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Abstract 

The LHCb event data model that has been used until now to develop C++ reconstruction and analysis algorithms has a number of drawbacks, most importantly it does not allow us to save the output of the C++ reconstruction in a simple way.

In this note we review the problems of the existing data model and make a number of recommendations for its evolution.

 AUTONUM 
Introduction

The Event Data Model is defined as the set of classes (and relationships between classes) needed to describe the LHCb event data, both simulated and real. The Data Model currently used by Gaudi applications (including Brunel) has evolved from the SICB data model, addressing the specific needs of different groups of developers.

Now that much of the reconstruction software has been migrated to C++, it is necessary to save the output to an object-persistent data store independent of the old SICB ZEBRA files. This requires a redesign of the existing data model, whose classes were not designed with persistency in mind, and which can only be saved with considerable overheads.

This document proposes a new structure for the event data, which takes into account the constraints from persistency, as well as conventions to ensure a coherent approach in all sub-detectors. It forms the basis for the redesign of the complete event model, including the sub-detector event models and the physics analysis event model (including the Monte Carlo truth).

 AUTONUM 
Conventions for the new event data model 

2.1 Organization of the event transient data store (TDS)

A coherent organisation of the data store is desirable for ease of use, of maintenance, of navigability, of efficiency. There are also some constraints:

1. The Gaudi Transient Data Store (TDS) software cannot know, a priori, whether a given node in the event tree is only a directory node, or also contains data. This is the reason why the current version of Gaudi does not create missing directory nodes by default.

2. We would like to make our data persistent at various points of the data processing. Each dataset should be as self-consistent as possible, with a minimum number of references to classes external to the dataset. Such references imply a large overhead if they need to be followed, either because they require to open a new file (in which the referred objects reside) or because a copy of the referred object needs to be stored in the data set (thus increasing the dataset size).

The above desires and constraints lead to the following rules for the organization of the LHCb Event data in the Gaudi Event TDS:

1. Data must not be put in directory nodes of the Event Data tree, only in leaves. New leaf objects must be invented to contain data that is held in directory nodes of the current data model (e.g. /Event/Header to contain the event number, run number and time stamp). This restriction will make it possible to implement automatic creation of directories whenever an attempt is made to add an object to a not yet existing directory node. 

2. The Event Data is organised in several sub-trees as shown in Table 1; these correspond to the output of each processing step. Links between sub-trees should be kept to a minimum.

3. The number of branches or leaves hanging from a given node should be optimised for navigation efficiency. Nodes with too few sub-branches lead to inefficiency when navigating down the tree, nodes with too many sub-branches (or leaves) lead to inefficiency when locating a given object hanging from that node. We have decided to have one further set of nodes in the /MC, /Raw, /Trig and /Rec sub-trees, whose names are the names of the sub-detectors that produced the data (e.g. /Event/Raw/ECAL/Digits).

4. When designing the Digits, a point to bear in mind is that these have to be built efficiently from the raw data buffer coming from the DAQ.

Table 1: Sub-trees of the LHCb Event Data Model

	TDS path
	Typical content

	/Event/Gen
	Output of event generator (GenParticles, GenVertices).

	/Event/MC
	Output of GEANT tracking step (Hits, additional MCParticles and MCVertices) 

Also contains additional sub-trees (/Prev, /PrevPrev, /Next, /NextNext etc.) for the implementation of spill-over

	/Event/Raw
	Raw data from the detector, simulated raw data in the same format (Digits)

	/Event/Trig
	Output of L0 and L1 trigger simulations (Trigger Digits when these are different from Raw Digits, Trigger Candidates, Trigger Decision)

	/Event/Rec
	Output of the sub-detector reconstruction (Clusters, Tracks etc.)
Output of global reconstruction (ProtoPart, ProtoPV, etc.)

	/Event/Phys
	Output of Physics Analysis (Particles etc.)


Below these levels, we have a naming convention, so that all sub-detectors call the same entities by the same name. The following conventions have been agreed:

1. Avoid words like “Container” in the names. Use singular for individual DataObjects (/Event/Header, /Event/Trig/L0/Decision), use plural for containers (Event/Raw/ECAL/Digits, /Event/Raw/OT/Digits)

2. Adopt the same name for similar things. The names proposed in Table 2. should be used, but it is recognised that in some specific cases a more appropriate name could be used instead.

