
9
Associators

How to relate objects to each other
Create relations
Save relations

Use relations: Associators

9.2 DaVinci Tutorial

Relations between objects

• Which type of objects
– Any object: int, double, complex class, keyed/contained objects…
– Most interesting: two sets of contained objects

• What is a relation?

From set To set

9.3 DaVinci Tutorial

Types of relations

• One or two directional (1D / 2D)
– But reverse relations can always be retrieved from direct relations
– Hence, only 1D relations are made persistent
– Advice: create only 1D relations, unless both usages are frequent

• Normal relations
– Simple link between objects
– Not necessarily between all objects of each set
– Possibly several links from/to an object

• Weighted relations
– The link carries additional information (can be any class)

� An ordering should be possible on the WEIGHT class
� Example: int, double
� But could be complex class with the == and < operators defined

9.4 DaVinci Tutorial

How to create relations

1. Instantiate the relation table (in the creation algorithm)
#include “MyAssociator.h”
. . . .
new Table* table; // The type “Table” is defined in MyAssociator.h

2. Usually one loops on all objects in the FROM set
for(from_iterator frIt=from.begin(); from.end()!=frIt; frIt++) {

3. For each object, decide which objects of the TO set to link
to, possibly which weight.
double weight = computeWeight(frIt, toIt);
if(weight > 0) { // Example of how to decide

4. Establish the relation
table->relate(*frIt, *toIt [, weight]);

9.5 DaVinci Tutorial

How to save relations (1)

• Once the table is filled
• Optionally apply filters (if weighted)

FromObj* from;
ToObj* to;
Weight threshold;
table->filterFrom(from, threshold, {false,true});
// Keeps only relations with weight > (true) or > than a threshold

• Optionally remove some relations (all)
table->removeFrom(from);
table->removeTo(to);

9.6 DaVinci Tutorial

How to save relations (2)

• Declare the relations table in the transient store
StatusCode sc =
eventSvc()->registerObject(outputData(), table);

// outputData() returns the location in TES
// it should be declared as a property of the algorithm

• If the table should be discarded (e.g. in case of error)
– Do not forget to

delete table; // avoid memory leaks!

9.7 DaVinci Tutorial

How to use relations?

• In order to use relations, the user algorithm should use a
Gaudi tool called an Associator

• Generic Associator tool available
• Guidelines for Associators

– Specialise the associator (for ease of use)
– New class derived from the class Associator
– For weighted Associators: class AssociatorWeighted

• Where does the tool look for the table?
– The tool looks in the TES
– If not found, it tries and get it from the PES
– If not found, one can define a construction algorithm which should

save the relations table in the TES (at the location they are expected!)

9.8 DaVinci Tutorial

Associators

• Naming conventions
– Type of the Associator tool

class FromObj2ToObjAsct : public
Associator[Weighted]<FromObj,ToObj[,Weight]> { . . . };

OtherInfo is optional (should not relect the method used but the content)

– If ToObj and FromObj can be “factorised”, do not repeat the common
part in ToObj
class Particle2MCWithChi2Asct;
class ITCluster2MCParticleAsct;

– Type for the relations table
FromObj2ToObjOtherInfoAsct::Table

– Type for the Associator tool interface
FromObj2ToObjOtherInfoAsct::IAsct

9.9 DaVinci Tutorial

Declaring an associator

• In MyAssociator.h (note that “Weighted” is only in case of weighted relations)

#include "Relations/AssociatorWeighted.h”
. . . .
class Particle2MCWithChi2Asct :
public AssociatorWeighted<Particle,MCParticle,double>

{
public:
// Define data types
// Define the relations table, templated class
typedef RelationWeighted1D<Particle,MCParticle,double> Table;
// Defines the type of the base associator
typedef OwnType Asct;

. . . .
// Minimal constructor

Particle2MCWithChi2Asct(const std::string& type, const std::string& name,
const IInterface* parent)

: Asct(type, name, parent) { };
}

9.10 DaVinci Tutorial

Declaring an associator (2)

• Declare types for retrieving ranges of objects
– When getting objects related to a given From (To) object, one gets a “range”
– A “range” can be seen as a list/vector of objects
– A “range” has an iterator, with the usual begin() and end() methods
– For ease of use, one can define meaning full types for ranges, e.g.

typedef Particle2MCWithChi2Asct::FromRange ParticlesToMCChi2;
typedef Particle2MCWithChi2Asct::FromIterator ParticlesToMCChi2Iterator;
typedef Particle2MCWithChi2Asct::ToRange MCsFromParticleChi2;
typedef Particle2MCWithChi2Asct::ToIterator MCsFromParticleChi2Iterator;

