
SDLT Single File Template
1 4. Sept. 2001 Version/Issue: 2/1
European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

The Gaudi Reflection Tool

Crash Course

Document Version: 1
Document Date: 4. Sept. 2001
Document Status: Draft
Document Author: Stefan Roiser

Abstract

1 Introduction

The Gaudi Reflection Tool is a model for the metarepresentation of C++ classes. This model
has to be filled with the corresponding information to each class that shall be represented
through this model. Ideally the writing of this information and filling of the model will be
done during the creation of the real classes. Once the model is filled with information a
pointer to the real class will be enough to enter this model and retrieve information about the
real class.

If there are any relations to other classes, and the information about these corresponding
classes is also part of the metamodel one can jump to these classes and also retrieve
information about them. So an introspection of C++ classes from an external point of view can
be realised quite easily.

2 The Meta Model

The struture of the Gaudi Reflection Model is divided into four parts. These four parts are
represented by four C++-classes. The corepart is the class called MetaClass. Within this class
everything relevant to the real object will be stored. This information includes the name, a
description, the author, the list of methods, members and constructors of this class etc. This
class is also the entrypoint to the MetaModel. Using the MetaClass function forName and the
Template page 1

SDLT Single File Template
2 The Meta Model Version/Issue: 2/1
string of the type of the real class as an argument, a pointer to the corresponding instance of
MetaClass will be returned. With this pointer every possible information about the class can
be retrieved.

This includes information about the fields of the class. Information about these fields is stored
in the class MetaField. With a pointer to an instance of MetaField information about this field
can be retrieved. This information includes the name of the field, a description, the offset
relative to the beginning of the class and its modifiers (eg static, public, etc.). With a pointer to
the MetaField also the value of this field can be retrieved and also set if one knows its type.
(The type is again a class and can be retrieved by the MetaClass function ‘type’).

The other two classes describing the construtors and methods of the MetaModel are not
implemented yet and so will not be discussed any further.

Figure 1 The structure of the Metamodel

Figure 2 The C++ structure of the Metamodel

Class

Method

ConstructorField
•field(s)

•constructor(s)

•method(s)

•declaringClass •returnType •parameterTypes

•declaringClass•type

•declaringClass •parameterTypes

name
desc
modifiers
toString
offset
getInt
getString
getFloat
getDouble
getBool
getChar
getClass
setInt
setString
setFloat
setDouble
setBool
setChar
setClass

name
desc
modifiers
invoke

•superClasses

name
desc

modifiers
forName

isPrimitive

name
desc

modifiers
toString

newInstance

MetaMember

Meta
Constructor

Meta
Class

Meta
Field

Meta
Method
page 2 Template

SDLT Single File Template
3 Tutorial for retrieval and manipulation of information Version/Issue: 2/1
3 Tutorial for retrieval and manipulation of information

3.1 Examining Classes

3.1.1 Retrieving MetaClass Objects

The only way how one can retrieve the pointer to a MetaClass instance is by the static
MetaClass function ‘forName’. The input paramter of this function is a string representing the
name of the real class. But how to get the name of this real class if one has only a pointer to an
object and no knowledge to which class this pointer belongs to?

Fortunately there is a function called typeid in C++ which takes a pointer as an argument and
returns a struct called type_info. This struct bears also the name of the function the pointer
belongs to.

This will also work if the pointer was casted to a baseclass of this instance. So in case of the
Gaudi transient event store one can easily convert a pointer to type ‘DataObject’ and the
information about the original class will still remain in the struct type_info.

Listing 1 gives an example on how to retrieve a pointer to MetaClass. Line 1 creates a
reference to type_info assigning it the typeid of ‘entrypoint’ which is a pointer to the object. In
Line 2 the name of the struct type_info will be taken as an argument for the static MetaClass
function ‘forName’ which returns the pointer to the corresponding MetaClass.

3.1.2 Getting information about the class

Once a pointer to the MetaClass is retrieved every other information can be shown. This
includes the name of the class, the description of the class and its author. Assuming we
already have retrieved a pointer to a MetaClass called mc, Listing 2 gives a short example of
how to retrieve this information. It’s result is are shown in

Listing 1 Retrieving a pointer to MetaClass

1: const type_info& ti = typeid(*entrypoint);
2: MetaClass* mc = MetaClass::forName(System::typeinfoName(ti));
Template page 3

SDLT Single File Template
3 Tutorial for retrieval and manipulation of information Version/Issue: 2/1
3.1.3 Retrieving BaseClasses

Retrieving the baseclasses of a given class is similar to retrieving other information about an
object. With the MetaClass method ‘superClasses’ a vector of pointers to MetaClasses will be
returned. By walking this vector one can retrieve one pointer after the other and with the
pointer to the MetaClass the game will start again.

3.1.4 Retrieving Class Fields

Similarly to the way of retrieving the information of Baseclasses, information about fields of
the object in question can be retrieved. The MetaClass method ‘fields’ returns a vector of
pointers to MetaFields.

