Program of Work Meeting

Minutes of Data Management Session

All presentations can be found on the web.

1. Event Model: language independent representation, common structures and approaches (Pere)

It is felt very important to use a DDL to describe the Data to populate the LHCb Event Model. This is considered a high priority item where it is necessary to make progress. Different experiments have different approaches and for this reason it is difficult to collaborate on this issue.
In LHCb the current situation of using handcrafted C++ class is both error prone and a maintenance problem for hand made converters.

Using DDL would allow automatic code generation in different languages as well as Data dictionaries and documentation for the Event Model. It would automate converters to persistency, allow schema evolution, facilitate interactivity (interface with GUI and data browsing), facilitate distributed computing and facilitate the use of different languages. While all generic methods for a Data Object could be automatically taken care of a concern is for specific methods different from accessors.

Using DDL automatic code generation and keeping language interoperability would put restrictions on the data model. There were different opinions on that: from one side uniformity and simplicity makes life easier, on the other loss of some power of the language.

The agreement at the end was to put constraints on how we describe the data but that we should be careful on what these restrictions are for the methods of the data.
There are different possibilities for the choice of a DDL.

Two options are C-like languages with more emphasis either on describing interfaces (IDL) or on database schema (ODL). Neither would be directly usable since they are both targeting a specific problem. We could use the language but for the parser (the complicated part) we should have to write our own.

Another option is to use C++ itself (header files) to describe the data and use a C++ parser (CINT itself has limitations with the C++ features).

Using debug information (by Expresso) is not seen as a good solution because it would have very strong dependency with compilers and platforms.

It was also suggested to look into using XML to describe the data: there the problems are how to describe the behaviour of the data and schema evolution. Our data objects are in any case mostly data (~90%) and don't have a lot of behaviour (~10%).

An XML schema standard is being produced and preliminary tools are to generate C++ and Java classes.

Using UML with RationalRose and automatically generated XML, C++ and Java classes was suggested as an example. It is felt that RationalRose has a big learning overhead but a graphical tool is seen as desirable. New tools easier to use are now available. These tools are not free and this could prevent external people from collaborating. In principle though, data classes are rarely written and edited header files could be run through the tool in a facility where such a tool exists.
The final proposal was to study this issue (serious investigation is necessary on the existing possibilities) and build a prototype. Manpower needs to be identified. Try to achieve progress by September LHCb week.

2. Event Storage : define strategy on data persistency, data archive and distribution (Markus)

Some of the technologies issues that need to be considered are bookkeeping and data management, event tags (see following talk) and schema evolution.

For choosing a database it is not clear what are the underlying problems in the different technologies to deal with the various issues.
In Gaudi it has been chosen to have an extended object ID (XID) that encapsulates storage type, database name, container name, object name/path. This allows to preserve the tree structure of the transient data and to use different DB technologies.

Serialisation of data objects to a byte stream allows to store objects as BLOBs (Binary Large Objects). A clear advantage is that there is only one type of persistent object. The data transfer is done via BLOBs, so only Data Objects can be accessed directly.

While with BLOBs is not necessary to have updates to persistent schema (Objectivity mechanism is not sufficient) it is not clear if the class ID/version mechanism of the XID is sufficient to deal with schema evolution. The problem is how to translate a BLOB to an improved object because setting of default values could be insufficient.

The database technology will have to cope with the expected amount of data and the required rates as well as read throughput. In the last years Oracle has evolved quite a bit regarding size limitations on the total amount of data stored and it should be reconsidered (IT will look into it).

In addition a full blow DB will have to support remote data access in a transparent way according to the LHCb computing model. DB technologies as well as ROOT support remote access. It will have to be possible to connect the DB to a HSM (Hierarchical Storage Management System) since the whole experimental data will not reside on a single tier (memory, disk, tape, and network).

Another issue is automatic data replication. It is felt that this problem should be looked into when better facilities will be available. At the moment Objectivity provides a method but there are problems related to locking mechanism and synchronisation with the update of the master copy. The caching of data should be done from the closest place that has it and at the moment there is no concept of closest neighbour.

What should Brunel use at the end of the year when it will be in the position to write OODB? The proposal is to use something that has been proven to work for few events (ROOT) and highlight all the problems of managing an OODB while at the same time start serious R&D for other DB technologies. In this regard it is important to have LHC-wide discussions on what will be supported in the next 12 months.

The first step is to make a list of all the things that need to be studied and done for both a short term (6-9 months) and a long term solution, identify how much man-power is necessary and people for the tasks.

Mock Data challenges are felt very useful to identify missing components, check out the persistency model and really stress the database technology.