3. The default path for locating a class in the Event TDS is hard-coded in the header file of the class.

Table 2.  Naming convention for LHCb Event data classes and TDS paths

	Class Name
	Default path in Event TDS
	Meaning

	MC<Det>Hit
	/Event/MC/<Det>/Hits
	Geant hits

	MC<Det>Digit
	/Event/MC/<Det>/Digits
	MC history of digitisation (see later for an explanation of the purpose of these classes)

	<Det>Digit
	/Event/Raw/<Det>/Digits
	Output of digitisation (same content as raw data from the DAQ)

	<Det>Cluster
	/Event/Rec/<Det>/Clusters
	Reconstructed clusters (including Outer Tracker “Hits”)


2.2 Relationships between Event Data objects

Relationships between data objects have far reaching implications when making the data persistent. The following rules have been agreed:

1. It is forbidden to use raw C++ pointers in relationships between data store objects. Relationships should be implemented as smart references whenever possible.

2. All contained objects must be identifiable by a unique ID (or “key”). In the case of the keyed objects described in Appendix A. , the key either has a value automatically allocated by the base class, or a more meaningful value in the context of the concrete class (e.g. “cellID”).

3. There should be no references from event data to detector data. Such relationships should be implemented via some kind of channel ID to be passed to the appropriate detector element. In special cases, where this is necessary for efficiency or for simplifying the code (e.g. a track fit that has to deal with measurements from several different detector types) references are allowed, provided that they are in objects which will not be made persistent and which are not referenced by other persistent-capable objects.

4. History relationships in the data model are implemented as unidirectional links pointing from the output objects of a processing step to the input objects. Such links should occur explicitly in the data model only between classes from adjacent steps in the data processing (e.g. from Tracks to Clusters, from Clusters to Digits, from MCHits to MCParticles). More indirect relationships (e.g. from Tracks to MCParticles, from Clusters to MCHits) must not occur explicitly in the model and must be accessed via associators. This is shown graphically in Figure 1. 
Figure 1.  Relationship between classes in the LHCb event model
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2.3 Relationship to Monte Carlo Truth

A side effect of rule 4 in Section 2.2 is that the only direct relationship between simulated raw or reconstructed data and the corresponding Monte Carlo truth information is the relationship between “Digits” and “MCDigits”.

The following proposal is made:

1.  The model imposes a one-to-one relationship between the real data "Digit" object and the corresponding "MCDigit" Monte Carlo truth object.

2. The "Digit" is uniquely identified by its electronics channel ID. The consequence is that only one Digit per channel may exist in the event. In cases where the electronics can produce more than one digitisation value per channel (e.g. two are possible in the Outer Tracker), all the values are stored in the same Digit.

3. In Monte Carlo data, there is one (and only one) MCDigit corresponding to each Digit, with the same electronics channel ID. This object contains the references to the Hits used to create the Digit, as well as any additional information that the digitisation algorithm may wish to store (e.g. how multiple hits were treated in the presence of dead time, which left-right ambiguity was the correct one etc.). Note that the Hits referenced may come from different events (e.g. when simulating spillover or coherent noise).

No recommendation is made as to whether Digits due to noise should have corresponding MCDigits or not (i.e.should the history of noise be preserved?). It may be preferable to always have a MCDigit, e.g. to flag the case when a noise hit masks a real hit due do dead time. It would also simplify error checking if there are no exceptions to the rule that a Digit must always have a corresponding MCDigit.

2.3.1. Implementation of the Digit to MCDigit relationship

Two approaches are possible for implementing the relationship between Digits and MCDigits:

1. No explicit link between Digits and MCDigits. The association is done implicitly via the electronics channel ID. In this approach there is a clear separation between the real data objects and the simulation history. The reconstruction receives identical objects (Digits), whether it is reading in real or simulated data. Navigation to MCDigits is possible via the channel ID, but is clearly less efficient and less straightforward than via a SmartRef. Information about the source of the Digits (whether they are from real data or from simulated data and, if simulated, the location of the MCDigits in the persistent store) must be preserved at the level of the container. An example of how this navigation might look in user code is shown in Appendix A.3
2. Explicit relationship, probably implemented with inheritance: the MCDigit is a derived class of Digit, which either 

· contains a single SmartRef to an MCDeposit that remembers how the MCDigit was produced from the Hits; or:

· directly contains this information, including SmartRefs to the Hits.