Listing 2 Retrieving information about the class

1: std::cout << “ClassInfo:“ << std::endl
2: << “Name:\t“ << mc->name() << std::endl
3: << “Author:\t“ << mc->author() << std::endl
4: << “Description:\t“ << mc->desc() << std::endl

Listing 3 Results of Listing 2

1: ClassInfo:
2: Name: MCEvent
3: Author: Pavel Binko
4: Description: Stores essential information of the Monte Carlo event

Listing 4 Retrieving BaseClasses

1: std::vector<MetaClass*> mcv = mc->superClasses();
2: for (int i = 0; i < mcv.size(); ++i)\
3: {
4: std::cout << “Baseclass of class “ << mc->name() << “: “
5: << mcv[i]->name() << std::endl;
6: }

Listing 5 Results of Listing 4

1: Baseclass of class MCEvent: DataObject
page 4 Template

SDLT Single File Template
3 Tutorial for retrieval and manipulation of information Version/Issue: 2/1
Going through this vector returns one pointer after the other to the metainformation about the
fields of the object.

3.2 Manipulating Objects

3.2.1 Getting Field information

Once a pointer to a MetaField is retrieved, information about the corresponding field may be
gained through this pointer. Like the information about the class most of this general

Listing 6

1: std::vector<MetaField*> mfs = mc1->fields();
2: for (int i = 0; i < mfs.size(); ++i)
3: {
4: std::cout << “Field” << i << “: “ << mfs[i]->name() << std::endl;
5: }

Listing 7 Results of Listing 6

1: Field1: m_pileUp
2: Field2: m_subMCEvents
3: Field3: m_lumi
Template page 5

SDLT Single File Template
3 Tutorial for retrieval and manipulation of information Version/Issue: 2/1
information are simple strings. Listing 8 shows some of the functions that can be used. (The
whole list of functions can be seen in Appendix A on page page 9).

If one knows that the field ‘m_lumi’ is of type ‘double’ it is also possible to retrieve its value. If
the type of the field is not known in advance it is also possible to get the type of the field as a
string (as shown in Listing 8) and retrieve the value in a second step.

3.2.2 Setting values of fields

With the Gaudi Reflection Tool it is not only possible to get values of fields but also to set
them. Listing 12 shows how one can do that.

Listing 8

1: MetaField* mf1 = new MetaField();
2: mf1 = mc->field(“m_lumi”);
3: std::cout << “FieldInfo:“ << std::endl << “Name:\t” << mf1->name()
4: << “Type:\t” << mf1->type()->name() << “Description:\t”
5: << mf1->desc() << std::endl;

Listing 9

1: FieldInfo:
2: Name: m_lumi
3: Type: double
4: Description: Pile up flags

Listing 10 Retrieving a value of a field

1: std::cout << “This is the value of field “ << mf1->name() << “: “
2: << mf1->getDouble(entrypoint) << std::endl;

Listing 11 Result of Listing 10

1: This is the value of field m_lumi: 3432

Listing 12 Setting field values

1: mf1->setDouble(entrypoint, 2343);
2: std::cout << “The new value of field “ << mf1->name() << “ is: “
3: << mf1->getDouble(entrypoint);

Listing 13 Results of Listing 12

1: The new value of field m_lumi is: 2343
page 6 Template

SDLT Single File Template
4 How the MetaModel is organized Version/Issue: 2/1
4 How the MetaModel is organized

4.1 Filling the model

For the filling of the MetaModel some C++-functions are needed which set the relevant
information about the class, its fields, methods and constructors. A complete
(Pseudo)-C++-code for filling the MetaModel with the information of one class can be seen in
Appendix B (on page 13).

4.2 Methods setting information of a class

The setting of information about a class will be passed to the constructor of the
MetaClass-class. Inside this constructor several functions will be called which set the
appropriate information. The call of the constructor can be seen in Listing 14. The arguments
of this call are:

1. The name of the class

2. The description of the class

Additionally to the call of the constructor the name of the class with the pointer to its
metaclass will be added to a static map, which is responsible for the retrieval of the pointer to
the MetaClass.

Inside the Constructor (see Listing 15) of the MetaClass the two functions for setting the name
of the class and its description are called. The third function ‘resolvePending’ is called
periodically to solve problems when a previous found type of a field or baseclass could not be
resolved. This function then tries to resolve these pending types.

Listing 14 Setting MetaClass information

1: MetaClass* mc = new MetaClass(“MCEvent”, “Stores essential
information of the Monte Carlo Event”);

2: MetaClass::addForName(“MCEvent”, mc);

Listing 15 Constructor of MetaClass

1: MetaClass(std::string name, std::string desc)
{

setName(name);
setDesc(desc);
MetaClass::resolvePending();

}

Template page 7

SDLT Single File Template
4 How the MetaModel is organized Version/Issue: 2/1
4.3 Methods setting information of a Field

When setting the information for a field everything can be done by calling the constructor of
the field. An example for this call is shown in Listing 16. This call of the constructor has 5
arguments which are:

1. The name of the field

2. The type of the field

3. The description of the field

4. The offset of the field, relative to the beginning of the class

5. The pointer to the metaclass

Inside the constructor of MetaField several functions will be called which set the
corresponding information (see Listing 17).