Two main points have been made by experiment that have made it. First you cannot expect things to scale; you have to try it out. It is necessary to do it on a full-size farm. In this context there is the IT project for a full size farm shared by all 4 LHC experiments.

 The second point is that while individual components can work you must make them work together and that is the real problem.

It was generally felt we should have a Physics Purpose for a Mock Data Challenge, in other words test what we have to do something useful. The conclusion was that a Mock Data challenge would not be appropriate at the moment but it will be in 12-18 months when we will have done more work on DB technologies.
3. Conditions Database : interface definition and services to algorithms (Andrea)

Algorithm will access the Conditions DB via a CondDB Service that will populate the Transient Event store. IT/DB group is developing the Condition DB itself. Good collaboration is in place with them. There are some open design issues on interface and functionality of the DB like versioning schema and internal vs. external management. Concurrency is an important issue, where the problem is particularly important for reprocessing. The framework needs to be able to control the opening/closing of the transactions. The locking mechanism of the different technologies has to be thoroughly considered. A CondDB prototype could be ready from IT in few months.
The CondDBSvc will be developed in Gaudi. Main questions for the design are the how to store/retrieve data (ex. synchronisation of the store) and what to store (recommend uniform description to all SD, store XML string?). It was suggested to consider also a lightweight technology (with the same interface) for quick debugging of few events.

Work is expected to start around mid-August collecting use cases and requirements from the SD followed by design and integration in the framework. Prototyping of the CondDBSvc planned for October-December.

4. Bookkeeping / TAG database : define strategy (Pere)

Data Selection is done by the EventSelector via queries to Tag and Dataset DB.

Complex queries to this DB have to be possible.

TagCollections are specialized collection of event tags with a pointer to the event head location. A question was where to physically store the Event header because it should always be loaded in order to follow the links to the sub-events. An event can be associated to more than one TagCollection (should it always belong to at least one TagCollection? See Babar.) An event on the other hand can only be in one DataSet (collection of events, MCRun is a sub-type of DataSet).

At the moment TagCollections do not exist, while events and DataSets are stored on SICb files and in the Oracle current bookkeeping database.

A very attractive possibility is to store everything in a single DB because it would ensure full navigability, integrity and to have a single technology. The issues is what technology to use. Using Oracle in this strategy is related to the issue of being able to store the event and the limit on total amount of data that is possible to store. This strategy seems to be not very successful at the moment with Objectivity due to having various federations, the import/export of DB and the management of the DB catalogue.

The second possibility is to have a hybrid system where the event will be in one DB, while the TagCollections and DataSets will be in a separate relational DB.

The EventDataSvc will interact with the first one and the EventSelector with the second and it is only necessary to have a link between the two. This fits well with the Gaudi architecture, on the other hand it requires expertise on more than one technology. It was pointed out that it could be necessary to have aTagCollectionCatalogue.

All experiments currently have their own strategy for bookkeeping based on relational DB and this could maybe be a common project.

The proposal is to study both strategies where the general agreement was that if it is possible to store the event in Oracle the first possibility is better. A performance comparison between the two options should be done. It is necessary to develop
TagCollections (using standard ntuple and/or a relational DB) and extend the EventSelector.

5. Use Of GAUDI framework in online : DAQ data formats, configuring tasks etc (Beat)

The main difference between a normal and an online Gaudi application is the fact that in an online application there isn't a well defined permanent storage from which the persistency services access the data but a cloud of data provided by ECS (Experiment Control System) and DAQ. The services accessing directly the permanent storage (not available to trigger farm CPUs) will need to be re-implemented for online applications, but the work is very localised.

An important consideration is the data format. Since the Event Data will be generated by FE electronics it will be a simple format and it could be different from the one stored on disk after L3. The proposal for the Raw Event data is to have all banks one after the other. Each bank should be self-identifying providing information on its size, class ID, bank ID, and source ID in addition to the opaque data.

A formatting algorithm will be required on arrival of data to dispatch the appropriate converter for each bank to populate the transient event store as expected by the algorithms.

The approach of converting all the raw banks at once should be studied in comparison with the filling of the transient store on demand (not all events will pass the lower level trigger and be processed by the higher one, relative suppression factor should be taken into account). The performance issue of data copying vs. the use of pointers need to be investigated as well as the interactions of algorithms with the Condition Services, where if quantities are used it should be ensured they are taken at the right time. It is also necessary to study the mechanism for outputting raw and reconstructed data.

The first step is to do a prototype implementation of some service that will need to be interfaced to ECS (like JobOptions, MessageSvc).