· This scheme makes navigation from a Digit to its corresponding MCDigit trivial.

Both approaches have advantages and disadvantages. The clear separation of the first approach is appealing for the reconstruction program, since the input real or simulated data would be strictly identical. The second approach simplifies the navigation to Monte Carlo truth, which can be advantageous particularly while developing the code, but at the expense of a more complex data model that may complicate the design of self consistent persistent data sets (ESD, AOD).

After much discussion, we have decided to privilege simplicity of the data model over ease of navigation, and recommend that the collaboration adopt the first approach.

2.4 Associators

Associators implement algorithms that can decide on the association between distant objects in the data model (e.g. Tracks and MCParticles, Clusters and MCHits). The association algorithm can be trivial, in the sense that the association is well defined (for example from a Digit one can find all the MCHits that were used to produce it), or may require some judgement (for example, a Track may have been built from Clusters which, due to pattern recognition errors, may originate from several different MCParticles; in this case, the association between Tracks and MCParticles requires some criteria, such as a certain fraction of shared Digits). 

Associators are intended to hide the complexity of the association, and should provide a standard interface to the user. Various kinds of association are possible (e.g. one to one, one to many, many to many, with weights), generic solutions will be provided as much as possible and some prototypes exist.

Internally, associators can navigate the explicit links in the data model (if all the objects that allow navigation from the source object to the destination object are available), or may use association tables that were built by running the association algorithms in a previous processing step, when the intermediate objects were still available. By saving these tables together with the reconstructed data (typically in the /Phys or /Rec datasets), one can preserve the relationships between reconstructed objects and Monte Carlo truth data even if the intermediate objects are dropped to reduce the persistent event size.

 AUTONUM 
Containers for the event data

In this section we consider the container classes that hold data objects in the Event TDS. We propose a new type of container and of contained object that extend the functionality of the existing containers.

3.1.  Problems with the current situation

Containers are typically of type ObjectVector<T>, an array of items of base type ContainedObject. The items are identified by their serial number within the container i.e. the first item has serial number 0, the second 1 etc.

The container takes ownership over all contained objects, hence ensuring that no memory leaks occur when processing events. However, this approach (at least in the current implementation) implies that any contained object can only be present in one and only one container.

This approach has considerable disadvantages:

· Contained objects are not identified by a “name” (key), which is constant over the lifetime of the contained object.

· Containers cannot be cleaned up e.g. to optimise the persistent space used, because of this identification scheme. Removing one or several items from the container would change the serial number and hence the key of any object in the array located after the object to be removed. All references to these objects would not only be invalid, but even worse, would eventually reference the wrong objects.

· Building subsets of contained objects must be done in containers other than ObjectVector<T>, because these allow the contained object to be present in only one container. This in the past has sometimes caused problems to users who were not aware of the ownership aspect.

· Users could not easily access contained objects using a user defined unique key. It was necessary to explicitly loop over all objects until the required key match was found.

3.2. Required functionality

The limitations observed with existing containers lead us to define a set of requirements for a new type of container with enhanced functionality.
· The container should provide two types of access to its aggregated objects:

· Iterator like access in the event all contained objects are supposed to be accessed. This access type is to be used typically in loops.

· Access by “name” or key. For optimisation reasons the key is a number type.

In the following the identification of an object, its “name”, “label” will be called key.

· It must be possible to remove parts from a container without having to rebuild all references to the aggregated objects of the container. References that were valid before the removal cannot be followed anymore. In this event the reference should convert to a NULL pointer.

· After having removed contained objects from a container, it should still be possible to make this container persistent. All external smart references to the contained objects must preserve their validity. When reading back from a persistent medium, the state of the container and of all references pointing to contained objects must reflect the state they were written. 

· When populating such a container, a key must be provided. The key is specific to the contained object and an aggregated part of it. Containers should be able to create default keys if the user does not supply one when creating the contained objects or when adding them to the container. When objects are accessed by key, a check can confirm the validity of the requested object. Later this check could be removed for performance reasons.

· It is desirable that the same contained object could be assigned to two containers. This functionality is very often required in order to build subsets as the result of a selection procedure. Clearly assigning a contained object to several containers may neither result in memory leaks nor in references suddenly being invalid. The owner of a contained object is the container which the key when the object was added to it. If the object is added to other containers, the ownership does not change i.e. the object is added only by reference, but even in these containers the object key must be unique.