Listing 16 Setting MetaField information

1: new MetaField(“lumi”, “double”, “Instantaneous luminosity”,
&((MCEvent*)0)->m_lumi, mc);

Listing 17 Constructor of MetaField

1: MetaField(std::string name, std::string type, std::string desc
void* offset, MetaClass* declaringClass)

{
setName(name);
setType(type);
setDesc(desc);
setOffset(offset);
setDeclaringClass(declaringClass);
declaringClass->addField(name, this);

}

page 8 Template

SDLT Single File Template
A Methods Version/Issue: 2/1
A Methods

A.1 Methods for retrieving and manipulating of information

Table 1 Methods of class MetaMember

Methodname Returnvalue Argument(s)

name string -

desc string -

modifiers int -

declaringClass MetaClass* -

Table 2 Methods of class MetaClass

Methodname Returnvalue Argument(s)

field MetaField* string-

fields vector<MetaField*> -

method MetaMethod* string

methods vector<MetaMethod*> -

constructor MetaConstructor* string

constructors vector<MetaConstructor*> -

forName MetaClass* string

isPrimitive bool -

superClasses vector<MetaClass*> -

Table 3 Methods of class MetaField

Methodname Returnvalue Argument(s)

type MetaClass* -

toString string -

offset int -

getInt int void* base

getString string void* base
Template page 9

SDLT Single File Template
A Methods Version/Issue: 2/1

type MetaClass* -

toString string -

offset int -

getFloat float void* base

getDouble double void* base

getBool bool void* base

getChar char void* base

getClass int void* base

setInt void void* base, int value

setString void void* base, string value

setFloat void void* base, float value

setDouble void void* base, double value

setBool void void* base, bool value

setChar void void*base, char value

setClass void void* base, int value

Table 4 Methods of class MetaModifier

MethodName Returntype Argument(s)

isPrivate bool int modifier

isProtected bool int modifier

isPublic bool int modifier

isConst bool int modifier

isVolatile bool int modifier

isAuto bool int modifier

isRegister bool int modifier

isStatic bool int modifier

isExtern bool int modifier

isMutable bool int modifier

Table 3 Methods of class MetaField
page 10 Template

SDLT Single File Template
A Methods Version/Issue: 2/1
A.2 Methods for filling the MetaModel

isInline bool int modifier

isVirtual bool int modifier

isExplicit bool int modifier

toString string int value

Table 4 Methods of class MetaModifier

Table 5 Methods of class MetaMember

Methodname Returnvalue Argument(s)

setName void string

setDesc void string

setModifiers void int

setDeclaringClass void MetaClass*

Table 6 Methods of class MetaClass

Methodname Returnvalue Argument(s)

initializePrimitives void -

addField void string-key, MetaField* value

addMethod void string key, MetaMethod* value

addConstructor void string key, MetaConstructor* value

addForName void string key, MetaClass* value

resolvePending void -

addPendingType void MetaField* key, string value

addPendingSuperClass void MetaClass* key, string value

addSuperClass void string name
Template page 11

SDLT Single File Template
A Methods Version/Issue: 2/1
Table 7 Methods of class MetaField

Methodname Returnvalue Argument(s)

setType void MetaClass* mcp

setType void string name

setOffset void void* offset

Table 8 Methods of class MetaModifier

MethodName Returntype Argument(s)

setPrivate int -

setProtected int -

setPublic int -

setConst int -

setVolatile int -

setAuto int -

setRegister int -

setStatic int -

setExtern int -

setMutable int -

setInline int -

setVirtual int -

setExplicit int -
page 12 Template

SDLT Single File Template
B C++-code for filling the MetaModel Version/Issue: 2/1
B C++-code for filling the MetaModel

1: #include “GaudiKernel/Kernel.h”
2: #include <string>
3:
4: #define private public
5: #include “../class1.h”
6: #undef private
7:
8: #include “Reflection/Reflection.h”
9:

10: class Class1_dict {
11: public: Class1_dict();
12: };
13:
14: static Class1_dict instance;
15:
16: Class1_dict::Class1_dict()
17: {
18: MetaClass* metaC = new MetaClass(“Class1”, “This is the
19: description for the first example class”);
20: MetaClass::addForName(std::string(“Class1”), metaC);
21:
22: new MetaField(“varInt”, “int”, “Desc for int variable”,
23: &((Class1*)0)->m_varInt, metaC);
24: new MetaField(“varString”, “std::string”, “Desc for string var”,
25: &((Class1*)0)->m_varString, metaC);
26: }
Template page 13