• DLL file for loading the tool
– MyAssociators_dll.cpp
#include "GaudiKernel/LoadFactoryEntries.h"
LOAD_FACTORY_ENTRIES(PhysAssociators)

9.11 DaVinci Tutorial

Declaring an Associator (3)

• A _load.cpp file must be defined to declare the necessary factories
– MyAssociators_load.cpp:

#include "DaVinciAssociators/Particle2MCWithChi2Asct.h”
// Declare factory for the associator
static const ToolFactory<Particle2MCWithChi2Asct> s_Particle2MCWithChi2AsctFactory;
const IToolFactory& Particle2MCWithChi2AsctFactory = s_Particle2MCWithChi2AsctFactory;

// Declare factory for the relations table
static const DataObjectFactory<Particle2MCWithChi2Asct::Table> s_Particle2MCWithChi2TableFactory;
const Ifactory& Particle2MCWithChi2TableFactory = s_Particle2MCWithChi2TableFactory;
. . .

DECLARE_FACTORY_ENTRIES(PhysAssociators) {
DECLARE_OBJECT(Particle2MCWithChi2Table); // Declare the Table object
DECLARE_TOOL(Particle2MCWithChi2Asct); // Declare the Associator tool
DECLARE_ALGORITHM(Particle2MCWithChi2); // Declare the construction algorithm

}

9.12 DaVinci Tutorial

• An instance of the tool should be created in the user
algorithm
– Returns a pointer to an Associator interface (type Iasct*):
Particle2MCWithChi2Asct::IAsct* m_pAsctWithChi2; ///< Pointer to associator with chi2

as weight
. . . .
// This is the Particle2MCWithChi2 tool
sc = toolSvc()->retrieveTool("Particle2MCWithChi2Asct",

m_pAsctWithChi2);

/// “Particle2MCWithChi2Asct” is the type of the tool (as in _load)
/// m_pAsctWithChi2 is a pointer to the interface used later on

Retrieving an Associator

[“MyAssociator”,]

/// [“MyAssociator”,] is an optional private name to that tool

9.13 DaVinci Tutorial

Using an Associator

• Retrieve a range of ToObj given a FromObj
Particle* part = . . . ;
. . .
MCsfromParticleChi2 mcParts = m_pAsctWithChi2->rangeFrom(part);
MCsfromParticleChi2Iterator mcPartsIt;
for(mcPartIt = mcParts.begin(); mcParts.end() != mcPartIt; mcPartIt++) {
. . .
// CAUTION: *mcPartIt is not of type MCParticle!!!
MCParticle* mcPart = mcPartIt->to();
Weight weight = mcPartIt->weight();

}

• Similarly one can retrieve a range of FromObj given a ToObj
Particle* part = . . . ;
. . .
ParticlesToMCChi2 parts = m_pAsctWithChi2->rangeTo(mcPart);

9.14 DaVinci Tutorial

Using an Associator (2)

• Often, relations are one-to-one between the two sets
– Possibly no linked object, but never 2 or more
– Shortcut to directly access the object:

MCParticle* mcPartChi2;
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom(*part[, chi2]);
if(mcPartChi2) {

// There was an associated MCParticle
} else {

// There was no associated MCParticle OR there was not relations table
}

9.15 DaVinci Tutorial

Using an Associator (3)

• Advanced usage of weighted associators
– One can retrieve relations which have a weight larger (smaller) than a

threshold
Particle* part = . . . ;
. . .
MCsfromParticleChi2 mcParts =

m_pAsctWithChi2->rangeWithHighCutFrom(part, maxChi2);
// This will return a range containing only associated MCParticles
// if the weight (I.e. the chi2) is smaller than maxChi2

– No one-to-one retrieval method with cut, but trivially
double chi2;
mcPartChi2 = m_pAsctWithChi2->associatedFrom(*part, chi2);
if(mcPartChi2 && chi2 < maxChi2) {

// There was an associated MCParticle with chi2 < maxChi2
}

9.16 DaVinci Tutorial

Using an Associator (4)

• Miscellaneous features
– Testing if the relations table is present
if(false == m_pAsctChi2->tableExists()) {

// The table doesn’t exist
} else {

// One can retrieve information safely
}

– Getting a status code when retrieving a range
Range range;
StatusCode sc = m_pAsct->rangeFrom(from, range);
if(sc.isSuccess()) {