· The container must ensure that a unique key identifies items added. An attempt to add a contained object with a key already present should result in an exception raised.

· Users should be able to use user-defined keys; hence increasing the functionality when matching contained objects with objects present in other containers. 

· The resulting construct should make it simple and efficient to build independent Monte Carlo truth objects, which allow accessing the history of a given object by the object’s key.

3.3. Use cases for keyed containers

3.3.1. Keyed Access

The envisaged solution will allow constructs like:

typedef KeyedContainer<MCParticle>       MCParticles;
typedef KeyedContainer<Digit,ChannelID>  Digits;


MCParticles *particles = ...;
   Digits      *digis = ...;
   DigitsTruth *MCTruth = ...;

For(Digits::iterator I=digis->begin(); I!=digis->end(); I++){
  ChannelID key = (*I)->key();

  // Get all MC particles contributing to this digit
  std::vector<long>& truth_keys
                   = MCTruth->contributingParticles(key);

  // do something with the truth information

  for (std::vector<long>::iterator j=truth_keys.begin(); j!=...){

    MCParticle* p = particles->object(*j);

    . . .

  }
}

Note:
In the presence of keys, the access to objects by the operator [] requires the key, not the serial number of the object. Access using the operator [] with a serial number leads to unpredictable results. 
3.3.2. Containment of objects in multiple containers

A possible use of the new container could be to create temporary containers, without having to worry about deleting the contents, as this would be done automatically. Temporary in this context means that the container will not be registered with the transient store. Such temporary containers could hold sub-sets of objects from a container in the transient store, for manipulation by an algorithm

This functionality has the following consequences:

· Every object knows its owner. It also keeps track of how many containers it is part of.

· Objects contained in a container stay alive as until the last container which references the object is out of scope.

· Only objects which are owned can be saved. This must be checked when the container is saved to persistent storage. If the object to be saved is not owned, an exception must be thrown.

3.4. Possible solution

None of the existing container types in Gaudi can fulfil the above requirements. Hence, a new container must be designed providing the requested functionality. Any implementation must be able to cope with both access types (by iterator and by key). The key can have any representation as long as a transformation to a long integer value is possible and supported by the key class structure. The default type would be a long integer (32 bits).

An example of a possible solution is shown in Appendix A. 
3.5. Problems with this approach

3.5.1. CPU penalty

There are concerns about the CPU penalty of keyed access, compared to the existing containers. In order to study this, a prototype implementation has been made, consisting of a vector and a hash table. If the "keys" of the contained objects are numbered sequentially with no gaps, the vector is directly accessed. If the keys are not sequential, the vector is considered "dirty" and access is via the hash table. 

We have made timing comparisons with the current ObjectVector. In the directly comparable case of a "clean" vector, the access time goes from 4ns per object to 9ns, due to the additional test on "cleanliness". If the vector is "dirty", the access time rises to ~200ns. Note that these numbers assume direct access via an iterator; access via a smartRef adds approximately 50ns in all cases. 

The conclusion is that the performance loss when using the keyed containers in the "traditional" way is insignificant; it is only when using the additional functionality of the keyed containers (e.g. possibility to sort) that the performance degrades significantly, but this may be compensated by the new optimisation possibilities offered (reduced copying of objects, reduced length of iterations etc.).

It must be stressed that these measurements were made on a prototype. Optimisation is possible and depends to some extent on the access patterns. We have agreed to try this approach, with the understanding that the computing group will be responsible for optimising the access.

3.5.2. Multiple containment

In order to allow objects to be contained in multiple containers, certain features have to be added to the contained objects, in particular a reference count. There are worries that the contained object, which is intended to be lightweight, may be acquiring too much overhead.

A more serious concern is the question of ownership of objects contained by more than one container. In principle it is possible to allow a container to “acquire” or “steal” ownership of a contained object from another container, but this has far reaching implications for managing the persistency and of deletion of these objects. We have decided not to implement this possibility of transferring ownership for the time being.

 AUTONUM  Conclusion and summary of main recommendations

The LHCb event data model that has been used until now to develop C++ reconstruction and analysis algorithms has a number of drawbacks, most importantly it does not allow us to save the output of the C++ reconstruction in a simple way.

We have undertaken a review of the existing data model and made a number of recommendations for its evolution, the most of which are summarised here:

· All event data objects shall have a “key” which allows to uniquely identify each object

· A new type of container will be used to contain these objects in the Event Transient Data Store, which allows direct access to objects via their key, as well as iterator-like access.

