efficiency given for: $2 < \eta < 5$ and p > 5 GeV, w/o electrons
- for PixPix algorithm: 3 hit tracking included
- Best overall efficiency and ghost rate for FTDR geometry

Efficiency and Ghost Rate: Shifted Setup

Geometry		PixPix [%]	FibFib [%]	PixFib [%]	Overall [%]
Bagolino	Eff. ε	98.20	92.95	91.28	96.67
Dasenne	Ghost	2.03	6.89	21.72	5.93
Low	Eff. ε	98.34	90.18	89.76	94.52
LOW	Ghost	2.67	36.97	57.43	31.68
Modium	Eff. ε	98.24	92.12	91.75	96.21
Medium	Ghost	2.30	15.80	37.00	13.08
High	Eff. ε	98.24	92.00	91.00	96.18
mgn	Ghost	2.27	14.84	36.79	13.03

- Efficiency given for: $2 < \eta < 5$ and p > 5 GeV, w/o electrons
- for PixPix algorithm: 3 hit tracking included
- Best efficiency and ghost rate for FTDR geometry

TTrack Reconstruction Algorithm Efficiencies II

Geometry	Setup		PixPix $[\%]$	FibFib [%]	PixFib [%]
	Dofault	Eff. ε	97.93	91.93	90.46
Medium	Delault	Ghost	2.70	15.68	47.03
	Shifted	Eff. ε	98.24	92.12	91.75
		Ghost	2.30	15.80	37.00
	Default	Eff. ε	97.92	91.95	89.77
High	Delault	Ghost	2.30	15.80	37.00
	Shifted	Eff. ε	98.24	92.00	91.00
		Ghost	2.27	14.84	36.79

Efficiencies for tracks with p > 5 GeV, $2 < \eta < 5$ and w/o electrons:

Nb. of Long Reconstructible Tracks [p > 5 GeV]

Default Acceptance [p > 5 GeV]

Geometry	Nb. Recoble Tracks	Pixel [%]	Fiber [%]	Mixed [%]
Baseline	28323	20634~[72.9%]	5949[21.0%]	$1740\ [6.1\%]$
Low	28267	15321[54.2%]	10463[37.0%]	2483~[8.8%]
Medium	28277	19128[67.6%]	7463[26.4%]	1686~[6.0%]
High	28297	19325[68.3%]	6715[23.7%]	$2257\ [8.0\%]$

Shifted Acceptance $[p > 5 \,\text{GeV}]$

Geometry	Nb. Recoble Tracks	Pixel [%]	Fiber [%]	Mixed [%]
Baseline	28154	20659~[73.4%]	5951~[21.1%]	1544~[5.5%]
Low	28077	15394[54.8%]	10434[37.2%]	2249~[8.0%]
Medium	28135	$19140\ [68.0\%]$	7458[26.5%]	1537~[5.5%]
High	28112	19379[68.9%]	6707[23.9%]	$2026\ [7.2\%]$

- Overall nb. of long-recoble tracks drops slightly for shifted acc.
- higher percentage of Pixel tracks for shifted acc.

	-	- orotonic is or orp				
Geometry	Nb. Recoble Tracks	Pixel $[\%]$	Fiber [%]	Mixed [%]		
Baseline	44810	24523[54.7%]	16312[36.4%]	3975~[8.9%]		
Low	44760	16808[37.6%]	24033[53.7%]	3919[8.8%]		
Medium	44776	22005[49.1%]	18968[42.4%]	3803~[8.5%]		
High	44786	21850~[48.8%]	18569[41.5%]	4367~[9.8%]		
Shifted Setup						
0	NU D LL T L	D: 1 [07]	T:1 [07]	3.6. 1.[0/1	1	

	Defaul	$^{\rm lt}$	Setup
--	--------	-------------	-------

		<u> </u>		
Geometry	Nb. Recoble Tracks	Pixel [%]	Fiber [%]	Mixed [%]
Baseline	44688	24784~[55.5%]	16310[36.5%]	3594~[8.0%]
Low	44604	17006[38.1%]	24008[53.8%]	3590[8.0%]
Medium	44646	22210[49.7%]	18972[42.5%]	3464[7.8%]
High	44640	$22117\ [49.5\%]$	$18566\ [41.6\%]$	3957[8.9%]

Nb. Recoble Tracks Plots: Baseline Geom

UP Material Placement Studies: Pixel and Migrating Track Results

Using Hits from Migrating Tracks

Using MP Hits only

Penelope Hoffmann

Tracking Studies for the Upgrade 2 of the LHCb Experiment

Mathematics behind Momentum Resolution Improvement

 $(x_1 = -L_p/2, y_1)$ $(x_2 = L_p/2, y_2)$ $(x_1 = -L_p/2, y_1)$ $(x_2 = L_p/2, y_2)$ $(x_2 = L_p/2, y_2)$ $(x_2 = L_p/2, y_2)$

Long Tracks:

• Curvature measured before and after mag. field

•
$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \frac{\sigma_{\mathrm{meas}}p_T}{0.3|z|L_pB\mathbf{D}}\sqrt{\frac{24(N-1)}{N(N+1)}}$$

• shift increases lever arm [C. Langenbruch], [Kolanoski, Wermes 2015] TTracks:

• Curvature measured "in" mag. field

$$\left(\frac{\sigma_{p_T}}{p_T}\right) = \frac{\sigma_{\text{meas}} p_T}{0.3 |z| L_p^2 B} \sqrt{\frac{720}{N+4}}$$

• shift influences B and L_p^2

Validation Study: Downstream and Long Track Results

Penelope Hoffmann