// One can use range safely
}

9.17 DaVinci Tutorial

JobOptions for Associators

• Properties of the base class
– No default: to be defined in the constructor using

set_property(name, value);

– Location of the relations table in the TES
Toolsvc.Particle2MCWithChi2Asct.Location =
"Phys/Relations/Particle2MCWithChi2";

– Convention for the location name:
� Root: the TES branch of the “To” objects
� /Relations
� Leaf: name of the Associator

– Creation algorithm
ToolSvc.Particle2MCWithChi2Asct.AlgorithmType = "Particle2MCWithChi2";
ToolSvc.Particle2MCWithChi2Asct.AlgorithmName = "Particle2MCWithChi2";

– Note: one can give an alternate name to the Associator and/or to the
algorithm… The same Associator can be used twice with different
settings

9.18 DaVinci Tutorial

JobOptions for Associators (2)

• Example of dual usage of a single associator
– In the code, retrieve the same tool with two different names

// First the default Associator (called Particle2MCAsct)
sc = toolSvc()->retrieveTool(m_nameMCAsct, m_pAsctChi2);

// This is another type of Particle2MC tool, diffentiated by jobOptions

sc = toolSvc()->retrieveTool(m_nameMCAsct, "LinkAsct", m_pAsctLinks);

– In the JobOptions file, declare different locations and algorithms
// default associator using best chi2
Toolsvc.Particle2MCAsct.Location = "Phys/Relations/Particle2MC";

ToolSvc.Particle2MCAsct.AlgorithmType = "Particle2MCChi2";

ToolSvc.Particle2MCAsct.AlgorithmName = "Particle2MCChi2";

// alternate associator using stored links

Toolsvc.LinkAsct.Location = "Phys/Relations/Particle2MCLinks";

ToolSvc.LinkAsct.AlgorithmType = "Particle2MCLinks";

ToolSvc.LinkAsct.AlgorithmName = "Particle2MCLinks";

9.19 DaVinci Tutorial

Caveats

• Location of the table
– No direct connection between the Associator (location property) and

the creation algorithm…
– Advise:

� Use as for containers a static const definition in the .h file
static const std::string& Particle2MCAsctLocation = "Phys/Relations/Particle2MC";

� Define the Associator property (in the Associator constructor)
setProperty(location, Particle2MCAsctLocation);

� Use for registering in the TES (e.g. as default property of the algorithm)
declareProperty("OutputData", m_outputData = Particle2MCAsctLocation);
. . .

StatusCode sc = eventSvc()->registerObject(outputData(), table);

9.20 DaVinci Tutorial

DaVinci Associators

• Package Phys/DaVinciAssociators

• Two associators defined, with 3 creation algorithms
UserAlgo

Particle2MCAsct

Particle2MCWithChi2Asct

Particle2MCLinks

Particle2MCWithChi2

Particle2MCChi2

TES

/Phys/…/Particles

/Phys/Relations/Particle2MC

/Phys/Relations/Particle2MCWithChi2

/Phys/Relations/Particle2MCLink

9.21 DaVinci Tutorial

DaVinciAssociators 2

• Algorithm properties
– Particle2MCWithChi2

Particle2MCWithChi2.InputData ="Phys/Production/Particles";
Particle2MCWithChi2.OutputData = "Phys/Relations/Particle2MCWithChi2";
Particle2MCWithChi2.FillHistos = true;

– Particle2MCChi2
Particle2MCChi2.InputData = "Phys/Production/Particles";
Particle2MCChi2.OutputData = "Phys/Relations/Particle2MC";
Particle2MCChi2.Chi2Cut = 100.;

– Particle2MCLinks
Particle2MCLinks.InputData = "Phys/Production/Particles";
Particle2MCLinks.OutputData = "Phys/Relations/Particle2MCLinks";

9.22 DaVinci Tutorial

DaVinciAssociators 3

• Caveat
– Be careful with inputData and location of the relations table in the

TES

• Outlook
– Use an array of TES locations as inputData

– Transmit properties from the tool to the algorithm in order to have
only once the definition of the location in the TES

– Use ProtoParticles to establish the relation (when available)

9.23 DaVinci Tutorial

Summary

• Associators and relations tables are very powerful means
for linking indirectly objects
– No explicit link in the data model
– Relations are external and can be serialized or re-created
– Exemples:

� Particle to MCParticle
� Clusters to MCParticle
� Vertex to Particles (not implemented that way, but could be)

• A generic tool exists, could be used as such
• For physics studies, we suggest to follow guidelines

described in this presentation
• Other users could follow them as well…