· Explicit relationships between classes in the data model occur only between classes that are adjacent in the data processing sequence. These relationships are expressed as unidirectional links pointing from the more recently created object to its ancestor.

· There is a clear separation between reconstructed data and MonteCarlo truth, with no explicit link between the two

· A number of conventions are proposed for the organisation and naming of data within the data store, to ensure a coherent data model across all the detector sub-systems.

We believe the basic container classes can be implemented within about one month from the adoption of the recommendation. The redesign of the sub-detector data models can begin in parallel; implementation of the model and adaptation of the existing software can be completed in about four months.

Appendix A.  Possible solutions for keyed access

A. An example of a Keyed Container

template<class T, class KEY=long>
class KeyedContainer : public ObjectContainerBase  {

public:
  typedef KEY      key_type;
  typedef T*       value_type;
  typedef T**      iterator;
  typedef T*const* const_iterator;

  /// Constructors
  KeyedContainer();
  /// Destructor
  virtual ~KeyedContainer();
  /// Number of objects in the container
  long size() const;

  /** Access objects by Key                                    */
  /// Retrieve Key of a given object in the container
  key_type key(const ContainedObject* obj) const;
  /// Object access by key
  value_type object(key_type key_value) const;
  value_type operator[](key_type key_value)  const;

  /** Access objects using iterators                           */
  /// Retrieve start iterator
  iterator begin();
  const_iterator begin()  const;
  /// Retrieve terminating iterator
  iterator end();
  const_iterator end()  const;


  /** Insert/Remove objects from the container                 */
  /// Remove object (identified by value) from the container
  long remove(value_type value);
  /// Release object (identified by key) from the container
  long remove(key_type key_value);
  /// Add entry to the container specifying the key value
  void add(value_type pObject, key_type key_value);

  /// Add entry to the container with automatic key assignment
  void add(value_type pObject);

};

A. An example of a Keyed Contained Object

template <class KEY>
class KeyedObject : public ContainedObject  {

public:
  typedef KEY      key_type;

  enum { INVALID_KEY=-1 };

protected:
  /// Object Key; Initial value is INVALID_KEY
  key_type m_key;

  /// Reference counter
  long     m_refCount;
public:
  /// Constructors
  KeyedObject();
  /// Destructor
  virtual ~KeyedObject();


  /// Retrieve Key of the given object
  const key_type key() const;
  /** Set object key. The key for consistency reasons 
      can be set only once for the object. Any attempt to
      redefine the key results in an exception.                */
  void setKey(key_type key); 


  /** Reference count mechanism for insertion into 
      multiple containers; Once the reference count is NULL,
      the object will automatically be deleted.                */
  /// Add reference to object
  unsigned long addRef();
  /// Release reference
  unsigned long release();
};

A. Example of navigation between a Digit and an MCDigit

The following example shows how navigation from a “Digit” object to a “MCDigit” object can be implemented without an explicit reference in the Digit class. The example has been tested by adding a templated method to the existing "ContainedObject" base class, it should work in the same way with the new "KeyedObject" class when available. It is assumed that the objects in the two containers are indexed by the same “key”.

The user code looks as follows:
  SmartDataPtr<Digits> digits(eventSvc(), "/Event/Raw/Digits" );

  Digits::iterator it;

  for ( it = digits->begin(); it != digits->end(); it++) {

    MCDigit* mcdigit = (*it)->stupidRef(MCDigit());

    ...

  }

The "stupidRef" allows the navigation from Digit to MCDigit. The argument "MCDigit()" tells the compiler that that it should return an object of that type. Neither MCDigit nor Digit classes know of the existence of the other. The actual code (of course quite incomplete since if the reference object does not exist it needs to be loaded) looks as follows:

class ContainedObject {

  ...

  template <class T>

  T* stupidRef( T& dummy ) const {

    if( 0 != m_parent && m_parent->linkMgr()->size() > 0 ) {

      DataObject* target = m_parent->linkMgr()->link(0L)->object();

      ObjectVector<T>* ov = dynamic_cast<ObjectVector<T>*>(target);

      if( 0 != ov ) {

        return (*ov)[index()];

      }

    }

    return 0;

  }

}

For the KeyedObject one would replace index() by key().
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